
© 2014 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 14-2053

Xeno Kovah
Corey Kallenberg
John Butterworth
Sam Cornwell

SENTER Sandman:
Using Intel TXT to Attack BIOSes

@xenokovah
@coreykal

@jwbutterworth3
@ssc0rnwell

| 2 |

Introduction

§ Who we are:
–  Trusted Computing researchers at The MITRE Corporation

§ What MITRE is:
–  A not-for-profit company that runs seven US Government "Federally

Funded Research & Development Centers" (FFRDCs) dedicated to
working in the public interest

–  The first .org, !(.mil | .gov | .com | .edu | .net), on the ARPANET
– Manager for a number of standards such as CVE, CWE, OVAL,

CAPEC, STIX, TAXII, etc

| 3 |

I'd like to tell you a dark fairy tale

The following story is fictional,
and does not depict any actual event

© 2014 The MITRE Corporation. All rights reserved.

Once Upon a Time…

•  Off	 in	 never	 never	 land…	

©	 2014	 The	 MITRE	 Corpora;on.	 All	 rights	 reserved.	 	

©	 2013	 The	 MITRE	 Corpora;on.	 All	 rights	
reserved.	 	

Hello	 strange	
(cyber)space-‐men	 of	

the	 future.	

Ques;on	 your	
assump;ons!	

©	 2014	 The	 MITRE	 Corpora;on.	 All	 rights	
reserved.	 	

10	

11	

| 12 |

Myth meets reality

§  In July 2013 at BlackHat[18], in concert with our talk about BIOS
attacks and exploits, we publicly released Copernicus. It was the
first free public tool that could check for access control
vulnerabilities in a BIOS implementation, and the first that could
dump the BIOS contents on most x86-based Windows.
–  You can download it by googling "MITRE Copernicus" or at [26].

§  In March 2014 at CanSecWest[27] we described an SMM MitM
attack ("Smite'em") which can generically defeat many software-
based BIOS dump tools like Copernicus, Flashrom, ChipSec and
others. But we also released Copernicus 2 which could defeat
Smite'em by using Intel Trusted Execution Technology (TXT).
–  You can download it by googling "MITRE Copernicus 2" or at [28].

© 2014 The MITRE Corporation. All rights reserved.

| 13 |

Myth meets reality 2

§  In April 2014 at Syscan[29], we publicly disclosed a weakness in
some BIOSes where , and we showed a PoC attacker against
this weakness called Charizard
–  So named because Sam Cornwell didn't think of a better name

before we dubbed it in honor of his status as youngest team
member.

–  The updated Copernicus was posted at the original [26] link.
§ And now here we present for the first time the Sandman, which

is like using Copernicus 2 code to perform a Charizard attack.

© 2014 The MITRE Corporation. All rights reserved.

| 14 | There can be only one!
Who wins in a smackdown between BIOS
malware, and BIOS integrity checkers?
§  The malware. Always.
§ We built Copernicus to be something “best effort” that could be

deployed quickly with minimal requirements, to try and catch
firmware malware with their pants down
– Where there was darkness, we said “let there be light!” ;)
– When we live in a world where no one is checking their firmware,

any firmware malware need not necessarily fear detection and
thus can be vulnerable to a surprise detect

–  Just the act of existing costs attackers development time/money if
they hadn’t previously provided any self-protection

§ Now let’s see what we need to do to make Copernicus actually
trustworthy

© 2013 The MITRE Corporation. All rights reserved.

| 15 |

It's well understood how to manipulate
integrity checking software output

§  From within the OS, targeted hooks into Copernicus code
§  From within the OS with “DDefy” [20] rootkit style hooks into file

writing routines
§  From within the HD controller firmware [21][22][23]
§  From within the OS with a network packet filter driver
§  From within the NIC firmware [24][25]
§ Etc. Lots more options

© 2013 The MITRE Corporation. All rights reserved.

