No More Hooks:
Trustworthy Detection of
Code Integrity Attacks

Xeno Kovah, Corey Kallenberg,
Chris Weathers, Amy Herzog,
Matthew Albin, John Butterworth

MITRE

Malicious Software

[

This system is
Infected!

_

Dear everyone:

Security Software

MITRE

© 2012 The MITRE Corporation. All rights reserved.

2

4)
| don't like you.

You are
annoying.

Malicious Software Security Software

MITRE ’

© 2012 The MITRE Corporation. All rights reserved.

4)
| don't like you.

You are
annoying.

Malicious Software Security Software

scribble
scribble
scribble

MITRE !

© 2012 The MITRE Corporation. All rights reserved.

Malicious Software

[

This system is

A-OK!
_

Dear everyone:

Security Software

MITRE

© 2012 The MITRE Corporation. All rights reserved.

5

Malicious Software

[

~

That's what I'm

talkin' 'bout
(Bruce) Willis!

Security Software

MITRE

© 2012 The MITRE Corporation. All rights reserved.

6

4)
Security

Malicious Software Security Software Checkmate Software is
compromised!

MITRE !

© 2012 The MITRE Corporation. All rights reserved.

Malicious Software

\
You are

similarly
annoying!

scribble
scribble
scribble

Checkmate

MITRE

© 2012 The MITRE Corporation. All rights reserved.

8

Malicious Software

Security Software

Checkmate Don't believe me!

I'm compromised!

\

J
-

‘ Security Software
is OK.)

MITRE

9

© 2012 The MITRE Corporation. All rights reserved.

4)
Are you kidding

me? F*&@" self-

checking tricorder...
This is ridiculous!

Malicious Software

scribble
scribble
scribble

Checkmate

MITRE

© 2012 The MITRE Corporation. All rights reserved.

10

Malicious Software Security Software Checkmate

MITRE H

© 2012 The MITRE Corporation. All rights reserved.

]
Timing-Based Attestation

(aka Software-Based Attestation)

Based on concept of Pioneer by Seshadri et al.

Assumptions
— You can know the client hardware profile
— Your self-check is the most optimized implementation

Implemented from scratch, independently
confirmed previous results.

Source code is released so we can work with
other researches to validate/improve it.

* http://code.google.com/p/timing-attestation

MITRE

Nitty Gritty How Does it Work?

The self-check is hand coded asm to try to
build a timing side-channel into its execution

* The system measurements are things like you
would fine in any memory integrity checking
software like MS's PatchGuard, Mandiant's
MIR, or HBGary's Active Defense.

 We're going to focus on the self-check,
because that's what we have that others don't

MITRE

First principles 1

e "l want to know that my code isn't changed while
it's running”

 Malware does this by self-checksumming or even
self-timing with an rdtsc instruction. This
commonly detects hardware and software
oreakpoints.

* Problem: An attacker (from malware's
oerspective the analyst, from our perspective,
malware) can just force the check to always
succeed.

MITRE

Original code

int main(){
foo = Selfcheck();
if(foo == 0x12341234){
DoSomething();
return SUCCESS;

}
else{

return FAILURE;
}

MITRE

15

Attacker rewrites code

int main(){

foo=Selfcheckl); foo = 0x12341234;
if(foo == 0x12341234){

DoSomething();
return SUCCESS;

}

else{
return FAILURE;

MITRE

16

First principles 2

e At this point basically everyone gives up, and
just goes with code obfuscation.

* We go with
— 1) making the self-check a function of a nonce

— 2) controlling the execution environment to yield
highly predictable runtime

— 3) just let the code run, and evaluate whether it
was tampered with back at a remote server,
based on the self-checksum AND the runtime

MITRE

New outline for code

int main(){
int selfchecksum|[6];
nonce = WaitForMeasurementRequestFromVerifier();
Selfcheck(&selfchecksum,nonce);
SendResultsToVerifier(selfchecksum,nonce);
results = DoSomething();
SendResultsToVerifier(results);
return SUCCESS;

I T E © 2012 The MITRE Corporation. All rights re: .

