Breakpoint 2014
Melbourne

Outline

Recap (from Breakpoint 2012)
New discoveries

Attacking the ME

ME variations

Dynamic Application Loader
Tools/Demo

Results

Future work

About myself

> \Was interested in software reverse engineering for around
15 years

> Longtime IDA user
> Working for Hex-Rays since 2008

> Helping develop IDA and the decompiler (also doing
technical support, trainings etc.)

> Have an interest in embedded hacking (e.g. Kindle, Sony
Reader)

> Recently focusing on low-level PC research (BIOS, UEFI,
ME)

> Moderator of reddit.com/r/ReverseEngineering/ and
reverseengineering.stackexchange.com

(c) 2014 Igor ‘
| | TR

http://www.reddit.com/r/ReverseEngineering/
http://reverseengineering.stackexchange.com/

ME: Recap

» Management Engine (or Manageability Engine) is a
dedicated microcontroller on all recent Intel platforms

> In first versions it was included in the network card, later
moved into the chipset (GMCH, then PCH, then MCH)

> Shares flash with the BIOS but is completely independent
from the main CPU

> Can be active even when the system is hibernating or
turned off (but connected to mains)

» Has a dedicated connection to the network interface; can
Intercept or send any data without the main CPU's
knowledge

(c) 2014 Igor_‘

|

Recap: high-level overview

Credit: Intel 2009

Graphics & Memory —_,-—‘L
CPU Controller Hub = .-~ DDR2
- -
Software Agents Micro-Controller DOR2
A Y
Operating I s
System
I/O Controller Hub LAN Controller
- N Wired Wireless
Filters
Sput-of- Out-of-
s Rand Band
MAC Gigabit
Flash Ethﬂl’hﬁ:ﬁ B02.11
‘\
A Y
A
A
A Y
A
‘
A Y
A
A
A
A

Micro-Controller
(Located in Graphics and Memory Controller Hub Firmware)
Intek® Active Management Technology Applications
(Asset Management, Third-Party Data Store, Remote Management, eic)
, Cora Management
Ad .)
sewrr;:ﬁ Services Services Network
{Confi i {Power Manager, {Event'Alerting Services
Pm“i':.';?:;; ":EL Non-Volatile Manager, circuit- (HTTP, TCRIIP,
) Memory Manager, breaker control, TLS, etc.)
Management. etc.} et etc.)
Management Engine Hardware Abstraction Layer |
ThreadX Kernel |
SPI
H MA {sharabla) Elash
e Sl ME > (16Mbiu32Mbit)
Interfaces & MAC Peripherals:
(IDE-R, SOL, (Cut-of-Band |/F e NWI‘
HECI) and Circult gtlah o
PCI entities. .. Breaker Filters
enties e) SMBus
¢ To sensors
PHY

Recap: communication

Communicating with the Host OS and network

Metwork
Host O5 ME Server
1 | T
ImtekE AMT Intek&® AMT Routing ok AMT ekl AM
Server Client Application Application Server
Apphcation Application e i Apphcation
SOAP SOAP
5?-:'-2 HTTE HTTP
H s LS
IS TCRIIP TCPIIP
| TCPIP | » MEI I
ost
Diriver Diriver
| |
HECI Interface
LAMN
. " "
Diriver LAN Hardware b= L ik LAM Hardwarne

o HECI (MEI): Host Embedded Controller Interface;
communication using a PClI memory-mapped area

® Network protocol is SOAP based; can be plain HTTP or

Recap: ME components

Some of the ME components/features

» Active Management Technology (AMT): remote
configuration, administration, provisioning, repair, KVM

» System Defense: lowest-level firewall/packet filter with
customizable rules

> |DE Redirection (IDE-R) and Serial-Over-LAN (SOL): boot
from a remote CD/HDD image to fix non-bootable or
Infected OS, and control the PC console

> |dentity Protection: embedded one-time password (OTP)
token for two-factor authentication

> Protected Transaction Display: secure PIN entry not
visible to the host software

(c) 2014 Igor__‘

Recap

Sources of information

> Intel's whitepapers and other publications (e.g. patents)
> Intel's official drivers and software

> HECI/MEI driver, management services, utilities

> AMT SDK, code samples

> Linux drivers and supporting software; coreboot
> BIOS updates for boards on Intel chipsets

> Even though ME firmware is usually not updateable
using normal means, it's still very often included in
the BIOS image

> Sometimes separate ME firmware updates are
available too

c) 2014 Igor

Recap

Sources of information

¢ Intel's ME Firmware kits are not supposed to be distributed
to end users

© However, many vendors still put up the whole package
Instead of just the drivers,

roF] Intel® Management Engine System Tools User Guide -

ftp:/fme kristal o/ fSystem%%20Tools%20User%20Guide pdf Or forget tO dlsable the
File Format: PDF/Adobe Acrobat - Quick View . .