A	 new	 generic	 aOack.	
•  It	 is	 possible	 for	 SMM	 to	 be	 no;fied	 when	 SPI	 reads	 or	 writes	 occur	
•  An	 aOacker	 who	 controls	 the	 BIOS	 controls	 the	 setup	 of	 SMM	
•  In	 this	 way	 a	 BIOS-‐infec;ng	 aOacker	 can	 perform	 a	 SMM	 MitM	

aOack	 against	 those	 who	 would	 try	 to	 read	 the	 BIOS	 to	 integrity	
check	 it	

•  We	 call	 our	 SMM	 MitM	 “Smite’em,	 the	 Stealthy”	
	

©	 2013	 The	 MITRE	 Corpora;on.	 All	 rights	
reserved.	 	

| 17 |

Eye of the dragon - FSMIE - hw sequencing

§  This is what allows an attacker in SMM to know when someone
is trying to access the flash chip (because a System
Management Interrupt (SMI) will fire)

§  The Flash Cycle Done bit is set to 1 after every read and write

© 2013 The MITRE Corporation. All rights reserved.

| 18 |

Reading the flash chip in the presence of
Smite'em

§ BIOS reading software sets up the location it wants to read (as
part of reading the entire chip) and how many bytes to read

© 2013 The MITRE Corporation. All rights reserved.

FADDR=00000…
FDATA0=00000…

FDONE=0

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em

FADDR = 0x1000, FCYCLE=00(read)

FDBC = 111111b (64 byte read) Ring 0

| 19 |

Reading the flash chip in the presence of
Smite'em

§ BIOS reading software says to start the read

© 2013 The MITRE Corporation. All rights reserved.

FADDR=0x1000
FDATA0=00000…

FDONE=0

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em

HSFC |= 1 (aka FGO=1)

Ring 0

| 20 |

Reading the flash chip in the presence of
Smite'em

§ Cycle in progress

© 2013 The MITRE Corporation. All rights reserved.

FADDR=0x1000
FDATA0=00000…

FDONE=0

SCIP=1
FCYCLE=0

FGO=1
FSMIE=1

SMM

Smite'em

Ring 0

| 21 |

Reading the flash chip in the presence of
Smite'em

§ Once the cycle is done, and the data is available for reading, if
the FSMIE = 1, an SMI is triggered, giving Smite'em the first look

© 2013 The MITRE Corporation. All rights reserved.

FADDR=0x1000
FDATA0=0x1badd00d

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em

SMI

Ring 0

| 22 |

Reading the flash chip in the presence of
Smite'em

§ Smite'em can change any data that would reveal its presence to
the original benign data

© 2013 The MITRE Corporation. All rights reserved.

FADDR=0x1000
FDATA0=0x1badd00d

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em
FDATA0=0xf005ba11

Ring 0

| 23 |

Reading the flash chip in the presence of
Smite'em

§ BIOS reading software will be mislead

© 2013 The MITRE Corporation. All rights reserved.

FADDR=0x1000
FDATA0=0xf005ba11

FDONE=1

SCIP=0
FCYCLE=0

FGO=0
FSMIE=1

SMM

Smite'em

Read FDATA0

0xf005ba11
Ring 0

| 24 |

Think it can't happen?

§  Flashrom 0.9.7 source

§  If you don't account for hw/sw sequencing's FSMIE bit (as no
previous software did), you will just lose and provide false
assurances of a lack of BIOS compromise

© 2014 The MITRE Corporation. All rights reserved.

Smite'em	 vs.	 Copernicus	 2	

| 26 |

How can we defeat Smite’em?

§ Smite'em lives in SMM, let's disable SMIs
§ But its not sufficient to just disable them from an OS driver,

because an attacker could just nop out our code to do so

§ A side effect of Intel TXT is that it disables SMIs
–  "The ILP must re-enable SMIs which were disabled as part of the

SENTER process"
§ So lets learn about Intel Trusted Execution Technology (TXT)

– Called “Safer Mode Extensions” (SMX) in the Intel manuals

© 2013 The MITRE Corporation. All rights reserved.

| 27 |

© 2013 The MITRE Corporation. All rights reserved.

| 28 |

Intel Trusted Execution Technology (TXT)

§ Dynamic Root of Trust for Measurement
§ A means to provide "late launch" trust

–  You had a presumed-compromised system, you start TXT, and
you're left in a state you setup and that you can trust

© 2013 The MITRE Corporation. All rights reserved.

| 29 |

© 2013 The MITRE Corporation. All rights reserved.

From http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20slides.pdf

| 30 |

How does it work?

