
© 2013 The MITRE Corporation. All rights reserved.. Approved for public release 13-2534 

J o h n  B u t t e r w o r t h  
C o r e y  K a l l e n b e r g  
X e n o  K o v a h  

BIOS Chronomancy: 
Fixing the Core Root of Trust 
for Measurement 



| 2 |  

Introduction 

§ Who we are: 
–  Trusted Computing researchers at The MITRE Corporation 

§ What MITRE is: 
–  A not-for-profit company that runs six US Government "Federally 

Funded Research & Development Centers" (FFRDCs) dedicated to 
working in the public interest 

–  The first .org, !(.mil | .gov | .com | .edu | .net), on the ARPANET 
– Manager for a number of standards such as CVE, CWE, OVAL, 

CAPEC, STIX, TAXI, etc 



| 3 |  

Motivation 

§ Why should you care about BIOS security? 
–  It's the first code that runs on your CPU 
–  Almost no one is integrity checking the BIOS, so it's a great place for 

multi-year backdoors to reside 
–  BIOS overwrite leads to very annoying/time-consuming to recover 

from bricking of machines (CIH Virus) 
–  It's rarified knowledge, so it's cool :) 

§ We cared because we wanted to know how trusted computing BIOS 
security mechanisms work. 
–  What is actually measured to generate Trusted Platform Module 

(TPM)-stored BIOS measurements? 
–  Can an attacker defeat these measurements? 
–  How can we build a better root of trust – one that detects an attacker 

at the same privilege level as the defender? 
§  Heresy!? Read-on! 



| 4 |  

Outline 

§ How an attacker could get into BIOS 
§ How the trusted computing technology of the Core Root of Trust 

for Measurement (CRTM) is rooted in the writable BIOS, and 
therefore vulnerable to manipulation 

§ BIOS malware (tick, flea) that can subvert TPM-mediated trust 
§ Our defensive strategy – BIOS Chronomancy 
§ Conclusions 



	
  
Rick	
  Martinez	
  –	
  BIOS	
  Security	
  Architect	
  
Dell	
  End	
  User	
  Computing	
  Solutions	
  

Rick_Martinez@Dell.com	
  
	
  

Dell	
  Intro	
  



* Platform	
  launch	
  August	
  2008	
  
*  Legacy	
  BIOS	
  –	
  x86	
  assembly	
  language	
  
* TCG	
  implementation	
  for	
  Vista	
  Bitlocker	
  
*  Last	
  generation	
  of	
  legacy	
  BIOS	
  on	
  Latitude	
  

New	
  BIOS	
  available	
  on	
  support.dell.com	
  (A34)	
  

Dell	
  Latitude	
  E6400	
  



Dell	
  Latitude	
  Timeline	
  

2007 2008 2009 2010 2011 2012 2013

2011
Latitude	
  E6420

2007
Latitude	
  D630

2012
Latitude	
  E6430

2012
Microsoft	
  Windows	
  8	
  (Secure	
  Boot)

2010
Latitude	
  E6410

Black	
  Hat	
  USA

2011	
  -­‐	
  2012
NIST	
  Rollout

2007
Microsoft	
  Vista	
  (Bitlocker)

2011
NIST	
  800-­‐147	
  Draft

UEFI	
  Transition
2008	
  -­‐	
  2009

2008
Latitude	
  E6400



| 8 |  

Getting into BIOS 

§ Access Controls  
–  There are registers that can prevent writes to the BIOS flash* 
–  Signed firmware updates 

§  Latitude E6400 BIOS revisions: 
–  A29 did not protect the flash from direct writes to the firmware flash 

from privileged applications 
§  A30 and higher do 

–  A29 did not provide an option to require signed updates 
§  A30 and higher have the option, on newer Dell systems it's required 

§ However, even access controls can fail or be bypassed: 
–  In 2009 ITL showed that firmware signing can be bypassed in their 