System Tools User Guide for. Intel® Management Flash Image Tool (FITC) ... FTP ||St| n g

.. 16. 3.1. System Reguirements .

Index of /Driver/Acer Aspire 47 38/AutoRun/DEV/Intel Turbo Boost ...

110.138.195.161/0river/___/AutoRun/.. /Flash%20lmage%20Tool/ I I
5 Jan 2012 — ... Aspire 4738/AutoRun/DRV/Intel Turbo Boost Manageability Engine Wlth a feW pICked keywords
Code/ MOD01D004C000N000L/Tools/ System Tools/Flash Image Tool/ ... you can flnd the good Stuff)

Gateway 7X4850 Intel IAMT [Opaiieep v.7.0.0.1144 ana Windows 7 ...
driver.ru/?aid=1026521210333254de 1030799365

v VAMT Intel 7.0.0.1144 W7x64/Tools/System Tools/Flash Image Toolfitc exe 157
2010-12-20 1746 IAMT Intel 7.0.0.1144 W7x64/Tools/System Tools/Flash ...

ACER Veriton M290 Intel iIAMT [paiisep v.7.0.0.1144 anA Windows 7
driver.ru/?aid=102438162288%5 cecd2ebB6acicad

... Tools/Flash Image Tool/fitc_exe 157 2011-02-22 11:42 IAMT _Intel 7.0.0.

1144 WTx86x64/Tools/System Tools/Flash Image Tool/fitc.ini 1481 2011-02-22 11:42

Recap: flash layout

® The SPI flash is shared between BIOS, w
ME and GbE

o For security, BIOS (and OS) should not
have access to ME region

© The chipset enforces this using o
iInformation in the Descriptor region Reglonsg

o The Descriptor region must be at the

lowest address of the flash and contain o
addresses and sizes of other regions, =
as well as their mutual access

permissions

Flash Descriptor
Region 0

10

-

Recap: ME region layout

® ME region itself is not monolithic

® |t consists of several partitions, and the table at the start

describes them
ME Region
Partition table

EFFS partition

Partition types:
~ Generic

EFFS

M Code

2014 Igor S

11

Recap: ME code partition

» Code partitions have a header called "manifest"

» |t contains versioning info, number of code modules,
module header, and an RSA signature

Version, size, flags etc. Manifest header
RSA public key
RSA signature
Module 1 header Module header
Name
Module N header Hash
Compressed Load address, size,
flags etc.
Huffman data 8
Module data " | RSA-signed data
Module data

12

Recap: ME code modules

Some common modules found in recent firmwares

KERNEL Scheduler, low-level APls for other modules

HOSTCOMM Handles high-level protocols over HECI/MEI

DT Theft Deterrence Technology (Intel Anti-Theft)

JOM Dynamic Application Loader (DAL) — used to
implement ldentity Protection Technology (IPT)

13

Recap: ME core evolution

® |t seems there have been three generations of the
microcontroller core so far, and corresponding changes in
firmware layout

Core ARCTangent-A4 ARC 600(?) SPARC

Manifest tag $MAN $MN2 $MN2

Code compression None, LZMA None, LZMA, Huffman None, LZMA

o My investigations cover mostly Gen 2 firmware

14

Recap: Security

» ME includes numerous security features

» Code signing: all code that is supposed to be running on the
ME is signed with RSA and is checked by the boot ROM

“During the design phase, a Firmware Signing Key (FWSK) public/private pair is
generated at a secure Intel Location, using the Intel Code Signing System. The
Private FWSK is stored securely and confidentially by Intel. Intel AMT ROM
includes a SHA-1 Hash of the public key, based on RSA, 2048 bit modulus
fixed. Each approved production firmware image is digitally signed by Intel with
the private FWSK. The public FWSK and the digital signature are appended to
the firmware image manifest.

At runtime, a secure boot sequence is accomplished by means of the boot ROM
verifying that the public FWSK on Flash is valid, based on the hash value in
ROM. The ROM validates the firmware image that corresponds to the manifest’s
digital signature through the use of the public FWSK, and if successful, the

system continues to boot from Flash code.”