§ New Intel instruction “GETSEC”
§  It’s sort of like CPUID in that it’s a single instruction that does

different things based on what the value is in the EAX register at
the time that it’s called

§ EAX = 0; GETSEC[CAPABILITIES] = report the capabilities
§ EAX = 1; GETSEC[ENTERACCS] = run authenticated code (AC)
§ EAX = 2; GETSEC[EXITAC] = stop running AC
§ EAX = 3; GETSEC[SENTER] = Start a Measured Launch

Environment (MLE) – this is the main one we care about, and the
source of the title of this talk

§ EAX = 4; GETSEC[SEXIT] = exit MLE
§ EAX = 5; GETSEC[PARAMETERS] = reports supported AC info
§ EAX = 6; GETSEC[SMCTRL] = turn on SMIs
§ EAX = 7; GETSEC[WAKEUP] = wake up sleeping processors
© 2013 The MITRE Corporation. All rights reserved.

| 31 |

We’re only interested in a subset

§ We have to use GETSEC[CAPABILITIES] and
GETSEC[PARAMETERS] just for sanity checking purposes

§ We mainly care about SENTER and SEXIT to start and stop our
MLE

§ We’re *NOT* going to use SMCTRL or WAKEUP
–  The whole point here is to freeze SMM code in place

© 2013 The MITRE Corporation. All rights reserved.

| 32 |

SENTER THE DRAGON!

© 2013 The MITRE Corporation. All rights reserved.

| 33 |

Copernicus 1 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

| 34 |

Copernicus 1 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

| 35 |

Copernicus 1 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

| 36 |

Smite’em Attacks!

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus.sys

PCH

| 37 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

SPI Flash Chip

UEFI BIOS Firmware

Copernicus2.sys

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

| 38 |

Overall behavior 1

§  Initial actions:
–  Turn on TPM & TXT
–  Provision TPM key for later signature verification
–  Load Flicker driver, pass MLE code to Flicker, tell it to start

© 2013 The MITRE Corporation. All rights reserved.

| 39 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC

SINIT ACM copied from disk

Copernicus2.sys

FlickerDrv.sys

| 40 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

Copernicus2.sys

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
Construct MLE & paging structs

SINIT ACM copied from disk

FlickerDrv.sys

| 41 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

Setup TXT heap structs

Copernicus2.sys

FlickerDrv.sys

| 42 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs SENTER!

Copernicus2.sys

FlickerDrv.sys

| 43 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

Copernicus2.sys

FlickerDrv.sys

| 44 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 45 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x0000
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

S
t
o
r
e

Copernicus2.sys

FlickerDrv.sys

| 46 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

S
t
o
r
e

Copernicus2.sys

FlickerDrv.sys

| 47 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

S
t
o
r
e Copernicus2.sys

FlickerDrv.sys

| 48 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xac02

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 49 |

Overall behavior 2

§ MLE actions:
– Read config info, place text in buffer, SHA1 hash it, extend buffer

into TPM Platform Configuration Register (PCR) 18
– Read BIOS 0x10000 at a time, SHA1 hash it, extend buffer into

PCR 18
–  SEXIT

© 2013 The MITRE Corporation. All rights reserved.

| 50 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xac02

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 51 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xac02

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 52 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf005

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 53 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf005

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 54 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf005

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 55 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

| 56 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

SEXIT

Copernicus2.sys

FlickerDrv.sys

| 57 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xba11

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

Copernicus2.sys

FlickerDrv.sys

Start

| 58 |

Charizard

© 2014 The MITRE Corporation. All rights reserved.

| 59 |

Intel SPI Flash Protection Mechanisms

§  Intel provides a number of protection mechanisms that can
“lock down” the flash chip.

§  It’s up to OEMs/IBVs to use these Intel provided mechanisms in
a coherent way to implement things like:
– UEFI variable protection
–  Signed firmware update requirement

| 60 |

BIOS_CNTL

§  The above bits are part of the BIOS_CNTL register on the ICH.
§ BIOS_CNTL.BIOSWE bit enables write access to the flash chip.
§ BIOS_CNTL.BLE bit provides an opportunity for the OEM to

implement an SMM routine to protect the BIOSWE bit.

from: http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

| 61 |

SMM BIOSWE protection (1 of 2)

§ Here the attacker tries to set the BIOS Write Enable bit to 1 to
allow him to overwrite the BIOS chip.

Ring 0 Kernel
Code

BIOS_CNTL
BIOSWE = 0

BLE = 1

SMM Code

| 62 |

SMM BIOSWE protection (2 of 2)

§  The write to the BIOSWE bit while BLE is 1 causes the CPU to
generate a System Management Interrupt (SMI#).