"Attacking Intel BIOS" presentation[1] 
§  Until now, the only BIOS talk to bypass signed update with an exploit 

*A detailed discussion about these architectural controls is beyond the scope of this presentation 



| 9 |  

Dell E6400 BIOS Update 

1.  Firmware update binary (“HDR”) is copied to kernel memory 
–  Default method is to packetize the HDR file into “rbu packets” 
–  HDR contains more than just the BIOS update (Keyboard 

Controller, Management Engine, too) 
2.  A bit in CMOS byte 0x78 is flipped 
3.  The system is rebooted 
4.  BIOS sees CMOS bit is flipped and triggers an SMI to execute 

the SMM BIOS Update routine 



| 10 |  

BIOS Update Routine (1 of 2) 

$RPK… Packet=1, size=0x400 

Copyright 2011 Dell Inc.. A29 

$RPK… Packet=N, size=0x100 

EB 39 00 00 00 FF FF FF FF … 

$RPK… Packet=2, size=0x1000 

00 00 FF FF FF FF FF… 

OS Kernel Driver 

•  The	
  Opera)ng	
  System	
  packe)zes	
  the	
  new	
  
BIOS	
  image	
  across	
  the	
  address	
  space.	
  Each	
  
packet	
  has	
  a	
  33	
  byte	
  rbu_packet	
  header	
  that	
  
describes	
  the	
  contents	
  and	
  order	
  of	
  the	
  BIOS	
  
image	
  informa)on	
  the	
  packet	
  contains.	
  

•  A	
  bit	
  is	
  then	
  flipped	
  in	
  CMOS	
  to	
  indicate	
  to	
  
the	
  BIOS	
  upon	
  the	
  next	
  reboot	
  that	
  an	
  update	
  
is	
  pending.	
  



| 11 |  

BIOS Update Routine (2 of 2) 

$RPK…	
  Packet=N,	
  size=0x100	
  

EB	
  39	
  00	
  00	
  00	
  FF	
  FF	
  FF	
  FF	
  FF	
  …	
  

$RPK…	
  Packet=N-­‐1,	
  size=0x1000	
  

00	
  00	
  FF	
  FF	
  FF	
  FF	
  FF…	
  •  Upon	
  reboot,	
  the	
  System	
  Management	
  Mode	
  
update	
  rou)ne	
  scans	
  for	
  the	
  individual	
  rbu	
  
packets	
  and	
  uses	
  them	
  to	
  reconstruct	
  the	
  
complete	
  BIOS	
  image.	
  	
  

•  SMM	
  then	
  verifies	
  the	
  reconstructed	
  BIOS	
  
image	
  is	
  signed	
  by	
  Dell	
  before	
  wri)ng	
  to	
  the	
  
flash	
  chip.	
  

System	
  Management	
  Mode	
  RAM	
  
SMM	
  Update	
  Rou)ne	
  

Copyright	
  2011	
  Dell	
  Inc.	
  A29..	
  
FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  

…	
  
…	
  

EB	
  39	
  00	
  00	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  
	
  	
  



| 12 |  

Attacker Objective and Plan 

§ Reflash BIOS chip with arbitrary image despite signed BIOS 
enforcement. 

§ Method: find a memory corruption vulnerability in the parsing of 
the BIOS update information (RBU packets). This will allow us to 
seize control of SMM and reflash the BIOS chip at will. 

§  The memory corruption vulnerability must occur before the 
signature on the bios update image is checked. 

§ SMM parses the 33 byte rbu_packet header that describes 
metadata about the BIOS update image. This parsing occurs 
before the signature check. 



| 13 |  

Attack Surface 

http://linux.dell.com/libsmbios/main/RbuLowLevel_8h-source.html 



| 14 |  

Packet Parsing 

§ SMM first locates the RBU packet by scanning for an ASCII 
signature upon page aligned boundaries. 