From "Architecture Guide: Intel® Active Management Technology", 2009

(c) 2014 Igor ‘
#

| TR

Recap: Unified Memory Architecture (UMA) region

» ME requires some DRAM to put unpacked code and
runtime variables (MCU's own memory is too limited and
slow)

> This memory is reserved by BIOS on ME's request and
cannot be accessed by the host CPU once locked.

la.ls HW Reserved,

11 RWO 0 Enable for Intel® ME memory region
Lock for Intel ME memory region base/mask. This bit is anly
10 RWO 0 cleared upon a reset. MESEGMASK and MESEGBASE cannot be

changed once this bit is set.

9:0 RY 0 Reserved

> A memory remapping attack was demonstrated by
Invisible Things Lab in 2009, but it doesn't work on newer
chipsets

» Cold boot attack might be possible, though...

-

(c) 2014 Igor‘

Recap: results and issues (as of 2012)

» Figured out the basic layout of the firmware and the code
modules

» Wrote some scripts to parse it

> Learned how to modify hidden BIOS settings
> Added ARC support to IDA

> Started disassembling different modules

Issues:
> Missing code — jumps to nowhere

> Some modules are huffman compressed — could not
decompress

> UMA code (supposedly decompressed) is inaccessible

(c) 2014 Igor ‘
#

| TR

17

New discoveries

18

Intel FSP

Intel Firmware Support Package; first release was in 2013
Low-level initialization code from Intel for firmware writers
Freely downloadable from Intel's site

The package for HM76/QM77 included* ME firmware, tools
and documentation

Intel® 7 Series Family-
II_1te|® Management Engine _ _ _
Firmware 8.1 Documentation still contained

"confidential” markings :)
1.5MB Firmware Bring Up Guide

May 2013

| Revision 1.0 *Intel took it down and replaced with a
Intel Confidential generic package, without the secret ME bits :(

http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview

...
1

http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview

ME: the missing code mystery

» To save flash space, various common routines are stored
In the on-chip ROM and are not present in the on-flash

firmware

> They are used in the firmware
modules by jumping to
hardcoded addresses

> This complicated reverse-
engineering somewhat

1d reo, = _sbss?

1d r2, =_ebss?

mov rl, ©

sub r2, r2, ro

bl Ox205139E4 # memset??

(address Ox205139E4 is not
present in the binary)

because a lot of code is missing
> | could guess what some of the functions do, but there

were a lot of them

> However, one of the ME images | found contained a new
partition | haven't seen before, named "ROMB"...

(c) 2014 Igor__‘

|

20

i
3

B

ME: ROM Bypass

© Apparently, the pre-release hardware allows to override
the on-chip ROM and boot using code in flash instead

® This Is used to work around bugs in early silicon

Binary input file MNavigate to your Source Directory (as specified in
Section 2.1) and switch to the Firmware subdirectory. Choose
the ME FW binary image.

Note: You may choose to build the ME Region only. To do so,
Flash Image | Descriptor Region | Descriptor
Map parameter Number of Flash components must
be set to 0.

Note: Loading an ME FW binary image that contains ME ROM
_Bypass unlocks the ME Boot from Flash parameter in
Flash Image | Descriptor Region | PCH Straps |
PCH Strap 10.

ME boot from Flash false false (default) = No ME Region binary
(grayed out) loaded, or ME Region binary does not
contain ME ROM bypass ima}ge

Note: On BO and later PCH stepping
parts this setting should be set to
‘false’

(c) 2014 Igor ‘

21

ME: ROM Bypass

® |f this option is on, the first instruction of the ME region is
executed instead of the boot ROM

® |t jumps to the code in ROMB partition

ROM Bypass Image

j 0x401000
Partition table

22

ME: ROM Bypass

» By looking at the code in the ROMB region, the inner
workings of the boot ROM were discovered
> The boot ROM exposes for other modules:
> common C functions (memcpy, memset, strcpy etc.)
> ThreadX RTOS routines
> Low-level hardware access APls

> |t does basic hardware init

> |t verifies signature of the FTPR partition, loads the BUP
module and jumps to it

> Unfortunately, BUP and KERNEL employ Huffman
compression with unknown dictionary, so their code is not
available for analysis :(

23

tacking the ME

24

ME: attacking UMA

» | decided to try and dump the UMA region since it
contains unpacked Huffman code and runtime data

» |dea #1: simply disable the code which sets the MESEG
ock bit in the BIOS

» [some time spent reversing memory init routines...]
> Patched out the code which sets the lock bit

> Updated necessary checksums in the UEFI volume
> Reflashed the firmware and rebooted

> Result: bricked board

» Good thing | had a spare board and could restore the old
firmware using hotswap flashing...