Ring 0 Kernel
Code

BIOS_CNTL
BIOSWE = 1

BLE = 1

SMM Code

SMI#

| 63 |

SMM BIOSWE protection (2 of 2)

§  The SMM code immediately writes 0 back to the BIOSWE bit
before resuming the kernel code

Ring 0 Kernel
Code

BIOS_CNTL
BIOSWE = 1

BLE = 1

SMM Code

RSM

| 64 |

SMM BIOSWE protection (2 of 2)

§  The end result is that BIOSWE is always 0 when non-SMM code
is running.

Ring 0 Kernel
Code

BIOS_CNTL
BIOSWE = 0

BLE = 1

SMM Code

| 65 |

Protected Range SPI Flash Protections

§  Protected Range registers can also provide write protection to the flash chip.

| 66 |

HSFS.FLOCKDN

§ HSFS.FLOCKDN bit prevents changes to the Protected Range
registers once set.

| 67 |

SMM_BWP

§  SMM_BWP offers a way to prevent malicious ring 0 writes to the SPI
Flash even if SMI’s are suppressed.

§  Of 8005 systems we surveyed, only 6 actually set SMM_BWP = 1
–  Thanks to some forced patching, it's up to 1605/~10k! Only 84% fail! ;)

Source: Intel 8-series-chipset-pch-datasheet.pdf

| 68 |

Intel Protections Summary

§  The Protected Range Registers, BIOS_CNTL, and SMM_BWP
provide overlapping protection of the SPI flash chip that
contains the platform firmware.

–  Protected Range registers can be configured to block all write
access to ranges of the SPI Flash.

–  BIOS_CNTL protection puts SMM in a position to decide who
can write to the SPI Flash. (weaker)

–  SMM_BWP says "only a CPU in SMM is allowed to write to the
flash chip" (stronger)

| 69 |

Charizard

§ BIOS_CNTL protection of the SPI Flash can be defeated on a
large number of systems by temporarily suppressing SMM.
–  Attack does not require arbitrary code execution in SMM.

§ But how can we suppress SMM?

| 70 |

§ SMI_LOCK controls access to the next bit we care about in
GBL_SMI_EN (it's a typo in the manual above)

§  3216 of 8005 (~40%) systems surveyed did not have SMI_LOCK
set.
–  A greater number could probably be made vulnerable by

downgrading the BIOS to a vulnerable revision, which is usually
allowed.

Source: Intel 8-series-chipset-pch-datasheet.pdf

| 71 |

§  If SMI_LOCK == 0, we can set GBL_SMI_EN to 0 to temporarily
disable SMIs and write to flash regions relying on BIOS_CNTL
protection, like the EFI variable region.

Source: Intel 8-series-chipset-pch-datasheet.pdf

| 72 |

Disabled BIOSWE protection (1 of 2)

§ Again the attacker tries to set the BIOS Write Enable bit to 1 to
allow him to overwrite the BIOS chip.

Ring0 Code BIOS_CNTL

SMM

 BIOS_CNTL.BIOSWE = 1

| 73 |

Disabled BIOSWE protection (2 of 2)

§  This time the SMI that protects BIOSWE fails to fire.

Ring0 Code BIOS_CNTL

 OK: BIOS_CNTL.BIOSWE = 1

SMM
SMI#

| 74 |

§ Ring 0 can now modify authenticated EFI Variables, which
allows trivial bypassing of Secure Boot.

| 76 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0x0000

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

S
t
o
r
e

FlickerDrv.sys

| 77 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf001

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

FlickerDrv.sys

| 78 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf001

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

FlickerDrv.sys

| 79 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf001

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

FlickerDrv.sys

| 80 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf001

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

SEXIT

FlickerDrv.sys

| 81 |

Copernicus 2 Architecture

© 2013 The MITRE Corporation. All rights reserved.

CPU

Cache

RAM/Physical Address Space
High

Low

BIOS Alias (high mem)

SMRAM

Flash Chip

UEFI BIOS
Firmware

PCH
TXT Heap

SINIT Area

Measured Launch Environment (MLE)

TPM
PCR0 = 0xfa7e…
…
PCR17 = 0x136b
PCR18 = 0xf001

SPI LPC
MLE & paging structs

SINIT ACM copied from disk

TXT heap structs

SINIT ACM copied
from disk

FlickerDrv.sys

| 82 |

Caveat Dormientes

© 2014 The MITRE Corporation. All rights reserved.