§ Once located, members of the RBU packet are stored in an SMM 
data area for use in later calculations… 



| 15 |  

Curious GEOR? 

§ When reconstructing the BIOS image from the rbu packets, SMM 
writes an initialization string “GEOR” to the destination memory 
space where the BIOS image is being reconstructed…. 

 



| 16 |  

RBU Packet Copied 

§ Eventually the portion of the BIOS image described by the RBU 
packet is copied to the reconstruction location in memory. 

§ Notice the size parameter (ecx) for the inline memcpy (rep movsd) is 
derived from attacker data (g_pktSizeMinusHdrSize). 



| 17 |  

RBU Packet Parsing Vulnerability 

§  In fact, the copy destination and copy source are also both 
derived from attacker data read in from the current rbu_packet.  

§  This is an exploitable buffer overflow. 



| 18 |  

Lack of Mitigations 

§ System Management Mode is missing all of the traditional 
exploit mitigations you would expect to find in modern 
applications. 

§ No ASLR, NX, stack canaries, and so on…. 
§  This means we can pursue any target with our overwrite, such 

as the return address for the rbu packet copying function… 



| 19 |  

Exploiting the Vulnerability 

§  There are actually a number of constraints on the RBU packet 
data that make exploiting this buffer overflow tricky.  



| 20 |  

Constraints Overview 

§ Our copy destination must point to an area pre-initialized with the 
“GEOR” string. 

§ Copy_dest must be lower in memory than the return address. 
§ We can’t overwrite too much lest we die in the inline memcpy and 

never return.   
§ Copy source must be positioned such that attacker controlled 

data in the address space ends up overwriting the saved return 
address. 

§ Others…. 



| 21 |  

More Problems 

§  The source, destination and size operands are all derived from the 
same rbu_packet members. 

§ Changing one operand, changes the others. 
§ All of the constraints previously mentioned must be satisfied. 
§ Exploitation of this vulnerability can be modeled as a constraints 

solving problem. 



| 22 |  

Constraints Corollary 

§ An initialization routine populates the “GEOR” string at the 
expected copy dest location under “normal” circumstances. 

§ We skip this normal initialization routine by setting 
rbu_packet.totPkts to 1 (which as you can see from the above 
code, sets totalDataSize=0). If we don’t, the large memset and 
GEOR writing operation performed by the initialization routine are 
problematic.  

§  This means the expected “GEOR” string won’t naturally occur in 
the address space, and we will have to inject it somehow to satisfy 
the *copy_dest = “GEOR” constraint. 



| 23 |  

Faux GEOR 

§  The vulnerable memcpy will only execute if the copy destination 
points to a location containing this GEOR string. 

§ We use a Windows kernel driver that performs memory mapped i/o 
to write the GEOR string as high up in memory as possible, to 
allow us to force copy_dest to be within striking distance of the 
return address we want to overwrite.  

§  Like the BIOS update process, we are abusing the fact RAM 
remains intact during a soft reboot so the GEOR strings we wrote 
will remain in the address space.  



| 24 |  

RBU Packet Solution 

§ With all those constraints in mind, we brute force an rbu_packet 
configuration that allows us to pass the sanity checks and 
overwrite the return address gracefully. 



| 25 |  

Malicious BIOS Update 

$RPK..	
  Packet=0x83f9,	
  size=0xfffe	
  
Shellcode	
  
Shellcode	
  

…	
  
Shellcode	
  

•  The	
  unusually	
  large	
  packet	
  size	
  and	
  packet	
  
sequence	
  number	
  cause	
  the	
  packet	
  
reconstruc)on	
  area	
  to	
  overflow	
  into	
  SMRAM.	
  	
  

•  This	
  allows	
  us	
  to	
  overwrite	
  a	
  return	
  address	
  
inside	
  of	
  SMRAM	
  and	
  gain	
  control	
  of	
  EIP	
  while	
  
in	
  the	
  context	
  of	
  the	
  BIOS	
  update	
  rou)ne.	
  