(c) 2014 Igor_‘

|

25

ME: attacking UMA

SDRAM 1 UMA
SDRAM 2

SDRAM 2 UMA
SDRAM 1 -

» |dea #2: cold boot attack

> Quickly swap the DRAM sticks so that UMA content
remains in memory

Not accessible by CPU

First Boot: Let ME
unpack code into UMA

Not accessible by CPU

Second boot: after swapping,
Old UMA should be accessible

> Unfortunately, dumped memory contains only garbage...

-

(c) 2014 Igor‘

26

ME: attacking UMA

> Bought lower-speed memory — did not help
» Bought professional grade freezing spray — did not help

» Eventually discovered that DDR3 used in my board can
employ memory scrambling

“The memory controller incorporates a DDR3 Data
Scrambling feature to minimize the impact of excessive di/dt
on the platform DDR3 VRs due to successive 1s and 0s on
the data bus. [...] As a result the memory controller uses a
data scrambling feature to create pseudo-random patterns on
the DDR3 data bus to reduce the impact of any excessive

di/dt.”

(from Intel Corporation Desktop 3rd Generation Intel® Core™ Processor
Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel®
Celeron® Processor Family Datasheet)

I

27

ME: attacking UMA

» |dea #3: use different UMA sizes across boots
» The required UMA size is a field in the $FPT header

» The FPT is protected only by checksum — not signature —
so it's easy to change

20 20 30 OF 40 60 00 10 | 00 00 00 00 00 00 00 00 haf@ =
6 50 54 13 00 00 00 | 20 10 30|DA |07 00 64 08 | $FPTI =Obe d

) 90 00 00|01 FC FF FF | 00 00 ee 0 60 00 00 Bbasn
46 AF Hp 44 4B 52 49 44 |/\p@ 04 00 Pd 00 OC 00 00 FOVDKRID ¢ 9

I"Il 5% I"I ‘) I"I I"I I"Il 5% I"I 0 00 | Po 00 00 i T L &

- ST 20 MDESMDID »
UMA SIZE (MB] 5 23 00 00 ® @

- —— E—— J— E——

(c) 2014 Igor__‘

28

ME: attacking UMA

» Flash FPT that requests 32MB, reboot. BIOS will reserve top 32MB
but ME will use only half of the region

RAM %&?% Not accessible by CPU

> Flash FPT that requests 16MB, reboot. BIOS will reserve top 16MB,
so the previously used 16MB will be accessible again

Old

> Unfortunately got garbage again :(It seems that memory
IS reinitialized with different scrambling seed between the
boots.

I

ME: attacking UMA

» |dea #4: disable memory scrambling

» Scrambling can be turned off using a BIOS setting on
some boards

Memory Scrambler

Values: Enabled, Disabled

Enables or disables Memory Scrambler support.
Scrambler Seed Generation

Values: Enabled, Disabled

Enables or disables the generation of a scrambler seed for security purposes. The memory scrambler scrambles the contents of
memary in the DIMMs so that they cannot be removed and read. When enabled, a scrambler seed is not generated. When
disabled, a scrambler seed is always generated.

> On my board the option is hidden but it's possible to
change it by editing the UEFI variable "Setup" directly

> However, it did not help — the memory is still garbage
> Probably caused by aggressive memory training

o

30

ME: attacking UMA

|dea #5: ?

| still have some ideas to try but they require more time
and effort

So | tried other approaches
For example...

31

\J

E variations

32

Server Platform Services

On Intel's server boards, ME is present too
However, it runs a different kind of firmware
t's called Server Platform Services (SPS)

t has a reduced set of modules, however it does include
BUP and KERNEL

Good news #1: BUP module is not compressed!
KERNEL is Huffman "compressed”, but...