§ Xeno pursued TXT for SMI suppression in Copernicus 2 &
Sandman because he read this in the Intel TXT Developer's
Guide:

§  "The ILP must re-enable SMIs which were disabled as part of the
SENTER process; most systems will not function properly if
SMIs are disabled for any length of time. …"

§ OK, good so far…but wait…Xeno didn't read to the end of the
paragraph…

§  "Newer CPUs may automatically enable SMIs on entry to the
MLE;"

§ Oh… Well that could be a problem. So how do we know which
"Newer CPUs" behave which way, and under which conditions
they "may" enable SMIs?

| 83 |

Follow the clues

§  One clue in the EXITAC instruction leaf which is what the SINIT
module would run as it's exiting and going to hand off to MLE

§  This translates to "If we are done with an SENTER, and we're about

to transfer to the MLE, and if IA32_SMM_MONITOR_CTL[0] = 1, then
SMIs will be suppressed when we transfer to the MLE"

§  So we want to be able to set IA32_SMM_MONITOR_CTL[0] = 1
§  How do we do that?

© 2014 The MITRE Corporation. All rights reserved.

<Pseudocode snip>

| 84 |

© 2014 The MITRE Corporation. All rights reserved.

•  OK, bit 0 is the valid bit.
•  This architectural MSR is only valid if you call CPUID with EAX set to 1,

and if the returned ECX has bit 5 or 6 = 1
•  So what are those bits?

•  Well that's not helpful, because that implies anything that supports
SMX will support IA32_SMM_MONITOR_CTL

| 85 |

Follow the clues

© 2014 The MITRE Corporation. All rights reserved.

•  Hmm…here's some other interesting facts that turned up in the search
through the manuals

•  OK, so we can't force the valid bit in the MSR. We'll come back to that.
•  OK now we need to consult IA32_VMX_BASIC to know if a processor

supports dual-monitor treatment to know if it supports
IA32_SMM_MONITOR_CTL…

| 86 |

Double Your Pleasure, Double Your Fun

© 2014 The MITRE Corporation. All rights reserved.

•  What is this "dual-monitor treatment"?

•  Oh! It's the use of the STM! You remember STMs right? No? They were
the solution to Intel TXT's problem with SMM that ITL found back in 2009

| 87 |

© 2014 The MITRE Corporation. All rights reserved.

From "Attacking Intel Trusted Execution Technology", ITL, Feb 2009

| 88 | From "Attacking Intel Trusted Execution Technology", ITL, Feb 2009

| 89 | From "Attacking Intel Trusted Execution Technology", ITL, Feb 2009

•  While our MITRE team also likes to take the black box approach to
looking at things, we eventually decided that entering into some
NDAs with Intel and other BIOS vendors would accelerate our
discovery of problems and help move BIOS security forward faster,
which is our ultimate goal.

•  So we checked out the Intel STM document (still not released 5 years
later…on version .99 v8 ;)), and came across this handy flow chart…
which we didn't receive permission from Intel to even partially
reproduce :(

| 90 |

| 91 |

This w
ay for w

in

| 92 |

And in the end, just gave in and asked Intel…

§  Intel says that the "newer CPUs" are some Nehalem and newer
§ But I also accidentally found out that Xeon CPU's don't support

STM, and rely on the Static Root of Trust for Measurement
(SRTM)
–  :O That's not good! We showed in our "BIOS Chronomancy"[18]

talk last year how SRTMs without truly immutable core roots of
trust are fundamentally flawed and vulnerable
§  Oh, but they support using TXT ACMs as the entry point for the reset

vector, so functionally the SRTM…so…hmm…As long as SMM can
never ever get compromised directly while the system is running
*cough*futurecoreytalk*cough* then I guess you're OK…

© 2014 The MITRE Corporation. All rights reserved.

| 93 |

Result

§  Sandman (and Copernicus 2) work on older machines that
unconditionally suppress SMIs, and on newer machines that
include an STM
–  "The once and future king"…

§  The BIOS vendor needs to include an STM in their shipping BIOS,
because the STM lives in SMM
–  SMM should be locked so that people can't put stuff there.
§  If anyone can just add an STM on demand that would be an attack.

§ We're not aware of any vendors shipping or planning to ship STMs
(but we haven't conducted a survey)

§ Where Copernicus 2 has fallen, Smite'em holds court!

§  Intel could fix this by just re-enabling SMI suppression for TXT.
We asked them to, but we don’t think they will.