System	
  Management	
  Mode	
  RAM	
  SMM	
  Update	
  Rou)ne	
  

Packet	
  Reconstruc)on	
  Space	
  
Shellcode	
  
Shellcode	
  
Shellcode	
  

….	
  



| 26 |  

PoC Demonstration Video 
http://youtu.be/V_ea21CrOPM 



| 27 |  

Vulnerability Conclusion 

§  The vulnerability allows an attacker to take control of the BIOS 
update process and reflash the BIOS with an arbitrary image 
despite the presence of signed bios enforcement. 

§ Because BIOS is charged with instantiating System 
Management Mode (SMM), control of the BIOS implies complete 
control of SMM. 

§ Once the attacker has complete control of BIOS and SMM, really 
Bad Things can start to happen… 



| 28 |  How can we detect attackers in the BIOS? 
Trusted Computing Group (TCG)  
Static Root of Trust for Measurement (SRTM) 
§  In the PC Client Specification[2], the TCG lays out a strategy for 

obtaining measurements of critical boot-time components 
–  This should detect things like MBR-based bootkits, or even BIOS 

attackers 
§  The SRTM is a chain of trust which is built up at boot time from 

the BIOS measuring itself, and measuring every other bit of 
executable code before control is passed to that code 
– Measurements stored in TPM, discussed shortly 

§ All these measurements are typically gained "for free" when the 
BIOS is configured to enable the TPM 



| 29 |  

Terminology 

§  Trusted Platform Module (TPM) 
–  Supports secure key generation and secure key storage. 
– Can “seal” keys or data such that they can only be decrypted if the 

PCR set hasn’t changed. 
– Can act as a root of trust for reporting by signing a quote of its 

current PCR set. 
§ Platform Configuration Register (PCR) 

–  Store 20 byte hashes representing measurements of the system. 
–  Are reset to 0x0020 upon reboot. 
– Can only be modified with an “Extend” operation. 
–  Extend_PCR0(data):  PCR0new = SHA1(PCR0old || SHA1(data)) 



| 30 |  

Example Measured Boot ("measured boot" != UEFI "secure boot") 

BIOS code on flash chip 
Core Root of Trust for Measurement 

(CRTM) 

BIOS configuration 
in non-volatile RAM 
("nvram"/"CMOS") 

Measure 1 

Master Boot Record 
 
 

Partition Table 

M
ea

su
re

 5
 

M
ea

su
re

 4
 

Peripheral's  
option/expansion 

ROMs code 
 

Config 

Peripheral's  
option/expansion 

ROMs code 
 

Config 

Peripheral's  
option/expansion 

ROMs code 
 

Config 

Measure 0 

Trusted Platform Module (TPM) 

E
xt

en
d 

P
C

R
0 

E
xt

en
d 

P
C

R
1 

E
xt

en
d 

P
C

R
2 

E
xt

en
d 

P
C

R
3 

E
xt

en
d 

P
C

R
4 

Measure 3 

E
xt

en
d 

P
C

R
5 

… 

This collection of measurements going forward is the  
Static Root of Trust for Measurement (SRTM) 



| 31 |  

All roots of trust are not created equal 

Base diagram from 
http://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper.pdf 

Tarnovsky attack 

Our attack 

PCRs 



| 32 |  

Q45 Express Chipset 

SPI Flash 

System RAM 

BIOS Region Begin 

0 4GB 

www.intel.com/.../datasheet/io-controller-hub-9-datasheet.pdf 



| 33 |  

Typical E6400 boot sequence  1 

Boot Block 

SPI Flash 

System RAM 

Configuration 

 Modules … 

FFFF_FFF0 

SMRAM 

0 4GB 

BIOS Region Begin 



| 34 |  

Typical E6400 boot sequence 2 

Boot Block 

SPI Flash 

System RAM 

… 

hashing 

TCG Measure (CRTM) 