Good news #2: all blocks use trivial compression (i.e. no
compression)

So | now could investigate how these two modules work
There are differences from desktop but it's a start

(c) 2014 Igor_‘

|

33

Trusted Execution Engine

In Bay Trail (Atom-based SoC), another variation of ME is
used

Marketing name: Trusted Execution Engine (TXE);
codename: SEC/SeC

> Note: not related to Trusted Execution Technology (TXT)
Instead of ARC, uses SPARC core(!)
No Huffman compression, only LZMA(!!)
S0, all code (except Boot ROM) is available for analysis

The available KERNEL code can help recovering APls for
ARC firmwares too

SPARC emulators are available so the code can be
emulated/fuzzed/debugged

(c) 2014 Igor__‘

|

34

Trusted Execution Engine

» Here's what I've discovered so far

> The firmware format is the same, just with larger module
headers

» ThreadX doesn't seem to be used anymore; all RTOS

functionality (threads, semaphores etc.) is implemented
directly inside KERNEL

» However, other common routines from boot ROM are still
used

> Because most of the other modules used KERNEL wrappers
for RTOS stuff, they haven't changed substantially

> Module set is reduced compared to desktop ME (e.g.
network-related modules are missing)

> fTPM module implements TMP 2.0

35

‘-_f c Application Loader
"z

36

JOM aka DAL

> The "JOM" module appeared in ME 7.1

» It implements what Intel calls "Dynamic Application Loader"
(DAL)

> |t allows to upload and run applications (applets) inside ME
dynamically (i.e. at runtime)

> This feature is used to implement Intel's Identity Protection
Technology (Intel IPT)

> In theory, it allows a much easier way for running custom
code on the ME

o Let's have a look at how it's implemented...

(c) 2014 Igor ‘
#

| TR

37

JOM aka DAL

® Some interesting strings from the binary:

Could not allocate an instance of
java.lang.OutOfMemoryError
linkerInternalCheckFile: JEFF format version not
supported

com.intel.crypto

com.trustedlogic.isdi

Starting VM Server...

o Looks like Java!

(02014 'g‘m

38

JOM aka DAL

J

2

Apparently it includes a Java VM implementation

In Intel ME drivers, there is a file "oath.dalp" with a Base64
blob

After decoding, a familiar manifest header appears

It has a slightly different module header format, and a single
module named "Medal App"”

The module contains a chunk with signature "JEFF", which
IS mentioned in the strings of the JOM module

Strings in this JEFF chunk also point to it being Java code
However, the opcode values look different from normal Java

| was so sure it's a custom format, | spent quite a lot of time
reversing it from scratch

(c) 2014 Igor__‘

|

39

JOM aka DAL

® However, | came across one string in the module...

.ascii "Invalid constant offset in the SLDC instruction”

o There Is no such instruction in standard Java. Let's try
Google...

40

GOOSIE "sldc" opcode java

Web Images Maps Shopping More = Search tools

About 3,260 results (0.26 seconds)

roFl JavaBirthmarks-DetectingtheSoftware Theft——

se-naist jp/old/jbirth/papers/tamadalsieice pdf

oflavaprograms- Specifcally, WePrOPOSeJavabirthmarks tosupportthee 1sidC
(54} .uu 4 The adversary must be highly skllled in Java bytecode to modify a ...

pubs Sdiff docs/technotes/guides/pack200
cr.openjdk_java.net/~ksrini/8007297/._/pack-spec_html.sdiff. html -

p= 5200 <p=Every bytecode instruction is contained by a class, called the 5201
=tt=sldc=/tt> and 5196 <it>sldc_w</it>, as <tt=aldc</tt> and <tt=aldc_w=itt=.

Crap shit head - SlideShare

www_slideshare net/shashgibbs88/crap-shit-head «

FUMDAMEMNTALS 11 3.1 JDK & JRE 11 3.2 Met Beans 6.8 11 3.3 Java compiled to
the bytecode instruction set and binary format defined in the Java Virtual 2) SLDC:
Software Development Life Cycle 3) JSP: Java Server Pages 4) DFD: ...

ror L2/02-042 - Unicode Caonsortium
www_unicode. org/L2/L2002/02042-jeff-spec_pdf «

Java is a registered trademark of Sun Microsystems, Inc. in the United States and in
other ... The VMConstUtfd structures are referred by the sldc bytecode.

Browse - Project Kenai
https://kenai.com/bugzilla/describecomponents_cqi

bwshop: bw. bytecodeviewer: View Java ByteCode. bytest: Testing
developerdocs: Documentation hub for developers used for the S5LDC - CMM compliant.

roF| The JEFF storage forma \
ol city.ac uk/~Kloukin/| 3/ /JetDraftSpecs2002March 7. pdf -

Mar 7, 2002 - Java 15 a registered trademark of Sun Microsystems, Inc. in the United
States and in other countries. 4.2 .10 The wide <opcode> Opcodes .