© 2014 The MITRE Corporation. All rights reserved.

| 94 |

Must I be vulnerable to Sandman to run
Copernicus 2?

§ No. TXT has an access control mechanism where you can set a
Launch Control Policy (LCP)

§  The LCP can specify that you only want to allow specific MLEs
to run on your systems

§  LCPs are stored in the TPM's non-volatile RAM
§ So basically when you're provisioning the TPM so that you can

trust your measurements from some MLE like Copernicus 2, you
can also lock it in so that only Copernicus 2 can run in the future

© 2014 The MITRE Corporation. All rights reserved.

| 95 |

Conclusions

§ We have now completed the "BLE-SMI Suppression Trilogy"
–  Via CPU cache poisoning at EkoParty [13]
–  Via GBI_SMI_EN at Syscan[29]
–  Via TXT at SummerCon [30]
–  ("BlessMe Suppression" doesn't sound as cool as "Xen 0wning"

but if ITL has a trilogy, we need one too ;))
§ Are there other ways? Probably, but it doesn't matter
§ We've been telling people to stop relying on BIOSWE/BLE

protection and starting using Protected Range Registers and
SMM_BWP for a while now.

§ We recently found what we think is a fundamental architectural
flaw in BIOSWE/BLE which will render it completely useless

§ Stay tuned ;)

© 2013 The MITRE Corporation. All rights reserved.

| 96 |

A new caveat has entered the ring!

© 2014 The MITRE Corporation. All rights reserved.

From "Ring -3 Rootkits", ITL, July 2009
http://invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf

•  We also like security technologies like TXT
•  Wojtczuk & Rutkowska caveated this when they showed an SINIT

buffer overflow (subsequently patched) which yielded SMM privs
•  We've now showed another (more architectural) way that TXT can be

a double-edged sword
•  But BIOS-vendors can mitigate this attack by not relying on

BIOS_CNTL.BIOSWE/BLE as a primary access control

Closing	 thoughts	

•  Sleep	 with	 one	 eye	 open!	
•  Gripping	 your	 pillow	 ;ght!	
•  EXXXXIIIITTTT	 LIGHT!	
•  EEEENNNNNTTTTEERRR	 NIIIIIGHT!	

| 98 |

Thanks, Contacts, Questions?

§  Thanks to FOO from Intel who saw our Cop 2 slides and pointed
out the differing ways SMIs behave, and for John Loucaides and
Bruce Monroe from Intel PSIRT for working with us on our
various disclosures and getting us in touch with FOO.

§  Thanks to Jon McCune and the team from CMU for making
Flicker for people to build on.
– Our changes we contributed back to make it work with default Win

7 32 with PAE enabled are here:
–  http://sourceforge.net/p/flickertcb/code/ci/experimental-pae-support

§  xkovah, callenberg, jbutterworth, scornwell @ mitre.org

§ @xenokovah, @coreykal, @jwbutterworth3, @ssc0rnwell

© 2014 The MITRE Corporation. All rights reserved.

| 99 |

Backup

© 2014 The MITRE Corporation. All rights reserved.

| 100 |

"But I can detect that Sandman ran because
of unexpected PCR values!"

§  The attacker could reboot the system ASAP after the BIOS has
been written to in order to try and gain their SMM or whatever
other privileges ASAP.

§  The attacker could run an expected/clean MLE immediately
afterwards to have the PCR values overwritten with expected/
non-suspicious values

§  ? The attacker could launch an MLE in a way that they knew
would fail (but wouldn't reboot the system) so as to allow it to
proceed past PCR reset but not until PCR extend.

§  ? The attacker could manually reset the PCR from within the
MLE at locality 3?

© 2014 The MITRE Corporation. All rights reserved.

| 101 |

References
§  [1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009

http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf
§  [2] TPM PC Client Specification - Feb. 2013

http://www.trustedcomputinggroup.org/developers/pc_client/specifications/
§  [3] Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is Insecure

on Many Systems – Yuriy Bulygin – Mar. 2013
http://cansecwest.com/slides/2013/Evil%20Maid%20Just%20Got%20Angrier.pdf

§  [4] A Tale of One Software Bypass of Windows 8 Secure Boot – Yuriy Bulygin –
Jul. 2013 http://blackhat.com/us-13/briefings.html#Bulygin

§  [5] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna
Rutkowska – Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

