
Setup For Failure: Defeating Secure Boot

Corey Kallenberg Sam Cornwell Xeno Kovah
John Butterworth

ckallenberg@mitre.org, scornwell@mitre.org
xkovah@mitre.org, jbutterworth@mitre.org

The MITRE Corporation

Abstract
Secure Boot is a new UEFI feature that enforces a signa-
ture check on the boot loader before the firmware trans-
fers control to the boot loader. This feature prevents the
traditional ”bootkit” style of attack that infects the MBR
in an effort to circumvent the operating system kernel
while it is being loaded. However, UEFI implementa-
tions have added flexibility to how and when this policy
is enforced. In order to be secure, this ”flexibility” is
typically configured by the OEM. We will show how the
standard UEFI interface provided to the operating sys-
tem can be abused to re-configure the secure boot pol-
icy such that a malicious bootloader will be called by
the firmware. Furthermore, we analyze the chipset pro-
tection mechanisms of the UEFI variable region of the
SPI flash and note that they are necessarily weaker than
the protection applied to the UEFI code region. We then
show how SMI suppression can be used to allow ring 0
code to write directly to critical UEFI variables, bypass-
ing any cryptographic authentication scheme normally
employed by the UEFI Runtime Serivices. Both of these
attacks can effectively disable Secure Boot, all while Se-
cure Boot still reports itself as enabled.

1 Secure Boot Introduction

It is adventageous for malware to execute as early as pos-
sible on the system. This advantage is due to the fact that
malicious code is generally capable of subverting legiti-
mate code that is executed at a later time. For instance,
BIOS level rootkits are capable of subverting most other
code that will execute on the platform because the BIOS
code executes immediately after platform reset. Another
example is “bootkits”, which can subvert operating sys-
tem kernels at load time. Bootkits have recently come
back into vogue because of their ability to bypass the
Windows driver signing enforcement [7]. Already we
have seen bootkits for UEFI systems [5], but in practice

these bootkits would be prevented by the UEFI security
feature known as Secure Boot.

1.1 Secure Boot Design

Secure Boot is designed to prevent the execution of unau-
thorized code during the system boot up. This includes
any code that is found that may need to be executed dur-
ing the system start: for instance, PCI option ROMs and
operating system boot loaders. Whenever one of these
executables is discovered, the UEFI firmware checks
if the executable is signed with an authorized key, or
if a hash of the executable is stored in the authorized
database. The authorized keys are stored in a UEFI vari-
able known as the “KEK” and the authorized database
is another UEFI variable known as the “DB”. There are
other UEFI variables that Secure Boot may use such as a
blacklist database of unauthorized images, but these are
irrelevant for the attacks presented in this paper.

The open source UEFI reference implementation[2]
allows us to look at the recommended implementation of
Secure Boot. In the reference implementation, the func-
tion “DxeImageVerificationHandler” is called whenever
an executable image is discovered that needs to be au-
thorized. The decision of whether or not to proceed with
image authorization is dependent on the origin of the
executable in question. Four cases are considered: IM-
AGE FROM FV, IMAGE FROM OPTION ROM,
IMAGE FROM REMOVABLE MEDIA, IM-
AGE FROM FIXED MEDIA. IMAGE FROM FV
represents an executable image that was found on
the SPI flash. In the reference implementation, these
executables are allowed to execute without any autho-
rization. This policy makes sense when you consider
that the executable contents of the SPI flash were
verified during the platform firmware update process,
assuming signed firmware update enforcement is en-
abled. If signed firmware updates are not enabled,
or implemented incorrectly, then Secure Boot can be

1



trivially bypassed [3]. This is because an attacker can
insert malicious code onto the flash chip, which is
always assumed to be trusted. In this paper, we assume
signed firmware updates are enabled, and the policy is
implemented correctly.

