CanSecWest 2014

| .Mmlfﬂmd |

§ ALL YOUR BOOT

i ARE BELONG TO US

MITRE Corp
Corey Kallenberg
Xeno Kovah

John Butterworth
Sam Cornwell

PR
*\i

 History and UEFI Bootkits
* OS Secure Boot

 Attacking Securely Booted OS
From User Land

* Introducing CHIPSEC

Agenda

3/12/2014
MITRE: Copernicus 2: SENTER the Dragon

5/15/2013
MITRE: BIOS Chronomancy 9/1/2013

MITRE: Defeating Signed BIOS Enforcement
4/10/2013

DreamBoot: A UEFI Bootki

X

t

A A | ¢ | AT |
4/1/2013 5/1/2013 6/1/2013 7/1/2013 8/142013 9/1/2013 10/1/2013 11/1/2013 12/1/2013 1/1/2014 2/1/2014 3/1/2 4
3/5/p013 4/3/po14
7/31/2013
Intel: A Tale of One Software Bypass
of Windows 8 Secure Boot 11/14/2013 3/12/2014
. 3/6/2013) UEFI And PCI Bootkits |ntel: Chipsec
Intel: Evil Maid Just Got Angrier 4/3/2014

MITRE: Setup For Failure:
Defeating SecureBoot

The intersection of our research was inevitable

Earliest

More execution
Powerful Platform Firmware time on
(BIOS/UEH) platform

Boot Loa__cjgr/MBR

Later
execution
Less time on
Powerful platform

* Rootkits that execute earlier on the platform are in a
position to compromise code that executes later on the
platform, making earliest execution desirable

The Malware Food Chain

* It's advantageous
for malware to
claw its way up
the food-chain and
down towards
hardware

* Previously,
malware running
with sufficient
privileges on the
operating system
C(I))uld magkey
malicious writes to
both the Master
Boot Record and
the BIOS

Blood in the Water

= i R :
" Writestome

y
must be 4 .
{ s Platform Firmware

S .-
L% Sgpedt (BIOS/UER)
BIOS Rootkit

Compromised
Operating System

* Many modern platforms implement the requirement that
updates to the firmware must be signed. This makes
compromising the BIOS with a rootkit harder.

Signed BIOS recommendations have been around for a
while now and preceded widespread adoption of UEFI

Not perfect, but significantly raises the barrier of entry into
the platform firmware

“ Attacking Intel BIOS” by Rafal Wojtczuk and Alexander
Tereshkin.

“Defeating Signed BIOS Enforcement” by Kallenberg,
Butterworth, Kovah and Cornwell

More on Sighed BIOS Requirement

 MITRE has 3 more talks we are currently working on which
show new attacks that defeat the signed firmware update
requirement... even on the latest UEFI systems

* "Just when you thought it was safe to go back in the
water..."

e Duh dun...duh dun...

}@ More on Signed BIOS Requirement

Platform Firmware

(BIOS/UEH)
g BIOS Rootkit
, Pmstill O\
(vulnerable to ’/'
bootkits @&

Compromised
Operating System

* Signed BIOS requirement did not address malicious boot
loaders, leaving the door open for Bootkits /Evil Maid attacks

UEFI
Secure Boot

switch

Intel presents secure boot

Attacking
Secure Boot

Part 2

Secure Boot will attempt to verity any EFI executable that it
attempts to transfer control to. Sort of..

Platform Firmware
(UEH)

With Secure Booft
Enabled Secure Boot Verification

| | A! "--I--/---- P
Removable
ledia

&

Secure Boot Verifies More Than Bootloader

=
£

* The signature
check on target
EFI executables

// Check the image type and get policy se

switch (GetImageType (File)) {

doesn’t always case IMAGE_FROM_FV:
Policy = ALWAYS_EXECUTE;
OCCur break;
¢ Depending on case IMAGE_FROM_OPTION_ROM:
tl1£3 (Irig;iIl ()f t1163 Policy = PcdGet32 (PcdOptionRomImageVerificationPolicy);
break;
target executable,
case IMAGE_FROM_REMOVABLE_MEDIA:
the target may be Policy = PcdGet32 (PcdRemovableMediaImageVerificationPolicy);
allowed to break;
execute case IMAGE_FROM_FIXED MEDIA:
Elllt()IIlEitiCEill)f Policy = PcdGet32 (PcdFixedMediaImageVerificationPolicy);
break;
e In the EDK?2,
. default:
these pOhCﬁ Policy = DENY_EXECUTE_ON_SECURITY_VIOLATION;
values are hard el

coded

Code from EDK2 open source reference implementation available at:
https://svn.code.sf.net/p/edk2/code/trunk/edk2