§  [6] Another Way to Circumvent Intel® Trusted Execution Technology - Rafal
Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin – Dec. 2009
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

§  [7] Exploring new lands on Intel CPUs (SINIT code execution hijacking) - Rafal
Wojtczuk and Joanna Rutkowska – Dec. 2011
http://www.invisiblethingslab.com/resources/2011/
Attacking_Intel_TXT_via_SINIT_hijacking.pdf

§  [7] Meet 'Rakshasa,' The Malware Infection Designed To Be Undetectable And
Incurable - http://www.forbes.com/sites/andygreenberg/2012/07/26/meet-
rakshasa-the-malware-infection-designed-to-be-undetectable-and-incurable/

| 102 |

References 2
§  [8] Implementing and Detecting an ACPI BIOS Rootkit – Heasman, Feb.

2006
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-
Heasman.pdf

§  [9] Implementing and Detecting a PCI Rookit – Heasman, Feb. 2007
http://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-
dc-07-Heasman-WP.pdf

§  [10] Using CPU System Management Mode to Circumvent Operating
System Security Functions - Duflot et al., Mar. 2006
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-
duflot-paper.pdf

§  [11] Getting into the SMRAM:SMM Reloaded – Duflot et. Al, Mar. 2009
http://cansecwest.com/csw09/csw09-duflot.pdf

§  [12] Attacking SMM Memory via Intel® CPU Cache Poisoning –
Wojtczuk & Rutkowska, Mar. 2009
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf

§  [13] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013
– URL not yet available, email us for slides

§  [14] Mebromi: The first BIOS rootkit in the wild – Giuliani, Sept. 2011
http://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-
in-the-wild/

| 103 |

References 3

§  [15] Persistent BIOS Infection – Sacco & Ortega, Mar. 2009
http://cansecwest.com/csw09/csw09-sacco-ortega.pdf

§  [16] Deactivate the Rootkit – Ortega & Sacco, Jul. 2009
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/
BHUSA09-Ortega-DeactivateRootkit-PAPER.pdf

§  [17] Sticky Fingers & KBC Custom Shop – Gazet, Jun. 2011
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-
stickyfingers_slides.pdf

§  [18] BIOS Chronomancy: Fixing the Core Root of Trust for
Measurement – Butterworth et al., May 2013
http://www.nosuchcon.org/talks/
D2_01_Butterworth_BIOS_Chronomancy.pdf

§  [19] New Results for Timing-based Attestation – Kovah et al., May
2012 http://www.ieee-security.org/TC/SP2012/papers/4681a239.pdf

| 104 |

References 4

§  [20] Low Down and Dirty: Anti-forensic Rootkits - Darren Bilby, Oct.
2006
http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Bilby-up.pdf

§  [21] Implementation and Implications of a Stealth Hard-Drive Backdoor
– Zaddach et al., Dec. 2013
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/acsac13.pdf

§  [22] Hard Disk Hacking – Sprite, Jul. 2013
http://spritesmods.com/?art=hddhack

§  [23] Embedded Devices Security and Firmware Reverse Engineering -
Zaddach & Costin, Jul. 2013
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-
Embedded-Devices-Security-and-Firmware-Reverse-Engineering-
WP.pdf

§  [24] Can You Still Trust Your Network Card – Duflot et al., Mar. 2010
http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf

§  [25] Project Maux Mk.II, Arrigo Triulzi, Mar. 2008
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-
Project-Maux-II.pdf

| 105 |

References 5

§  [26] Copernicus: Question your assumptions about BIOS Security –
Butterworth, July 2013
http://www.mitre.org/capabilities/cybersecurity/overview/
cybersecurity-blog/copernicus-question-your-assumptions-about

§  [27] Copernicus 2: SENTER the Dragon – Kovah et al., Mar 2014
https://cansecwest.com/slides/2014/Copernicus2-SENTER_the-
Dragon-CSW.pptx

§  [28] Playing Hide and Seek with BIOS Implants – Kovah, Mar 2014
http://www.mitre.org/capabilities/cybersecurity/overview/
cybersecurity-blog/playing-hide-and-seek-with-bios-implants

§  [29] Setup for Failure: Defeating UEFI – Kallenberg et al., Apr 2014
http://syscan.org/index.php/download/get/
6e597f6067493dd581eed737146f3afb/
SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoo
t.zip

§  [30] SENTER Sandman: Using Intel TXT to Attack BIOSes – Kovah
et al., June 2014