Thoughts on the nonce

* No single correct value that the attacker can
send-back to indicate the code is intact

* Large nonce and/or self-checksum size
reduces probability of encountering
precomputation attacks

— Attacker needs to store 2/432*192 bits (96GB) in
RAM for a 32 bit precomputation or 2264*384 bits
(768 Zetabytes) for our 64 bit implementation

MITRE

]
What should we actually read to

indicate the code is unmodified?

* A pointer which points at our own code
— We will call this DP for data pointer

— This indicates the memory range where our code is
executing from. Original Pioneer assumed it was in a fixed
location that we could know, but on Widows, no such luck
(ASLR & faux ASLR)

 Our own code bytes

— We will call this *DP (C syntax) or [DP] (asm syntax) to
indicate we're dereferencing the data pointer

e Qur instruction pointer (EIP)

— This also indicates the memory range where our code is
executing from. Should generally agree with DP.

MITRE

Selfcheck() .01

void Selfcheck(int * selfchecksum, int nonce){
int * DP = GetMyCodeStart();
int * end = GetMyCodeEnd();
while(DP < end){
selfchecksum[0] += nonce;
selfchecksum[1] += *DP;
__asm{ call $+5;
pop eax;
mov EIP, eax;}
selfchecksum[2] += EIP;
mix(selfchecksum);
DP++;

MITRE

21

Problems with Selfcheck() .01

It's parallelizable. An attacker can add
compute power from the GPU or any other
processing we're not using to counteract any
time he may incur by forging the self-
checksum

— We can counter this with "strongly ordered
function" like A+ B @ C+ D@ E + F etc. Because
the longer the chain, the less likely

((((A+BDC)+D)EDE)+F)==(A+BIBC+D)D(E+F) for

instance.

MITRE

Problems with Selfcheck() .01

* There is potentially lots of wasted cycles, so
an attacker may be able to add an if() case
with no overhead.

— So we need to handcode assembly, and try to
make sure it is using as much of the
microarchitecture components as possible so

there is no "free" computation available to an
attacker. Otherwise he can just do...

MITRE

Selfcheck() .01 attack

void Selfcheck(int * selfchecksum, int nonce){
int * DP = GetMyCodeStart();
int * end = GetMyCodeEnd();
while(DP < end){
selfchecksum[0] += nonce;
if(DP == badbits) selfchecksum[1] += cleanbits;
else selfchecksum|[1] += *DP;
__asm{ call $+5;
pop eax;
mov EIP, eax;}
selfchecksum[2] += EIP;
mix(selfchecksum);
DP++;

' MITRE

Network Timing Implementation

Server

Measurement Type: FOO,

Nonce = 0xf005ba11

Client

At -

self-Checksum,
Nonce = oxfo05ball

Time
—

FOO measurement results

)
)

MITRE

Selfcheck (Nonce = 0xf0O05bal1l)

FOO measurement

25

© 2012 The MITRE Corporation. All rights reserved.

Time

Network Timing Implementation ~T—

(with attack)

€ FOO measurement

Server Measurement Type: FOO Client
_ Nonce = O0xf005ba11 '
—>
At < Selfcheck (Nonce = Oxf005bal1)
- Selfchecksum,
l Nonce = 0xfo05ball

FOO measurement results

MITRE v

© 2012 The MITRE Corporation. All rights reserved.

26

One more problem with Selfcheck() .01

* Also, notice that EIP will actually always be the
exact same value each time through the loop. So
the attacker could create his own checksum
routine off to the side, which instead of
calculating EIP, just hardcodes it based on
wherever the self-check got loaded into memory.

— We need to make it so that the attacker can't
hardcode the EIP. We can do this by breaking the self-
check into multiple blocks, and pseudo-randomly
picking a different block each time through the loop

MITRE

From A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. _
Pioneer: verifying code integrity and enforcing untampered code execution on legacy systems.