Image Verification Policies

Platform Firmware

(UER)
With Secure Booft
Enabled Secure Boot Verification

I'm still allowed to
execute even though
I’'m not signed

No fair!

Removable

Option ROM Fixed Drive Media

If a Secure Boot policy was configured to allow
unsigned EFI executables to run on any mediums
that an attacker may arbitrarily write to (boot
loader, option rom, others...) then

other legitimate EFI executables can be
compromised later.

Attack Proposal

Platform Firmware
(UEFI)

With Secure Boot
Enabled Secure Boot Verification

Option ROM FiX;?d Drive with
Infected .egmmate
Windows boot

loader

Option ROMs are often
unprotected against writes

Malicious
Kernel Driver

Malicious OROM will run before the
legitimate boot loader

I've been
hooked!

Platform Firmware
(UEF)

With Secure Boot
Enabled Secure Boot Verification
* The actual flash chip

contents aren’t modified
here, only in-memory
copies of relevant FW
code/structures

Fixed Drive with
legitimate
Windows 0OS

0 B8 Windows 8

Malicious OROM hooks some code that
legitimate boot loader will call later

Option ROM
Infected

Platform Firmware

(UEFT)
With Secure Boot
Enabied

“ ?b(&d Drive with
Iggitimate | Windows kemel now
Windows OS compromised at load time.

‘ 88 Windows 8

Boot loader is compromised by BIOS code.
OS is then later compromised

You can’t make
the tough decisions
until you ask
the tough questions.

without manually testing?

rdx, [rsp+38h+argSetupVariableSize]
rcx, aSecureboot
sub_l13008C874
r9, [rsp+38h+argSetupVariable5ize] ; DataSize
rdx, gSetupGuid ; VendorGuid
cs:qword_l80@48FF8, rax
rax, gSetupVariableData
rcx, VariableName
[rsp+38h+Data], rax ; Data
rax, cs:gRuntimeServices
o e r8d, r&d 3 Attributes
Determmmg the Secure [rsp+38h+argSetupVariablesize],

[rax+EFI_RUNTIME_SERVICES.GetVariable]

Boot policy of a “real” ccx, ecx
system.

short loc_l18@080EBD5

W e =

cmp cs:gSetupValid, cl
jnz short loc_l13000E@F6

loc_18@@0EeDS5:
cs:gImageFromFVPolicy, cl
cs:gImageFromXromPolicy, 3 DENY_ON_SECURITY_VIOLATION
cs:gImageFromRemovablePolicy,
cs:gImageFromFixedPolicy,
cs:gSetupValid, cl

Real Policies

r9, [rsp+38h+argSetupVariableSize] ; DataSize
rdx, gSetupGuid ; VendorGuid
cs:qword_l130e48FF3, rax

rax, gSetupVariableData

rcx, VariableName

[rsp+38h+Data], rax ; Data
rax, cs:gRuntimeServices
rad, r8d ;3 Attributes
[rsp+38h+argSetupVariableSize],
call [rax+EFI_RUNTIME_SERVICES.GetVariable]

* The firmware attempts to read the EFI non-volatile “Setup”
variable

* Setup variable size is OxC5E

cmp cs:gSetupValid, cl
jnz short loc_l3000EGF6

loc_1800RERDS:
cs:gImageFromFVPolicy, cl
cs:gImageFromXromPolicy, 3 DENY_ON_SECURITY_VIOLATION
cs:gImageFromRemovablePolicy,
cs:gImageFromFixedPolicy,
cs:gSetupValid, cl

* The Secure Boot policy can be either hardcoded, or derived
from the Setup variable