The remaining image origin cases
(IMAGE FROM OPTION ROM, IM-
AGE FROM REMOVABLE MEDIA, IM-
AGE FROM FIXED MEDIA) have their policies
individually configured. In other words, the reference
implementation allows a granular image authorization
policy. One example policy may permit unsigned option
ROMs to run, but deny the execution of unsigned
executables found on the hard disk (such as the boot
loader). The authors speculated that some OEMs would
configure the Secure Boot policy to permit unsigned
option ROMs to run, in order to allow aftermarket PCI
expansion cards (such as video cards) to work seam-
lessly. This hypothesis led us to analyze the Secure Boot
policies and implementations of real consumer-grade
hardware.

1.2 SecureBoot Implementation
In practice, an OEM’s implementation of the UEFI
firmware can diverge quite significantly from the UEFI
open source reference implementation. This is true of
the Secure Boot sub-component of UEFI as well. While
attempting to discover the Secure Boot policy for option
ROMs on a Dell Latitude E6430 at revision A12, the fol-
lowing code was discovered:

lea rax, gSetupVariableData
lea rcx, VariableName ; "Setup"
mov [rsp+38h+Data], rax ; Data
mov rax, cs:gRuntimeServices
xor r8d, r8d ; Attributes
mov [rsp+38h+argSetupVariableSize], 0C5Eh
call [rax+EFI_RUNTIME_SERVICES.GetVariable]
...
cmp cs:gSecureBootPolicyFromSetup, cl
jnz short policy_from_setup_variable
hardcode_policy:
mov cs:gImageFromFVPolicy, cl
mov cs:gImageFromXromPolicy, 4 ;DENY
mov cs:gImageFromRemovablePolicy, 4
mov cs:gImageFromFixedPolicy, 4
mov cs:gSecureBootPolicyFromSetup, cl ;0

The above code initializes the Secure Boot policy that
will later be used by DxeImageVerificationHandler. The
critical observation is that the Secure Boot policy can
originate from either the UEFI “Setup” variable, or it can
be hardcoded. The existence and contents of the Setup
variable determines which case will occur. The address
of the “gSecureBootPolicyFromSetup” byte that is tested

above, is within the buffer populated via the call to “Get-
Variable.” Also within this buffer are the control vari-
ables “gImageFromFVPolicy”, “gImageFromXromPol-
icy” and “gImageFromRemovablePolicy”. Hence the
contents of the Setup variable can entirely specify the
Secure Boot policy of the target.

An observant reader will notice that the default hard-
coded policy is to deny any unsigned executables that
originate from fixed drives, removable drives or option
ROMs. We did not find any cases of a relaxed option
rom policy on the systems we investigated. Because of
this, our attention was focused onto controlling the con-
tents of the Setup variable.

2 Attacking The Setup Variable

UEFI variables can have several attributes that affect the
security and writability of their contents. These attributes
are encoded as a bitmask in the header information on the
SPI flash where the UEFI variables are stored. Variables
can be marked as “Authenticated”, meaning that the con-
tents of the variable can only be changed if knowledge
of an authorized private key is known. The KEK and DB
mentioned above are stored as authenticated variables,
meaning that malicious code cannot arbitrarily change
their contents. Alternatively, non-volatile variables that
are marked with the “Runtime” attribute but lack the au-
thenticated attribute, can be arbitrarily modified by the
operating system. Windows 8 has introduced a new API
that allows a privileged userland process to interact with
UEFI variables. This API is available through the “Get-
FirmwareEnvironmentVariable” and “SetFirmwareEnvi-
ronmentVariable” functions. Hence, non-authenticated
UEFI variables can be modified by a privileged Windows
8 userland process.

Importantly, the Setup variable expresses the runtime
attribute, but lacks the authenticated attribute. Thus, a
Windows 8 process running with administrator privileges
could arbitrarily modify the contents of the Secure Boot
policy. Then, the malicious administrator process could
replace the legitimate Windows boot loader with a mali-
cious one that subverts the Windows kernel at load time.
This is a clear violation of Secure Boot, as this is exactly
the kind of scenario that Secure Boot was designed to
prevent.