Block 1
3
— jmp *reg
Block 2
1
4 jmp *re /
Jmp “reg 2
Block 3

AN

jmp *reg

Block 4

jmp *reg /

MITRE .

© 2012 The MITRE Corporation. All rights reserved.

PRNG

 But now we need a pseudo-random number
generator, seeded by our nonce.

e We used the same one Pioneer did:
* IDRNnew = IDRNcurrent * (PRNzcurrent OR 5)

MITRE

New self-check .02 pseudocode

Prolog();
BLOCKO MACRO (expanded)
if(loopcounter == 0) jmp done; //This used to be our while loop
loopcounter--;
add ecx, [esp]; //after this ecx (accumulator) = EIP_SRC + EIP_DST
xor ecx, PRN; //ecx = EIP_SRC + EIP_DST XOR PRN
add ecx, DP; //ecx = EIP_SRC + EIP_DST XOR PRN + DP
xor ecx, [DP]; //ecx = EIP_SRC + EIP_DST XOR PRN + DP XOR [DP]
updatePRN(); //New PRN in each block
updateDP(); //We pick a new DP based on the PRN
mix(selfchecksum,ecx); //Rotates checksum by 1 bit to add diffusion
ecx = blockOBase + (blockSize*(PRN & 3)); //Calc next block based on PRN
call ecx; //goto next block, EIP_DST in ecx, EIP_SRC on stack
BLOCK1 MACRO
BLOCK2 MACRO

BLOCK7_MACRO
done:

Epilog();
?
I T E © 2012 The MITRE Corporation. All rights reserved.

Public released self-check

mov eax, ebx
and eax, 3

xor |esp+eax*4), ecx
bt [esp+0x10], 1

rcr [esp-Ox08], 1
rer [esp), 1

rer [esp+0x04], 1
rcr [esp+0x08], 1
rer [esp+0x0C], 1
rer [esp+0x10], 1

CHECKSUM_UPDATE

Copy loop counter to eax

Use bottom 2 bits of loop counter
to specify which checksum memory
entry to directly update.

Xor checksum|[eax+1], accumulator
(+1 because checksum|[0] is below esp)
Set carry flag based on LSB

of checksum|5]

Rotate right with carry checksum([0]
Rotate right with carry checksum(1)
Rotate right with carry checksum(2]
Rotate right with carry checksum(3]
Rotate right with carry checksum(4]
Rotate right with carry checksum(5)

MIX_EIP

add ecx, [esp] EIP_SRC ([esp]) + EIP_DST (ecx)
ecx is then used as an accumulator

add esp, 4 Reset stack after EIP_SRC push
UPDATE_PRN_VARO

mov eax, esi Create a copy of x before squaring

mul eax eax = x*x

or eax, 5 eax = (x*x OR 5)

add esi, eax PRN = x + (x*x OR 5)

XOr ecx, esi Mix PRN with the accumulator ecx
READ_AND_UPDATE_DP_VARO

add ecx, edi Mix DP with accumulator ecx

xor ecx, [edi] Mix *DP with accumulator ecx

mov eax, esi Move PRN to eax

xor edx, edx Clear edx

div memRange edx = PRN modulo memRange

add edx, codeStart edx=codeStart+(PRN mod memRange)

mov edi, edx Update DP to new value
READ_UEE_STATE_VARO

mov eax, dr7 Copy the DR7 register

add ecx, eax Mix DR7 with accumulator ecx

xor ecx, [esp] Mix EFLAGS with accumulator ecx

add esp, 4 Reset stack after EFLAGS push
READ_RAND_RETURN_ADDRESS

test esi, esi AND PRN with self and set flags

mov eax, |ebp+4]
JP(6)

mov edx, [ebp]
mov eax, |edx+4]
XOr eax, esi

add ecx, eax

Move PARENT_RET to eax

Hardcoded bytes for if(PF) jump 6

PF is parity flag set by test esi, esi

The jump would land at the next xor

If not jumped over,

move the GRANDPARENT_RET to eax
Xor saved ret with PRN

Mix xored saved ret with accumulator

sub ebx, 1

test ebx, ebx

jz setRange

lea edx, addressTable

mov eax, esi
and eax, 7

mov ecx, |edx+eax*4]
call ecx

INTERBLOCK_TRANSFER
Decrement loop counter

Check if loop counter is 0

If 0, jump to minichecksum switch
Otherwise, prepare to jump

to next block. Load address of table
holding start address of each block
Copy PRN to eax