:000000018014E0Ce gSet l.b\fa riableData db
db
db
db

0000V 13014ECOA gIIageFranﬂulPolicy db
gImageFromRemovablePolicy db

gImageFromFixedPolicy db

.data:000000012¢14ED1e gSetupValid db

* Setup variable data is read in at 0x18014E0CO. (Size of
variable was 0xC5E)

* The gSetupValid byte at 0x18014ED16 determines whether to
use the hardcoded secure boot policy, or if the C}l)olicy
embedded in the Setup variable should be used instead

* Secure Boot policy data located at 0x18014EC09

:000000018014E0Ce gSet l.b\fa riableData db
db
db
db

0000V 13014ECOA gIIageFranﬂulPolicy db
gImageFromRemovablePolicy db

gImageFromFixedPolicy db

.data:000000012¢14ED1e gSetupValid

* Policy valid byte located at offset gSetupValid -
gSetupVariableData = 0xCb6 in Setup variable data

* Secure Boot policy data located at offset
glmageFromFvPolicy - gSetupVariableData = 0xB49 in
Setup variable data

e The system I looked at did not have
relaxed option rom policies as I had
previously hypothesized

e The EFI “Setup” variable became my next
target of attention

Cross Roads

Variable NV+RT+BS 'EC87D643-EBA4-4BB5-A1ES5-3F3E36B20DA9:Setup’ DataSize = C5E
©0000000: O1 GO 00 20 OO OO ©0 00-00 @1 37 37 0 ©0 @5 64
©0000010: OO0 B0 0 B2 00 OO ©1 00-00 00 00 00 60 00 01l 01
00000020: 00 00 O1 G0 O° 00 OB ©0-00 @0 00 01 @1 @1 el o1
0000L030: 92 0 OO OO0 00 02 00 ©0-01 €0 00 01 01 01 @1 Ol
00000040: 91 00 01 91 91 00 00 ©01-00 00 @1 01 @1 01 @1 Ol
©000ee50: 01 01 04 00 04 ©4-04 04 00 eo
00000060 :
©0000070:

Q.
*

*a
*
ps
*
*
*
¥
*
*

LA S G O B G

* Setup variable is marked as Non-Volatile (Stored to flash
chip), and as accessible to both Boot services and Runtime
Services

* We should be able to modity it from the operating system
* It's also quite large... lots of stuff in here!

SPI Flash

BootOrder = ...

Non Volatile Variables Language = “English”
Setup=110044 0100000404 04

I DxelmageVerificationHandler(EFI_EXECUTABLE image
switch (getimageOrigin(image)) {

case IMAGE_FROM_OPTION_ROM:
-- a UEFI Code policy = Setup.LOAD_FROM_OROM;
-- W| n dOWS 8 case IMAGE_FROM_FIXED_DRIVE:

: policy = Setup.LOAD_FROM_FIXED;
case IMAGE_FROM_REMOVABLE:
policy = Setup.LOAD_FROM_REMOVABLE;

if (policy == ALWAYS_EXECUTE)
return EFl_SUCCESS;

else
return IsimageAllowed(image);

* Not all variables are arbitrarily modifiable from the operating system,
such as authenticated variables

* Luckily for us, the Setup variable has no protections on this platform

Offset (h)

00000ABO
00000ACO
00000ADO
00000AEQ
00000AFQ
00000BOO
00000B10
00000B20
00000B30
00000B40
UDDDDBED

* Offset B48 is the secure boot on/off byte (currently on).

e (ffset B49 is the
ALWAYS_EXECUTE (0x00).

00

01
00
01
01
01
00
00
00
00
00
CA

01

01
00
01
00
01
00
01
00
00
00
SR

02

01
00
01
01
01
02
00
00
00
00
D>

03

01
00
01
01
01
00
00
01
01
00
DC

04

01
00
00
01
00
00
00
00
01
00
BZ

05

01
00
00
01
00
00
00
01
00
00
01

06
01
00
01
01
00
01
00
00
00
00
02

07

01
01
01
00
00
01
00
02
00
00
00

08

01
00
00
00
02
01
00
07
00

0%

01
00
01
00
01
00
03
00
01

OR

00
01
00
01
00
00
00
00
01

0B

01
01
01
01
00
07
01
00
01

ac

00
01
00
01
00
00
00
00
00

01 00 04 04 04
00 01 01 01 00

0D

00
01
00
01
07
08
00
00
00
01
00

0E

01
00
01
01
OF
00
00
01
00
00
00

00
00
00
01
00
01
00
04
00
BS
00

olicy byte for “IMAGE_FROM_FV” which is set to

* B4A-B4C are the pohcy bytes for removable media, fixed media and

0 tion rom. All are set to

ENY_EXECUTE_ON_SECURITY_VIOLATION.”
* Let'suse Win8 API to set all of these policies to ALWAYS_EXECUTE.