SMRAM 

0 4GB 

PCR0=SHA1(020 | hash) 



| 35 |  

General Problems with PCR Hashes 

§  Opaqueness 
–  No golden set of PCRs is provided by the OEM. 
–  No description of what is actually being measured and 

incorporated into the PCR values.1 

–  Homogeneous systems can have different PCR values.2  
–  Duplicate PCR values are unexpected if they're measuring 

different data… 
 

 

1.  The TCG specification gives vague guidelines on what should be incorporated into individual PCR 
values, and many decisions are left to the vendor. 

2.  Based on our own observation of PCR values across various systems. 

■ Example E6400 PCR Set 
 

 



| 36 |  

E6400 PCR0 (CRTM) Measurement 

§ PCR0 should contain a measurement of the CRTM and other parts 
of the BIOS. 

§  In the above diagram, the dark areas represent what the E6400 
actually incorporates into the PCR0 measurement. 

§ Only 0xA90 of the total 0x1A0000 bytes (.15%) in the BIOS range 
are incorporated, including: 
–  The first 64 bytes of the 42 modules. 
–  Two 8 byte slices at 0xDF4513C0 and 0xDF4513C7. 
–  The CRTM is not incorporated at all. 

*BIOS Base is located at FFE6_0000 



| 37 |  

Implications of the weak SRTM 

§ Measurements for things like PCI option ROMs and BIOS 
configuration are not actually captured. 

§ We can modify the majority of the E6400 BIOS without changing 
any of the PCR values. 
–  Yuriy Bulygin presented a similar discovery at CanSecWest 2013 

regarding his ASUS P8P67[3], but did not investigate the details of 
what information was being measured into what PCRs 

§ What if we want to modify any part of the BIOS under the 
assumption that the entire BIOS is being measured? 
§  Like the splash-screen or the code that instantiates SMM?  



| 38 |  

Forging the PCRs 

§ We can arbitrarily modify any part of the BIOS while still 
maintaining the expected PCR set if we do the following: 

 
1.  Record the expected hashes that the CRTM calculates and 

forwards to the TPM for the PCR_Extend operation(s). 
2.  Modify the BIOS to prevent the legitimate CRTM from being 

called. 
3.  Insert your own CRTM which simply replays the aforementioned 

“expected” hashes to the TPM. 

§  This method maintains a valid PCR set even if the CRTM 
incorporates the entire BIOS into the measurement. 

 



| 39 |  

Really Bad Things: Firmware Rootkits 

§  Created two proof of concept firmware rootkits.   
§  Each is installed programmatically; no hardware modification 

required. 
 

1.  Tick 
–  Persistent stealth malware 
–  Called the Tick because it “embeds” itself in the firmware 
–  Evades detection by forging PCRs 
–  Once in place, can modify any other portion of the BIOS and inject 

itself into SMRAM. 

2.  Flea 
–  Same stealth/persistence capabilities as the Tick 
–  Able to persist even beyond BIOS updates  
§  “jumps” from one revision to the next 



| 40 |  

Normal BIOS PCR0 Measurement 

SPI Flash 

System RAM 

BIOS 

S
H

A
1(self) 

0xf005b411… 

PCR0=SHA1(020 | 0xf005b411…) 

0 4GB 



| 41 |  

PCR0 Measurement with a Tick 

SPI Flash 

System RAM 

BIOS 

S
H

A
1(self) 

PCR0=SHA1(020 | 0xf005b411…) 

0 4GB 



| 42 |  

Tick Demo Video 
http://www.youtube.com/watch?v=S0lRcm3jvFo 

The Tick from http://th04.deviantart.net/fs6/PRE/i/2005/087/1/b/The_Tick_by_emucoupons.png 



| 43 |  

The Flea 

§ All the same stealth capabilities of the Tick 
§ Achieves persistence beyond BIOS re-flashes 

–  “Jumps” from one BIOS revision to another 
 



| 44 |  

BIOS Firmware 
Update 

BIOS Firmware 
Update 

The Flea 

SPI Flash 

System RAM 

BIOS 

BIOS update? 