Use bottom 3 bits to decide which
block to call to next

Move EIP_DST to ecx

Call to next block

Implicitly push EIP_SRC

31

© 2012 The MITRE Corporation. All rights reserved.

Figure From Pioneer

Attacker gets
free DP or EIP
forgery thanks
to ASLR.

We had the
least overhead
with this attack

MITRE

Memory Copy Attacks

[ZZ 7777) - DP
| V. func
S LSS S A, — PC

(a) No attack, PC
and DP are within the
correct range.

Mal. func

/] V. func

(c) Memory copy at-
tack 2. PC incorrect,

DP correct.

77777

Z

7 V. func

L LS

2

Mal. func

AAAAA

yo

/| DP

-4— PC

(b) Memory copy at-

tack 1.

PC correct,

but DP incorrect.

7777

2/

7 V. func

L L

2

Mal. func

AAAANA

A

(d) Memory copy at-
tack 3. PC and DP in-

correct.

By definition,
more overhead
than (b) or (c).
Not a good idea.

32

© 2012 The MITRE Corporation. All rights reserved.

How it works without attacker =~ — ==

Original copy of self-checking

Verifier
kernel module

BaseVA
=0x1000

Measure
Send(Measurement) System

MITRE

© 2012 The MITRE Corporation. All rights reserved.

Our current fastest PoC attack "

(built into the public released code for easy toggling)

Original copy of self-checking Clean copy of complete
kernel module ; .. kernel module
= 0x1000 . = 0x2000

MeasurementReques ¢
Nonce = 0xfO05ball Filter

Packet o
DP.«

'I
iinfine Hook - ,« (free forgery)

call

3 EVILVFUNC
Send(Selfchecksum)

end(BaseVA=0x uo‘

EVILVFUNC forges EIP
to be at the right offset
In the lied-about DP range

6 ,_Cl\/leasurnd_ .
Send(Measurement) . Q{/E% rtne "
(lies that system is clean)

MITRE

© 2012 The MITRE Corporation. All rights reserved.

Other tricks

Not discussed in depth due to lack of time, see our full paper, the
related work, and the source code

"The stack trick" — if you store part of your self-checksum *below*
esp, then you can guarantee that if someone causes an interrupt
during your execution, part of the self-checksum will be destroyed

Put PRN into DR7 and read it to prevent cost-free use of hardware
breakpoints

Read parent and grandparent return addresses off the stack,
otherwise when the self-check is done it will return to attacker
code (important for TOCTOU as described in a little bit)

Additional control flow integrity comes from doing a mini-
checksum over 3™ party modules which we depend on, or that we
indirectly depend on. So if we depend on ntoskrnl.exe and it
depends on hal.dll, then we measure parts of both.

MITRE

© 2012 The MITRE Corporation. All rights reserved.

Some stuff that's been suggested that we
tried but ultimately backed away from

* Polymorphic self-check code

— Because due to the cache misses and branch mispredictions,
this increases the absolute runtime of the code. Also, the
attacker can implement a non-polymorphic forgery which is way
faster thanks to no cache misses (we implemented such an
attack)

e Exploiting the memory hierarchy by filling instruction and
data cache to capacity

— Because unless you have sufficient unique order of inclusion into
self-checksum block variants to fill the cache, the attacker can
avoid cache spillage by just making his attack have a 1x copy of
each of your unique blocks, and then keeping track of the order
that the blocks would execute in (we implemented such an
attack)

MITRE

So what are the new results?

