
ALL YOUR BOOT

ARE BELONG TO US

MITRE Corp

Corey Kallenberg

Xeno Kovah

John Butterworth

Sam Cornwell

CanSecWest 2014

Agenda

• History and UEFI Bootkits

• OS Secure Boot

• Attacking Securely Booted OS

From User Land

• Introducing CHIPSEC

The intersection of our research was inevitable

Intel Security and MITRE have been working on

Platform Firmware security for some time now

• Rootkits that execute earlier on the platform are in a
position to compromise code that executes later on the
platform, making earliest execution desirable

The Malware Food Chain

• It’s advantageous
for malware to
claw its way up
the food-chain and
down towards
hardware

• Previously,
malware running
with sufficient
privileges on the
operating system
could make
malicious writes to
both the Master
Boot Record and
the BIOS

Blood in the Water

• Many modern platforms implement the requirement that
updates to the firmware must be signed. This makes
compromising the BIOS with a rootkit harder.

• Signed BIOS recommendations have been around for a
while now and preceded widespread adoption of UEFI

• Not perfect, but significantly raises the barrier of entry into
the platform firmware

• “Attacking Intel BIOS” by Rafal Wojtczuk and Alexander
Tereshkin.

• “Defeating Signed BIOS Enforcement” by Kallenberg,
Butterworth, Kovah and Cornwell

More on Signed BIOS Requirement

• MITRE has 3 more talks we are currently working on which
show new attacks that defeat the signed firmware update
requirement… even on the latest UEFI systems

• "Just when you thought it was safe to go back in the
water…"

• Duh dun…duh dun…

More on Signed BIOS Requirement

• Signed BIOS requirement did not address malicious boot
loaders, leaving the door open for Bootkits /Evil Maid attacks

UEFI

Secure Boot

switch
Intel presents secure boot

Attacking
Secure Boot

Part 2

Defining Secure Boot Image Verification Policies

a.k.a. “Violating the Policy”

Secure Boot will attempt to verify any EFI executable that it
attempts to transfer control to. Sort of..

Secure Boot Verifies More Than Bootloader

• The signature
check on target
EFI executables
doesn’t always
occur

• Depending on
the origin of the
target executable,
the target may be
allowed to
execute
automatically

• In the EDK2,
these policy
values are hard
coded

Image Verification Policies

Code from EDK2 open source reference implementation available at:

https://svn.code.sf.net/p/edk2/code/trunk/edk2

For instance, an unsigned option ROM may be allowed to run if the OEM is
concerned about breaking after market graphics cards that the user adds in later

If a Secure Boot policy was configured to allow

unsigned EFI executables to run on any mediums

that an attacker may arbitrarily write to (boot

loader, option rom, others…) then

other legitimate EFI executables can be

compromised later.

Attack Proposal

Malicious OROM will run before the

legitimate boot loader

Malicious OROM hooks some code that

legitimate boot loader will call later

Think old
school BIOS
rootkit IVT
hooking

* The actual flash chip
contents aren’t modified
here, only in-memory
copies of relevant FW
code/structures

Boot loader is compromised by BIOS code.

OS is then later compromised

• What does the secure boot policy look like on real systems?

• How can you detect the secure boot policy of the system
without manually testing?

Determining the Secure
Boot policy of a “real”
system.

Real Policies

• The firmware attempts to read the EFI non-volatile “Setup”
variable

• Setup variable size is 0xC5E

• The Secure Boot policy can be either hardcoded, or derived
from the Setup variable

• Setup variable data is read in at 0x18014E0C0. (Size of
variable was 0xC5E)

• The gSetupValid byte at 0x18014ED16 determines whether to
use the hardcoded secure boot policy, or if the policy
embedded in the Setup variable should be used instead

• Secure Boot policy data located at 0x18014EC09

• Policy valid byte located at offset gSetupValid –
gSetupVariableData = 0xC56 in Setup variable data

• Secure Boot policy data located at offset
gImageFromFvPolicy – gSetupVariableData = 0xB49 in
Setup variable data

• The system I looked at did not have

relaxed option rom policies as I had

previously hypothesized

• The EFI “Setup” variable became my next

target of attention

Cross Roads

• Setup variable is marked as Non-Volatile (Stored to flash
chip), and as accessible to both Boot services and Runtime
Services

• We should be able to modify it from the operating system

• It’s also quite large… lots of stuff in here!

• Not all variables are arbitrarily modifiable from the operating system,
such as authenticated variables

• Luckily for us, the Setup variable has no protections on this platform

• Offset B48 is the secure boot on/off byte (currently on).
• Offset B49 is the policy byte for “IMAGE_FROM_FV” which is set to

ALWAYS_EXECUTE (0x00).
• B4A-B4C are the policy bytes for removable media, fixed media and

option rom. All are set to
“DENY_EXECUTE_ON_SECURITY_VIOLATION.”

• Let’s use Win8 API to set all of these policies to ALWAYS_EXECUTE.

Attack 1 Execution

• All executables, no matter their origin or whether or not
they are signed are now allowed to execute

• Secure boot is still “enabled” though it is now effectively
disabled

Attack 1 Result

• Deleting the Setup variable reverts the system to a legacy
boot mode with secure boot disabled

• This is also effectively a secure boot bypass, as it will force
the firmware to transfer control to an untrusted MBR upon
next reboot

Attack 2

• Attack 1

– Malicious Windows 8 process can force unsigned

executables to be allowed by Secure Boot

– Bootkits will now function unimpeded

– Secure Boot will still report itself as enabled

although it is no longer “functioning”

• Attack 2

– Malicious Windows 8 process can truly disable

Secure Boot by deleting “Setup” variable

– Legacy MBR bootkits will now be executed by

platform firmware

– Secure Boot would report itself as “disabled” in this

case

Summary of Attacks

• Actually, when the firmware detects the “Setup” variable
has been deleted, it attempts to restore it’s contents from
the “StdDefaults” variable

• This variable is also modifiable from the operating system,
thanks to its non-authenticated and runtime permissions

• An attacker could modify the StdDefaults variable such
that even if an administrator restored the BIOS settings to
default, the insecure “allow everything” secure boot policy
would remain

StdDefaults Variable

• Malicious Windows 8 process can change the

“system defaults” for important BIOS configuration

data

• Firmware would restore vulnerable Secure Boot

policy whenever firmware configuration reverted to

defaults

• This could make life difficult for Administrators

Attacks Corollary

Recommendations

Protect Image Verification Policies

– Don’t store them in places writeable by malware (like
RUNTIME_ACCESS UEFI Variables)

– Use Pcd (Platform Configuration Database) for the
platform specific policies rather than UEFI variables

Set Image Verification Policies to Secure Values

– Using ALWAYS_EXECUTE,ALLOW_EXECUTE_ON_SECURITY_VIOLATION in
 Pcd[OptionRom|RemovableMedia|FixedMedia]ImageVerificationPolicy

is a bad idea

– Especially check PcdOptionRomImageVerificationPolicy

– Default should be NEVER_EXECUTE or DENY_EXECUTE..

Intel
Related Issues/Guidance