41

JEFF File Format

> Turns out the JEFF format is a standard

» Was proposed in 2001 by the now-defunct J Consortium
> Has been adopted as an ISO standard (ISO/IEC 20970)
» Draft specification is still available in a few places

> Optimized for embedded applications

> Combines several classes in one file, in a form which is
ready for execution

> Shared constant pool also reduces size
> Introduces several new opcodes
> Supports native methods defined by the implementation

(c) 2014 Igor‘

42

JEFF File Format

» | made a dumper/disassembler in Python based on the spec

> Dumped code in oath.dalp and the internal JEFF in the
firmware

> No obfuscation was used by Intel, which is nice

> Most of the basic Java classes are implemented in bytecode,
with a few native helpers

> There are classes for:
> Cryptography
> Ul elements (dialogs, buttons, labels etc.)
> Flash storage access
> Implementing loadable applets

(c) 2014 Igo‘

|

43

JEFF File Format

> Fragment of a class implementation (wit

private:

public:

final
final
final
final
final

final
final

final
final
final

final

(c) 2014 Igor

Class com.intel.util.IntelApplet

/* @x0C */ boolean m_invokeCommandInProcess;
/* 0x00 */ OutputBufferView m outputBuffer;
/* exeD */ boolean m_outputBufferTooSmall;
/* x4 */ OutputValueView m_outputValue;

/* 0x08 */ byte[] m _sessionld;

void <init>();

int getResponseBufferSize();

int getSessionId(byte[], int);

int getSessionIdLength();

String getUUID();

abstract int invokeCommand(int, byte[]);

int onClose();

void onCloseSession();
int onCommand(int, CommandParameters);

int onInit(byte[]);

int onOpenSession(CommandParameters);
void sendAsynchMessage(byte[], int, int);
void setResponse(byte[], int, int);

void setResponseCode(int);

nout bytecode)

44

IPT applets

ne applet interface seems to be rather simple
ne OATH applet implementation looks like this:

package com.intel.dal.ipt.framework;

public class AppletImpl extends com.intel.util.IntelApplet
{

final int invokeCommand(int, byte[])

{
-

int onClose()

{

, » .
int onInit(byte[])

45

IPT applets

» Unfortunately, even if | create my own applets, | can't run
them inside ME because...

> Applet binaries have a signed manifest header and are
verified before running

> Still, there may be vulnerabilities in the protocol, which is
pretty complicated

o

46

Trusted Execution Environment

® From the strings inside JOM, it's apparent that Intel is using
a Trusted Execution Environment (TEE) provided by Trusted
Logic Mobility (now Trustonic), called "Trusted Foundations”

I High-level architecture

Open to Protection of
- _ TEE
| any user modification ~ eyl emane Administration
malware (a5 * il kg™ @ - Bank authentication — TSH

= Device integrity and
managemewt

= Corporate servic
= Sensitive user data

L
. &

Trusted Foundations™
(Trusted Execution Environment OS)

l_ “Rooting”)

18 3

Main OS Environment

Applications

| | |

TEE Connector

Operating System

Source:
Trusted Foundations flyer

JUSLWUOJIAUZ UolnaaX3 pajsnil

47

Trusted Execution Environment

» Trusted Foundations is also used in several smartphones
> Implemented there using ARM's TrustZone

» Due to GPL, source code of drivers which communicate with
Trusted Foundations is made available

> The protocol is not the same as what Intel uses

> For example, TrustZone communications employ shared
memory, while ME/JOM only talks over HECI/MEI

o Still, there are some common parts, so it helps in reverse
engineering

(c) 2014 Igor‘

48

Trusted Execution Environment

» There is a TEE specification released by the GlobalPlatform
association (Trusted Logic Mobililty/Trustonic is a member)

» Describes overall architecture, client APl and internal AP
(for services running inside TEE)

> Again, it does not exactly match what runs in the ME but is
still a useful reference

http://www.globalplatform.org/specificationsdevice.asp

(c) 2014 Igo‘

|

49

http://www.globalplatform.org/specificationsdevice.asp

mo (scripts/tools)

50

Results so far

=

| still have not managed to run my own rootkit on the ME
But I'm getting a more complete picture of how ME works
Other researchers started looking into it as well

The code of boot ROM, BUP and KERNEL modules has
been discovered

This allowed me to map out many APIs used in other
modules

ARC support was released with IDA 6.4 and improved in the
following versions

> There was some interest so | will be releasing my scripts at
this Breakpoint

> https://github.com/skochinsky

L

L

=

=

=

91

https://github.com/skochinsky

Future work

» Dynamic Application Loader

> Make a JEFF to .class converter, or maybe a direct JEFF
decompiler

> Reverse and document the host communication protocol
> Linux IPT client?