Countered some previous attacks (Castelluccia et al.) and some new
ones we came up with

— Implementation lessons learned and design decisions will be
documented in a future journal paper.

Demonstrated that the system can work without being NIC-specific
(Pioneer was built into an open source NIC driver.)

Showed that it can work over 10 network links of a production
enterprise LAN (Pioneer said it worked over "same ethernet
segment")

Benchmarked the attestation to see the effects on network
throughput, filesystem read/write performance, and CPU
benchmarking applications

Made the first implementation for TPM-based timing-based
attestation (Schellekens et al. proposed it but didn't implement
anything.)

Defined the relation of TOCTOU to existing and new attacks so
defenses can be better researched.

MITRE

© 2012 The MITRE Corporation. All rights reserved.

Network Topology

Links to client or server are copper.

Server All other links are fiber. Client
Client 10 links
l I 1 link _
\ J Client
[8 links
Client

2 links

2

Client
3 links

WI C (buﬂolmg 2)

_

‘ /

SW|tc SW|tc SW|tc , Router Router
(buildingl) (Core)

38
MITRE Icons from http://nag.ru/goodies/manuals/Cisco-icons.ppt o z012meurmre coporsion. At righs reserve.

Can we detect the reference attacker over the
maximum hop count on our Virginia campus?

Measurement RTT (us)

MITRE

116000 F s o e |
115000 | to ! ° i
114000 |) e, :
113000 | e e :
Attack . Attack Attack
112000 Absent Present Absent]
111000 DENGENE
110000 F « ° o ¥ o -
109000 ' ' '
0 100 200 300

Measurement number

© 2012 The MITRE Corporation. All rights reserved

Can we detect the reference attacker over the
maximum hop count on our Virginia campus?

116000 e epre amae e _
115000 t R A ? ° o .
E) .
= 114000 |) > —
> .
= 113000 | AR SR et NCshvith i
QE) Attack Attack Attack
O 112000 | Absent Present Absent i
5 I oo o Upper bound of expected timing
S 111000 CReen
2 R Lower bound of expected timing

110000 F « , °© o'. X e

109000 ' ' !

0) 100 200 300 400

MIT RE Measurement number © 2012 The MITRE Corporation. All rights reserved.

Can we detect the reference attacker over the
maximum hop count on our Virginia campus?

()
© §° 86 B °®
. o
v
X
&
(«)
(“)

X ""'l',"‘-"«‘. 1-’, PO~ R
Attack

Present

Attack
Absent

RGBT, Gange ©

| What are those? \‘ c " IEe
5 ov X

116000 r
. 115000 r
)
—~ 114000
F
o
= 113000
QE) Attack
O 112000 | Absent
=
é) 111000 170 ¥ oty w10
110000 «
109000
0
MITRE

200

Measurement number

300

© 2012 The MITRE Corporation. All rights reserved

Can we detect the reference attacker over the
maximum hop count on our Virginia campus?

Measurement RTT (us)

MITRE

116000

115000

114000

113000

112000

111000 EENEEIRE

110000

109000

Measurement number

© 2012 The MITRE Corporation. All rights reserved

i 6 §°6 EHo° » 58 |
i S 7 0 2 |
—
B ° e What are those? _
® (¢)

Attack . Attack B Attack

| Absent Present Absent i

B X () V) N X ®

0 100 200 300 400

Measurement RTT (us)

Can we use a single bound for measurement

113500

113000

112500

112000

111500

111000
110500

110000

MITRE

times anywhere on our network?

Measurement number

"host]_1link" -
"host2_1link" X
B "host1_2links" X
"host2_2links" [
B "host1_3links"
"host2_3links"
— "host1_8links" ® |
"host2_8links" A
"host1_10links" A
‘hos2_10links" ¥ Attack Attack 4
- Absent Present
n - i}]
& ‘; |
;154« 129N Intote
i w«@@w& |
0 50 100 150 200

43

© 2012 The MITRE Corporation. All rights reserved.