Clone!! 
Flash! 

0 4GB 



| 45 |  

Flea Demo Video 
http://www.youtube.com/watch?v=fvQjhqzxHR8 

The Flea – Robert Hooke – Micrographia - 1665 ;) 



| 46 |  Countermeasure:  
Timing-Based Attestation 
"BIOS Chronomancy" 
§  The fundamental premise: 

–  "Build your software so that if its code is modified, it runs slower." 
§ We coined "timing-based" because it is a superset of the 

"software-based" techniques, but using hardware (e.g. TPM) for 
timing measurement 

§ Meant to replace CRTM, but not reimplement entire SRTM 
§ Assumptions: 

–  Attacker has complete control of execution environment before 
self-checking begins (i.e. same privilege as defender) 

–  Self-checking code is time-optimal for a given microarchitecture 
–  There are no free execution slots where an attacker can insert a 

"free" instruction and suffer no timing slowdown 
§  There is a decade of work in this area, we can't do the many 

many nuances justice. A timeline of related work here:  
–  bit.ly/11xEmlV (timeglider.com link) 



| 47 |  

§ Read your own data 
–  Incorporated into checksum so if it changes the checksum 

changes 
§ Read your own data pointer and instruction pointer 

–  Indicates where in memory the code itself is reading and executing 
§ Nonce/PseudoRandom Number(PRN) 

–  Prevent trivial replay, decrease likelihood of precomputation due to 
storage constraints 

§ Do all the above in millions of loop iterations 
–  So that ideally an instruction or two worth of conditional checks per 

loop iteration leads to millions of extra instructions in the overall 
runtime 

Components of All Self-Checks 



| 48 |  

Simplified Selfcheck() 

Selfcheck(checksum,	
  nonce,	
  codeStart,	
  codeEnd,	
  codeSize)	
  {	
  
	
  while	
  (iteration	
  <	
  2500000)	
  
	
  {	
  
	
   	
  checksum[0]	
  +=	
  nonce;	
  
	
   	
  checksum[1]	
  ^=	
  DP;	
  
	
   	
  checksum[2]	
  +=	
  *DP;	
  
	
   	
  checksum[4]	
  ^=	
  EIP;	
  
	
   	
  mix(checksum);	
  
	
   	
  nonce	
  +=	
  (nonce*nonce)	
  |	
  5;	
  
	
   	
  DP	
  =	
  codeStart	
  +	
  (nonce	
  %	
  codeSize);	
  
	
   	
  iteration++;	
  
	
  }	
  

}	
  

 



| 49 |  

Simplified Selfcheck() Forgery 

Selfcheck_forge(checksum,	
  nonce,	
  codeStart,	
  codeEnd,	
  codeSize)	
  {	
  
	
  while	
  (iteration	
  <	
  2500000)	
  
	
  {	
  
	
   	
  checksum[0]	
  +=	
  nonce;	
  
	
   	
  checksum[1]	
  ^=	
  DP;	
  
	
   	
  if	
  (DP	
  ==	
  myHookLocation)	
  
	
   	
   	
  checksum[2]	
  +=	
  copyOfGoodBytes;	
  
	
   	
  else	
  
	
   	
   	
  checksum[2]	
  +=	
  *DP;	
  
	
   	
  checksum[2]	
  +=	
  *DP;	
  
	
   	
  checksum[4]	
  ^=	
  EIP;	
  
	
   	
  mix(checksum);	
  
	
   	
  nonce	
  +=	
  (nonce*nonce)	
  |	
  5;	
  
	
   	
  DP	
  =	
  codeStart	
  +	
  (nonce	
  %	
  codeSize);	
  