2.1 Attribution
The Setup variable vulnerability we discovered was not
present in the open source UEFI reference implementa-
tion. Furthermore, the vulnerability was discovered in
multiple OEMs. From this, one can conclude the vul-
nerability was introduced by an Independent BIOS Ven-
dor (IBV). IBVs often supply OEMs with frameworks on

2



which the OEMs build the firmware for their individual
systems. Analysis of the strings and GUIDs embedded in
the firmware of the vulnerable systems leads us to con-
clude that the vulnerability was probably introduced by
American Megatrends Inc.

2.2 Disclosure
This particular vulnerability was co-discovered by In-
tel and MITRE. Intel first presented this vulnerability at
Black Hat USA 2013[3]. Although, they did not give
details about the vulnerability as it was still unpatched
at that time. Coincidentally, MITRE also discovered
this vulnerability shortly after the Intel Black Hat USA
presentation, while investigating option rom policies as
discussed above. This vulnerability has been assigned
tracking number CERT-758382.

3 SPI Flash Protections

UEFI non-volatile variables are placed on the SPI flash
chip that also hosts the UEFI code. This presents an in-
teresting scenario, as the UEFI code should not be arbi-
trarily modifiable, unlike UEFI variables which do have
to remain writable so they can be updated by the operat-
ing system. Intel provides a number of SPI flash protec-
tion mechanisms that allow the necessary granular pro-
tection policy to be implemented.

3.1 BIOS CNTL
The BIOS CNTL register, found on Intel IO Control
Hubs (ICHs) on older systems and Platform Control
Hubs (PCHs) on newer systems, contributes several im-
portant bits towards the protection of the SPI flash. The
BIOS Write Enable (BWE) bit is a writeable bit defined
as follows. If BWE is set to 0, the SPI flash is read-
able but not writeable. If BWE is set to 1, the SPI flash
is writeable. The BIOS Lock Enable bit (BLE), if set,
generates a System Management Interrupt (SMI) if the
BWE bit is written from a 0 to 1. The BLE bit can only
be set once, afterwards it is only cleared during a plat-
form reset. It is important to notice that the BIOS CNTL
register is not explicitly protecting the flash chip against
writes. Instead, it allows the OEM to establish an SMM
routine to run in the event that the BIOS is made write-
able by setting the BWE bit. The expected mechanism
of this OEM SMM routine is for it to reset the BWE bit
to 0 in the event of an illegitimate attempt to write enable
the BIOS.

The BIOS CNTL register also provides a “SMM
BIOS Write Protect” (SMM BWP) bit on newers sys-
tems which only allows writes to the SPI flash chip while
all processors are in SMM. However only 6 of the 8005

systems we surveyed1 set this bit. This is potentially due
to SMM BWP being a relatively new feature. Due to the
fact SMM BWP is largely unused at this time, we do not
consider it in the attacks presented in this paper.

3.2 Protected Range
Intel specifies a number of Protected Range registers that
can also protect the flash chip against writes and/or reads.
These 32bit registers specify Protected Range Base and
Protected Range Limit fields that set the relevant regions
of the flash chip for the Write Protection Enable and
Read Protection Enable bits. When the Write Protec-
tion Enable bit is set, the region of the flash chip defined
by the Base and Limit fields is protected against writes.
Similarly, when the Read Protection Enable bit is set,
that same region is protected against read attempts. The
HSFS.FLOCKDN bit, when set, prevents changes to the
Protected Range registers. Once set, HSFS.FLOCKDN
can only be cleared by a global reset of the system.