Measurement RTT (us)

Can we use a single bound for measurement

113500

113000

112500

112000

111500

111000

110500 :3 £e

110000

MITRE

times anywhere on our network?

"hostl_1link" +

"host2_1link"
"hostl_2links" X
"host2_2links" [

"host1_3links"
"host2_3links"
"host1_8links" L4
"host2_8links"
"host1_10links"
"host2_10links"

; Attack Attack -
Absent Present

Upper Bound

— Lower Bound

0

50 100 150 200

Measurement number
44

© 2012 The MITRE Corporation. All rights reserved.

Trusted Platform Module (TPM) =
Timing Implementation

Server TPM Tickstamp Client TPM
Nonce = 0xf005ba11

Request Tickstamp(OxfOOSball)

—_— | -

Signed Tickstamp 1

L
- At

Self-Check (nonce = signature)

Time

Request Tickstamp(Self—CheckSUm)
— |
- - ckstamp 2

Signed Tickstamp 1&2 signed Ticks

Self-Checksum P

Nonce = oxf005ball

é—
v ! |

MITRE 45

© 2012 The MITRE Corporation. All rights reserved.

800

798

796

794

792

790

TPM ticks

788

786

784

782

780

TPM Implementation — Single Host

| a—

B IS B

R BRI

51 101 151

201 251 301 351

1
46
MITRE Measurement number © 2012 The MITRE Corporation. All rights reserved.

800

798

796

794

792

790

TPM ticks

788

786

784

782

780

TPM Implementation — Single Host

WMMMWVMAMA

JJA_MV_N\ B IS B

\ P R BRI
N ~

Why did the median go down
by 1 after the attack?

1 51 101 151 201 251 301 351
MITRE Measurement number 47

© 2012 The MITRE Corporation. All rights reserved.

880

860

840

TPM ticks

820

800

780

TPM Implementation — 32 Hosts

I-\'V_V_A_A.A.A_A.A_NV\J'V_V—A_/V\A.MA_\/__/'_A.\
A
— _A_V_A_A_/V_/V\/_\J_V_V.V.A_
f WA T A i
ST V\flﬂ V M L e "‘“‘”WM i Ak
! 4/‘1 WA b
T IR h“ i | l ‘ ,.“ |) | VLA
I"'H" I i / ~ “ I ‘ '1 \\J ' "
M\V o %
MLV VNV VVNMNAAANAN
D Ivelrmg VAN CYARA A A XA Al
A oA PR BRI S ATERRAD AR 'ow'--“’
INAITAALRA S ANAL WY SR AR v V=YYV Y
S £ L ln'n-.ﬁ"a, Lo ARG ...‘,' :— -."v“‘.'u y
w v A N_A A NN ']
51 101 151 201 251 301 351
MITRE Measurement number 48

© 2012 The MITRE Corporation. All rights reserved.

TOCTOU

Attacker moves out of the way, just in time

MITRE "~

© 2012 The MITRE Corporation. All rights reserved.

Conditions for TOCTOU

* 1) The attacker must know when the
measurement is about to start.

e 2) The attacker must have some un-measured
location to hide in for the duration of the
measurement.

e 3) The attacker must be able to reinstall as
soon as possible after the measurement has

finished.

MITRE

Malicious Software Security Software Checkmate

MITRE -

© 2012 The MITRE Corporation. All rights reserved.

Malicious Software

me just...

Oh, you're about to
do a self-check? Let

erase
erase
erase
erase :
erase
erase

Checkmate

MITRE

© 2012 The MITRE Corporation. All rights reserved.

52

Malicious Software

Security Software

Checkmate

I'm OK

J

Security Software
is OK.

\

MITRE

53

© 2012 The MITRE Corporation. All rights reserved.

Done? Good. Let me

just... Checkmate

Malicious Software

scribble
scribble
scribble
scribble Y
scribble
scribble

MITRE .

© 2012 The MITRE Corporation. All rights reserved.

What regal clothes you have, Emperor

* Most software's TOCTOU defense is just assuming it away.