> EFFS parsing and modifying
> Most of the ME state is stored there
o If we can modify flash, we can modify EFFS
> Critical variables are protected from tampering but the
majority isn't
> Complicated format because of flash wear leveling

I

52

Future work

» Huffman compression

o Used in Gen2 firmwares for compressing the kernel and
some other modules

> Apparently the dictionary is hardcoded in silicon

> There was some progress with ME 6.x:
http://io.smashthestack.org:84/me/

> Newer versions use a different dictionary :(
> ME < Host protocols
> Most modules use different message formats

> A lot of undocumented messages; some modules seem to
be not mentioned anywhere

> Some of the client software has very verbose debugging
messages In their binaries...

> Anti-Theft is probably a good target

53

http://io.smashthestack.org:84/me/

Future work

» BIOS RE

> In early boot stages ME accepts some messages which
are refused later

> Reversing BIOS modules that talk to ME is a good source
of info

> Some messages can be sent only during BIOS boot

> UEFITool by Nikolaj Schlej helps in editing UEFI images
https://github.com/NikolajSchilej/UEFITool

> Coreboot has support for ME on some boards
> Simulation and fuzzing

> Open Virtual Platform (www.ovpworld.org) has modules
for ARC600 and ARC700 (ARCompact-based)

> Supposedly easy to extend to emulate custom hardware
> Debugging and fuzzing should be possible

o4

https://github.com/NikolajSchlej/UEFITool
http://www.ovpworld.org/

Future work: Atom SoCs?

Next Generation SoC - Block Diagram

Intel® Atom™ Processor Intel® Atom™ Processor

(L2 Cache (L2 Cache]

i

|

|

|

' |

: [10 HUB] North SoC Interconnect Zi'éag';"e"—p[(2GB
|

|

|

LPDDR2
Max)
S — § § ; 3 ; H |
CPU P i | Signal i
e I N R | |
S Decoder Encoder Controller |

uCaonfroller
[I
] | |

Fuse
| Array | - - - = — — = — = = = — = — =
Security .
| usB2 uUsB2 Tracing / GP 12¢, SPI,

‘ oTe] YHCI eMMC (x2) Co- Debug] SDIC] |
| Processor [
| v 1 $ ¢ I
| Sub-Fabric] ([subFabrc |

South SoC Interconnect [
| (Sub-Fabric] (Sub-Fabric) (Sub-Fabric) |
| Shared 10APIC, 30C Power Peripherals, Alidia Peripherals, [
| eSDIO (x2) SRAM MIPI HSI HFPEC':T. Management AO":AGRF_’FIOS- Subsystern PESI‘:SS\:M

uCantroller DSsP |

IDF2012

INTEL DEVELOPER FORUM

95

Future work: Atom SoCs?

[10 HUB] Sub-Fabric

South SoC Interc

} {

CPU Power
Management

IOAPIC,
- HPET,
LPC

SoC Power
Manacement

56

Future work: Atom SoCs?

Intel System-on-Chip (SoC) variants (Moorestown, Medfield,
Merrifield etc.), used in some phones and tablets

In addition to the x86 core(s), also include mysterious blocks
like "P-Unit" or "SCU"

Apparently those have their own firmware(!)

P-Unit seems to be an 8051 and SCU an ARC(!)

From a quick glance they don't seem to be extremely
hardened

Communicate with the CPU over "sideband fabric"(?7?)
The new Intel Edison has such a processor
The firmware images are available...

http://downloadmirror.intel.com/24271/eng/edison-image-ww36-14.zip

(c) 2014 Igor__‘

|

o7

http://downloadmirror.intel.com/24271/eng/edison-image-ww36-14.zip

References and links

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT _Implementation_and_Reference_ Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
https://noggin.intel.com/technology-journal/2008/124/intel®-vpro ™-technology
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf
http://me.bios.io/
http://www.uberwall.org/bin/download/download/102/lacon12_intel amt.pdf

(c) 2014 Igor

- B

58

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
https://noggin.intel.com/technology-journal/2008/124/intel%C2%AE-vpro%E2%84%A2-technology
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf
http://me.bios.io/
http://www.uberwall.org/bin/download/download/102/lacon12_intel_amt.pdf

» | Thank you!