3.3 Analysis
The Protected Range registers cannot be used to write-
protect the flash region associated with UEFI variables,
because this region has to remain writable during the op-
erating system runtime. Therefore, OEMs are forced
to rely on BIOS CNTL protection of the UEFI vari-
able region. A related result[6] demonstrates that sole
reliance on BIOS CNTL protection allows an SMM-
present attacker write access to the flash. It follows that
BIOS CNTL protection is significantly weaker than Pro-
tected Range protection, as the attack surface against
BIOS CNTL includes any vulnerabilities that may allow
an attacker to execute code in SMM. This paper further
strengthens this point by demonstrating that sole reliance
on the BIOSWE flash protection mechanism is vulnerable
to an attacker that can temporarily suppress SMIs. With
SMIs temporarily suppressed, a ring 0 attacker can set
BIOSWE to 1, and the SMI that normally sets BIOSWE
back to 0 will fail to execute. The ring 0 attacker can
then make arbitrary writes to any flash regions that are
not protected by Protected Range registers, which is nec-
essarily the case for the UEFI variable region.

4 SMI Suppression

The crux of this attack is finding a way to temporarily
suppress the execution of SMM. An inspection of the
Intel datasheets[4] describes at least one way that SMIs
can be disabled. The “SMI Control and Enable Regis-
ter” (SMI EN) contains the “GBL SMI EN” bit. Intel

1Survey conducted with Copernicus[1]

3



describes this bit as follows: When set to 0, no SMI will
be generated by the PCH. When the SMI LOCK bit is
set, this bit cannot be changed. Of the 8005 systems
we surveyed, 3216 (approximately 40%) did not set the
SMI LOCK bit. A greater number of systems could be
made vulnerable to this by downgrading their BIOS re-
vision, an operation that is typically allowed.

For systems that fail to set SMI LOCK, the attack
is relatively straightforward, assuming an attacker with
ring 0 privileges. First the attacker temporarily disables
SMIs by setting GBL SMI EN to 0. Next an attacker sets
BIOSWE to 1, allowing write access to any flash regions
not protected by Protected Range registers. Now an at-
tacker is able bypass the normal authentication scheme
that protects UEFI authenticated variables, and modify
their contents by writing directly to the flash. From here,
an attacker has a number of ways by which they can de-
feat Secure Boot. The method we chose was to insert into
the DB variable a hash of our bootkit. We then replaced
the legitimate Windows boot loader with our bootkit and
reset the system. Upon reset, the UEFI firmware will
transfer control to our bootkit as it is now indicated to be
a legitimate image by way of the DB variable.

5 Conclusion

The authors believe Secure Boot is a valuable security
mechanism that is needed to protect the boot process.
However vendor implementations of this security fea-
ture need improvement before it can be considered ro-
bust. Vendors should not be exposing security critical
configuration settings through non-authenticated UEFI
variables. Furthermore, OEMs should ensure that they
are using all of the flash protection mechanisms that In-
tel provides. In particular, the decision to not use the
SMM BWP bit is a poor one. Failure to set SMM BWP
results in security critical UEFI authenticated variables
being exposed to an attacker who can temporarily SMIs.
If OEMs were properly using SMM BWP, the authenti-
cated variables would only be vulnerable to an attacker
who could execute arbitrary code in SMM. This is a
much stronger security position.

References

[1] Copernicus: Question your assumptions
about bios security. http://www.mitre.
org/capabilities/cybersecurity/
overview/cybersecurity-blog/
copernicus-question-your-assumptions-about.
Accessed: 10/01/2013.

[2] Uefi Reference Implementation. tianocore.
sourceforge.net.

[3] Y. Bulygin, A. Furtak, and O. Bazhaniuk. A tale of
one software bypass of windows 8 secure boot. In
BlackHat, Las Vegas, USA, 2013.

[4] Intel Corporation. Intel 7 Series Family Platform
Controller Hub Datasheet. http://www.intel.
com/content/www/us/en/chipsets/
7-series-chipset-pch-datasheet.
html.

[5] S. Kaczmarek. UEFI and Dreamboot. In Hack In
The Box, Amsterdam, 2013.

[6] C. Kallenberg, J. Butterworth, X. Kovah, and
C. Cornwell. Defeating Signed BIOS Enforcement.
In EkoParty, Buenos Aires, 2013.

[7] P. Kleissner. Stoned Bootkit. In BlackHat, Las Ve-
gas, USA, 2009.

4