— Violate our assumption that the attacker can get to the same level
as the security software. and then for instance pull the
measurement agent out to a VMM for instance. Then maybe the
attacker can't see a measurement is about to start. If the attacker
can get to the VMM, same problem.

— In the phone/embedded systems realm (FatSkunk/SWATT) they
have tried to measure the full contents of RAM to implicitly
counter TOCTOU condition 2. But that's not really practical for PCs
due to the amount of time necessary, and the "measure all" is of
dubious utility. (How do you validate that a chunk of heap
containing code of function pointers is the "correct" value?)

* Control flow integrity violation serves as an enabler for
TOCTOU attacks

MITRE

Questions?

e {xkovah,ckallenberg} at mitre.org

 http://code.google.com/p/timing-attestation

* P.s. http://OpenSecurityTraining.info
— x86 assembly/architecture & rootkits classes (Xeno)
— Exploits classes (Corey)
— TPM class (Ariel)
— VT-x class (David)
— Intro RE/Malware Static Analysis classes (Matt & Frank)
— And many others

MITRE

56

MITRE

Backup slides

57

Where else has this been used?

E m be d d ed SYSte m S (A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: Software-
based attestation for embedded devices) & WI re | eSS Se n SO rS (M. Shaneck, K. Mahadevan,

V. Kher, and Y. Kim. Remote software-based attestation for wireless sensors, Y. Choi, J. Kang, and D. Nyang.
Proactive code verification protocol in wireless sensor network.)

SCA DA (A. Shah, A. Perrig, and B. Sinopoli. Mechanisms to provide integrity in SCADA and PCS devices)

* Keyboards to counter BlackHat talk! ... v mccune anan

Perrig. SBAP: Software-Based Attestation for Peripherals.)

¢ A n d rO I d P h O n e S (M. Jakobsson and K.-A. Johansson. Practical and secure software-based

attestation.)

I T E © 2012 The MITRE Corporation. All rights reserved.

Future Work

(Stop trying to hit me, and hit me!)

* Use analysis-timing-constrained control flow, e.g.
TEAS by Garay & Huelsbergen, to combat
TOCTOU condition 1

* Use multiple processors in parallel to combat
TOCTOU condition 3

Self-check 1 X
Processor 1 ff heck 2
Processor 2 Self-chec
Self-check n
Processor n
>
Time

* |nvestigate timing-based attestation lower level in the
system (e.g. BIOS & SMM)
MITRE

Who we would like to hear from

* All of you — How can we build better attacks
against our PoC implementation? How can we
combat TOCTOU in a more generic way?

* Intel/AMD — How can we further optimize our
assembly?

* Microsoft — Is there anything we should be
doing with our NDIS driver to optimize it?

Could you using timing-based attestation to
detect PatchGuard being disabled?

MITRE

Proxy Attacks

Compromised

Measurement Type: FOO, Client

_ Nonce = 0xf005ba11 ,'\\foena;:regfgg Tgpe: FOO,
= 0xf005ba11

Server Faster Client

> Self-Check

7 \f-Checksum,)
At self-Checksum S[\?once _ oxfoo5ball (Nonce = 0xf005ball)
elr- ’

Nonce = 0xf005ball

Time
—

MITRE v |)

© 2012 The MITRE Corporation. All rights reserved.

Time

Server

TPM Tickstamp
Nonce = Oxf005ba11

Slow Client

Signed Tickstamp 1 &2

Self-Checksum
Nonce = oxf005ball

L 1
TPM Timing Implementation Proxy Attack

47

MITRE

TPM Fast Client
_ Request
— Tlckstamp(OxfOOSball)
—> =
Signed Tickstamp 1
67
Request Self-Check (nonce = sigr ature) —-> Self-Check
(nonce =
Self-Checksum signature)
5 :
Request Tlckstamp(checksum[O])
‘> —
. Tickstamp 2
Signed
<7
7 v v 62

© 2012 The MITRE Corporation. All rights reserved.

- At