	
   	
  iteration++;	
  
	
  }	
  

}	
  
 



| 50 |  TPM-Timing Based Implementation  
(BIOS Boot-Time) 
Server	
   Client	
  

Self-­‐Check	
  (nonce	
  =	
  signature)	
  

Signed	
  Tickstamp	
  1	
  &	
  2	
  

Self-­‐Checksum	
  

TPM	
  

Request	
  Tickstamp(hardcoded)	
  

Signed	
  Ticksta
mp	
  1	
  

Request	
  Tickstamp(Self-­‐Checksum)	
  

Signed	
  Ticksta
mp	
  2	
  

Ti
m
e	
  

Δt	
  

BOOT	
  

Separate	
  agent	
  requests	
  stored	
  	
  
measurement,	
  and	
  sends	
  to	
  server	
  
for	
  verifica)on	
  



| 51 |  

16700 

16800 

16900 

17000 

17100 

17200 

17300 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

TP
M

 T
ic

ks
 

Measurement Instance 

18 E6400s with customized BIOS Chronomancy firmware 
625k self-check iterations  

Without attacker With attacker 



| 52 |  

21000 

21200 

21400 

21600 

21800 

22000 

22200 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

TP
M

 T
ic

ks
 

Measurement Instance 

18 E6400s with customized BIOS Chronomancy firmware 
1.25M self-check iterations  

Without attacker 

With attacker 



| 53 |  

29500 

30000 

30500 

31000 

31500 

32000 

32500 

33000 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 

TP
M

 T
ic

ks
 

Measurement Instance 

18 E6400s with customized BIOS Chronomancy firmware 
2.5M self-check iterations 

Without attacker 

With attacker 



| 54 |  

SPI Flash 

System RAM 

BIOS 

Is BC perfect? NOPE! 
TOCTOU attackers are ongoing work 
Enter the "flash hopper" :P 

Self-check 
Done 

Gbe LAN 

0 4GB 



| 55 |  

§ Assume attackers can get in 
§ Bad things happen when attackers get in 
§  Trusted Computing implementations should not be trusted 

implicitly, they should only be trusted if they are open for 
independent review (and someone has actually reviewed them ;) 
–  It's ironic that they're overwhelmingly closed source & proprietary. 

(Even academics don't usually post their code for open review!1) 
§ As long as the CRTM is implemented in writable firmware, ticks 

and fleas will mean that you can't trust any of your SRTM. 
–  And as ITL has shown, a TXT-based Dynamic RTM can depend, in 

a security-critical way, on the BIOS/SRTM-generated info [5][6][7] 
–  If you're not going to be using BC, you better be using super 

simple true ROM CRTM code 

Conclusion 

1 Our code for our self-check is at http://code.google.com/p/timing-attestation 



| 56 |  

But wait…there's just One More Thing! 

§ We have released Copernicus ("Question your assumptions!"), a 
tool to check for basic BIOS/SMM security vulnerabilities 
–  http://www.mitre.org/work/cybersecurity/blog/

cyber_tools_butterworth1.html 
–  Checks configuration bits to see if the BIOS/SMM is writable, ala 

Yuriy's talks[3][4] 
§  Dumps BIOS image to allow diffing & analysis 

–  Can detect Rakshasa, last year's "undetectable" BIOS malware[7] ;) 

§  Government organizations: 
–  Talk to us about running this in your environment (pushable via HBSS 

- but the data goes to a different server, not ePO) 
§  Commercial security vendors: 

–  Contact us to incorporate Copernicus's capabilities into your kernel/
hypervisor agents. We want maximum availability of this capability. 
MITRE is a not-for-profit company that only works for the government 
in the public interest. 



| 57 |  

Questions? 