Questions?

igor@hex-rays.com
skochinsky@gmail.com

59

mailto:igor@hex-rays.com
mailto:skochinsky@gmail.com

ME internals: Huffman compression

» |If huffman-compressed modules are present in a partition,
a single compressed data stream is used for all of them

» The stream follows the manifest and starts with a header:

struct LutHeader {

char Signature[4]; //
uint32 ChunkCount; //
uint32 AddrBase; //
uint32 SpiBase; //

uint32 HufflLength; //
uint32 HuffStart; //

uint32 Flags; //
uint32 Reserved[5]; //
uint32 PageSize; //

uintl6 version[2]; //
char Chipset[8]; //

¥

00
04
08
0C
10
14
18
1C
30
34
38

"LLUT' or 'GLUT' or ' LUT'

number of compressed chunks

base address of unpacked data
offset of the LUT in the ME region
Total length of the huff stream
offset to Huff data in ME region
bit@: enable 1K pages

uncompressed size of each chunk
version of the compression tool
"PCH A@' or 'CPT AQ'

(c) 2014 Igor_‘

|

60

ME internals: Huffman compression

» Following the header is the chunk index table

» Each table entry is 32 bits: top 7 bits are flags and low bits
are offset to the compressed data for the chunk

> The entry index determines the address of the unpacked
data — single entry covers a 1K chunk (0x400 bytes)

> For example, in this table entries 0-3 are empty (zero)

pages, 4 is uncompressed
and 5 and 6 are compressed
using two different dictionaries

> More info:

http://io.smashthestack.org/me/

index
0000 :
0001 :
0002 :
0003
0004 :
0005 :
0006 :

entry

80000000
80000000
80000000
80000000
000D2740
400D2B460
COOD2F40

vaddr

[20040000 |
[20040400 |
[20040800
[20040C00 |
20041000 |
20041400]
20041800

(c) 2014 Igor__‘

61

http://io.smashthestack.org/me/

ME internals: code module memory layout

RAP| (ROM API)

\ Aliased to a page with jump stubs

KAPI (Kernel API)

« — InROM/KERNEL

Code section

Data section

- Copied/decompressed
from flash
- Allocated by the loader

62

ME internals: RAPI (ROM API)

» One page of memory, aliased to a jump table in ROM

» Contains jJumps to various APIls in ROM, and a few
pointers to internal ROM variables

> Code in the code section calls the stubs in the RAPI page
> Layout changes between ME versions, but not drastically

XXXXX9DC j memcpy Fragment of a RAPI page.

XXXXX9E4 j memset First part of the address changes
XXXXX9EC j strncmp for each module while the page offset
XXXxx9F4 j memchr (last three digits) stays the same.
XXXXX9FC j memcmp

XXXXXA04 j strcmp

XXXXXAOC J strlen

(c) 2014 Igor_‘

|

ME internals: KAPI (Kernel API)

» One page of memory, aliased to a jump table in KERNEL

» Has two versions: for privileged and non-privileged
modules

» Consists of short stubs like this:

XXXxx090 kern _malloc:
XXXXX090 mov r8&, 0x70014
XXXXX098 b kapi dispatch _priv

> Low 16 bits of r8 are used as offset into the table of kernel
APIls, high bits are flags (e.g. marking the call as
privileged or non-privileged)

> The module's code calls addresses in the KAPI page

(c) 2014 Igor‘

64

ME internals: inter-module calls

> Any module can expose additional APls to others, by
using a kernel APl and a table of interfaces

mov re, ri3 # pointer to result handle
mov rl, =hciTable # entries

mov r2, 2 # entry count

bl kern_register interfaces

hciTable:

ID 0x1001 is used for notification function
IntfInitEntry <0x1001, Hcilnterface_table, 1, ©>
other IDs are for arbitrary interfaces
IntfInitEntry <0x1037, Ifacel037 table, 0x200, 0>

Ifacel@37 table:

.long ©xCO0L00 flags and number of methods

5
.long Ifacel@37 04 ; method 1
.long Ifacel@37 08 ; method 2
.long Ifacel@37 OC ; method 3

I

65

ME internals: inter-module calls

» Other modules can then request the interface by its ID:

1d rl, =queryTbl # table
mov r2, 1 # count
bl kapi query interfaces

queryTbl:
.long 0x1037 # interface ID
.long pIntfl037 # pointer to fill

» and call the methods from the table:

1d ro, =pIntfle37 # load pointer

1d r2, [ro,8] # load method 2 ptr
add rl, sp, 4 # set up arguments
jl [r2] # call Ifaceloe37 08

-

(c) 2014 Igor‘

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