SPI Flash

BootOrder = ...
Non Volatile Variables Language = “English”
Setup = 00 .. 01 00 00 00 00

I Setup.LOAD_FROM_OROM = ALWAYS_EXECUTE;
UEFI Code Setup.LOAD _FROM_FIXED = ALWAYS_EXECUTE;

== WlndOWS 8 Setup.LOAD_FROM_REMOVABLE = ALWAYS_EXECUTE;
—_—

("~ Setup=00..0100000000

Attack 1 Execution

Platform Firmware
(UER)

With Secure Boot
Enabled Secure Boot Verification
N

@ v I\

‘ : . Removable
=
VD « - - ’
== - -

* All executables, no matter their origin or whether or not
they are signed are now allowed to execute

* Secure boot is still “enabled” though it is now effectively
disabled

Attack 1 Result

Invalid partition table_

* Deleting the Setup variable reverts the system to a legacy
boot mode with secure boot disabled

 This is also etfectively a secure boot bypass, as it will force
the firmware to transfer control to an untrusted MBR upon
next reboot

Attack 2

o Attack 1

— Malicious Windows 8 process can force unsigned
executables to be allowed by Secure Boot

— Bootkits will now function unimpeded

— Secure Boot will still report itself as enabled
although it is no longer “functioning”

o Attack 2

— Malicious Windows 8 process can truly disable
Secure Boot by deleting “Setup” variable

— Legacy MBR bootkits will now be executed by
platform firmware

— Secure Boot would report itself as “disabled” in this
case

Summary of Attacks

Dump Variable Stores

Variable NV+RT+BS '4599D26F-1A11-49B8-B91F-858745CFF824:StdDefaults' DataSize = D7F
000000e0: 4E 56 41 52 6F ©@C FF FF-FF 83 @@ 53 65 74 75 76 *NVARo
00000010: OO Ol O P2 20 PO P° P0-00 PO P1 37 37 ©0 ©0

00000020: 64 00 20 00 O3 0 90 91-60 00 01 @1 B2 @01 ©0
00000030: ©1 00 00 91 00 20 OO 00-00 00 00 00 ©1 91 00
00000040: @1 02 ©1 00 00 00 ©2 00-60 ©1 00 0 P01 01 o1l

00000050: 01 01 0 01 01 0l

»

00 20-01 0 00 el el

»

el

»

o1

” » »

* Actually, when the firmware detects the “Setup” variable
has been deleted, it attempts to restore it’s contents from

the “StdDefaults” variable

* This variable is also modifiable from the operating system,
thanks to its non-authenticated and runtime permissions

* An attacker could modity the StdDefaults variable such
that even if an administrator restored the BIOS settings to
default, the insecure “allow everything” secure boot policy
would remain

StdDefaults Variable

« Malicious Windows 8 process can change the
“system defaults™ for important BIOS configuration

data

 Firmware would restore vulnerable Secure Boot
policy whenever firmware configuration reverted to
defaults

 This could make life difficult for Administrators

Attacks Corollary

Protect Image Verification Policies

- Don’t store them in places writeable by malware (like
RUNTIME_ACCESS UEFI Variables)

— Use Pcd (Platform Configuration Database) for the
platform specific policies rather than UEFI variables

Set Image Verification Policies to Secure Values

— UsIng aLways_EXECUTE,ALLOW EXECUTE_ON_ SECURITY VIOLATION 1N

Pcd[OptionRom|RemovableMedia | FixedMedia] ImageVerificationPolicy

is a bad idea
— ESpeCially check PcdOptionRomImageVerificationPolicy
— Default should be NEVER EXECUTE Or DENY EXECUTE. .

Recommendations

Intel

Related Issues/Guidance