§  jbutterworth, ckallenberg, xkovah @ mitre.org 

§  To learn more about TPMs, Reverse Engineering, and other deep 
security stuff, check out  

§  http://OpenSecurityTraining.info/Training.html 
–  John will be creating BIOS/UEFI classes this coming year, follow 

@OpenSecTraining to keep up with news 
–  And if you already know the stuff, take the materials and teach it! 

§ Also Corey released OpenTPM so you too can play around with 
and learn more about the TPM 

§  http://code.google.com/p/opentpm/ 



| 58 |  

References 
§  [1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009

http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf  
§  [2] TPM PC Client Specification - Feb. 2013

http://www.trustedcomputinggroup.org/developers/pc_client/specifications/ 
§  [3] Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is Insecure 

on Many Systems – Yuriy Bulygin – Mar. 2013 
http://cansecwest.com/slides/2013/Evil%20Maid%20Just%20Got%20Angrier.pdf  

§  [4] A Tale of One Software Bypass of Windows 8 Secure Boot – Yuriy Bulygin – 
Jul. 2013 http://blackhat.com/us-13/briefings.html#Bulygin  

§  [5] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna 
Rutkowska – Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf  

§  [6] Another Way to Circumvent Intel® Trusted Execution Technology - Rafal 
Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin – Dec. 2009
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf 

§  [7] Exploring new lands on Intel CPUs (SINIT code execution hijacking) - Rafal 
Wojtczuk and Joanna Rutkowska – Dec. 2011
http://www.invisiblethingslab.com/resources/2011/
Attacking_Intel_TXT_via_SINIT_hijacking.pdf  

§  [7] Meet 'Rakshasa,' The Malware Infection Designed To Be Undetectable And 
Incurable - http://www.forbes.com/sites/andygreenberg/2012/07/26/meet-
rakshasa-the-malware-infection-designed-to-be-undetectable-and-incurable/ 



| 59 |  

Backup slides 



| 60 |  

E6400 PCR[1-3] 

§ PCRs 1-3 should contain configuration and option rom 
measurements. 

§  Interesting because they are duplicate values. 
§ We had also seen this a89fb8f… value on other (non-E6400) 

systems. 
§ PCR[1..3] = SHA1(0x0020 || SHA1(0x00)) 



| 61 |  

Future Work: Combat TOCTOU 

Attacker moves out of the way, just in time 



| 62 |  

Conditions for TOCTOU 

§  1) The attacker must know when the measurement is about to 
start. 

§  2) The attacker must have some un-measured location to hide in 
for the duration of the measurement. 

§  3) The attacker must be able to reinstall as soon as possible 
after the measurement has finished. 

§  It turns out a bunch of the example attacks in the literature are 
TOCTTOU without being explicit about it. 

§ And it turns out TOCTOU more severely undercuts the 
technique than prior work had recognized 



| 63 |  

BIOS Acquisition 

§ Method 1: Obtain the BIOS ROM from manufacturer 

§ Dependent on manufacturer 
– May not provide straight-forward method to obtain the actual ROM 

image 
– Dell, for example, no longer provides this handy feature. 



| 64 |  

BIOS Acquisition 

§ Method 2: Read it from the BIOS chip using software 

§ Write your own if you 
want to learn the 
architecture very well 

§  Time consuming (but 
fun and educational) 

§  Linux app with iopl() 
also works well, better 
for testing 



| 65 |  

BIOS Acquisition 

§ Method 3: Read it from the BIOS chip using hardware 

§  Turned out to actually be a requirement … 
§ Not necessarily easy to get at the BIOS chip  



| 66 |  

BIOS Analysis: Arium CPU Debugger FTW!* 

 
*Some [dis]assembly required. 



| 67 |  

BIOS Modification: Access Controls 2 

BIOSWE can “always” 
be set to make the flash 
chip writeable (R/W 
attributes!)  

BLE, however provides 
SMRAM the final say as 
to whether or not writes 
to the flash will be 
permitted.   

E6400 version A29 didn't set BLE, A30 did 


