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e Overwrite the contents of the firmware (UEFI),
which is typically stored on a SPI flash chip that is
soldered to the motherboard



* Only software attacks against the firmware are considered

* With physical access, reprogramming the firmware is
accomplished trivially with a flash programmer



Why Bother?

Increasing Privilege

Applications

Kernel

BIOS

N

 The firmware can:
— Compromise the rest of the software stack
— Brick the platform
— Survive OS reinstallations

* |deal place for a rootkit!



Features vs Security

InstallBIOSRootkit.exe LegitimateBIOSUpdate.exe

* The chipset provides features to:
— Reprogram the contents of the firmware

— Protect the firmware against arbitrary programming
attempts

* |t's up to the OEM to utilize these features to:
— Allow legitimate firmware updates
— Deny malicious firmware programming attempts
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e 1st attack against flash protections presented
by Wojtczuk and Tereshkin in 2009[1]

« 2" and 3" attack by Kallenberg et al[2][3]
* But these attacks were suboptimal...



Previous attacks:
— Complex memory corruption vulnerabilities
— Required expensive and tedious testing to exploit
— Difficult to port and reproduce
— Extremely system dependent

Unlikely to be exploited “in the wild” for these reasons



* Today we bestow onto you vulnerabilities which
are:
— Prevalent among UEFI and legacy BIOS systems
— Result in reflash of firmware and/or SMM breakin

— Straight forward enough to DIY, no exotic equipment
needed



Multi-Layered Protection

SMM

Protected Range Mask

BIOS_CNTL

* There are multiple layers of protection that
prevent arbitrary flash programming attempts

* We will evaluate and then break through each
layer in series



Layer 1: BIOS CNTL

BIOS Lock Enable (BLE) — R/WLO.

0 = Setting the BIOSWE will not cause SMIs.

1 = Enables setting the BIOSWE bit to cause SMIs. Once set, this bit can only be
cleared by a PLTRST#

BIOS Write Enable (BIOSWE) — R/W.

0 = Only read cycles result in Firmware Hub I/F cycles.

0 1 = Access to the BIOS space is enabled for both read and write cycles. When this bit is
written from a 0 to a 1 and BIOS Lock Enable (BLE) is also set, an SMI# is
generated. This ensures that only SMI code can update BIOS.

* Write access to the flash is only possible if
BIOSWE is set

* Setting BLE allows SMM to arbitrate write
access to the flash

from: http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html



http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

BIOS CNTL Action 1/5

SMM

BIOS_CNTL

BIOSWE=1—3 | BIOSWE=1

kernel driver BLE=1

e Kernel driver attempts to set BIOSWE using a
memory mapped write transaction to the
chipset



BIOS CNTL Action 2/5

sMM

BIOS_CNTL

1,

BIOSWE=1

kernel driver BLE=1

* Because BLE is set, an SMI occurs
 SMI handler begins executing



BIOS CNTL Action 3/5

SMM BIOS CNTL
BIOSWE=0___|y BeswWE=
1 BIOSWE=0

kernel driver BLE=1

* SMM determines the write attempt is
illegitimate and unsets BIOSWE



BIOS CNTL Action 4/5

SMM BIOS CNTL
RSM BlOSWE=1
l BIOSWE=0
kernel driver BLE=1

* Control is returned from SMM to the original
thread



BIOS CNTL Action 5/5

SMM ‘ BIOS_CNTL

BIOSWE=1
BIOSWE=0

kernel driver K BLE=1 g
Flash Write

* Flash write cycle fails because BIOSWE is unset




BIOS_CNTL—BIOS Control Register
(LPCI/F—D31:F0)

Offset Address: DCh Attribute: R/WLO, R/W, RO
Default Value: 00h Size: 8 bit
Lockable: No Power Well: Core
Bit Description
7:5 | Reserved e Old (ICH)
4 Top Swap Status (TSS) — RO. This bit provides a read-only path to view the state of
the Top Swap bit that is at offset 3414h, bit 0.

BIOS_CNTL—BIOS Control Register
(LPCI/F—D31:F0)

Offset Address: DCh Attribute: R/YWLO, RfW, RO
Default Value: 20h Size: 8 bit
Lockable: Mo Power Well: Core

Bit Description

7.6 Reserved

—>

New (PCH)

5MM BIOS Write Protect Disable (SMM_BWP)—R/WLO.

This bit set defines when the BIOS region can be written by the host.

0 = BIOS region SMM protection is disabled. The BIOS Region is writable regardless if
Processors are im SMM or not. (Set this field to 0 for legacy behavior)

1 = BIOS region SMM protection is enabled. The BIOS Region is not writable unless all
Processors are in SMM.

Move to PCH chipset architecture introduced new feature

to BIOS_CNTL with “interesting language”

SMM?” ?7?7?

“BIOS Region is not writable unless all processors are in

http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/5-chipset-3400-chipset-datasheet.pdf



http://www.intel.com/content/dam/doc/datasheet/io-controller-hub-10-family-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/5-chipset-3400-chipset-datasheet.pdf

Speed Racer!

* [t appears that Intel was patching a latent race
condition in BIOS_CNTL protections!

* |n private conversations, Sam Cornwell and John
Butterworth of MITRE suggested this might be an
issuel



BIOS CNTL Race 1/4

SMM BIOS_CNTL

BIOSWE=1—3 | BIOSWE=1

Thread 1 (core #1) BLE=1

Thread 2 (core #2)

e This time we consider a multicore environment

* Core 1 begins the process by write enabling the
flash



BIOS CNTL Race 2/4

SMM BIOS _CNTL
Ny
1z,
BIOSWE=1
Thread 1 (core #1) BLE=1

Thread 2 (core #2)

* Because BLE is set, an SMI is generated and
core 1 immediately enters SMM



BIOS CNTL Race 3/4

SMM BIOS_CNTL

BIOSWE=1

BLE=1

Thread 1 (core #1)

Flash Write
Thread 2 (core #2) sl

* Although core 2 will also enter SMM, it does not
happen instantaneously.

* Core 2 has a small window in which to attempt
flash write operations



BIOS CNTL Race 4/4

SMM BIOS_CNTL
_ B E=T
BIOSWE=0—3 pioswe=o
Thread 1 (core #1) BLE=1

Thread 2 (core #2)

e The SMI handler unsets BIOSWE, but it’s
already too late.



‘ PCH or later chipset?

/\ N

Sets SMM_BWP?

27N\

Uses PR masks? Yes

N.;;./.\{es

L

Vulnerable Maybe Vulnerable Not Vulnerable

“speed racer” assigned CERT VU#766164

On systems with PCH chipsets, setting SMM_BWP resolves the issue, but
adoption rate of SMM_BWP appears sporadic[4].
Vulnerable systems are trivially exploited with a pair of kernel drivers

— One for setting BIOSWE in a tight loop

— Another for attempting the flash programming operation in a tight loop

— No penalty for failing, so you can just brute force!




SMM Protected Range Mask

* BLE/BWE protection can be defeated by speed
racer in the absence of SMM_BWP

* |[f SMM_BWP is supported and utilized, we are
forced to break into SMM to continue our
assault on the firmware



Attacking SMM: Inspired by the misery
of Darth Venamis

* |n the star wars universe, Darth
Venamis is kept comatose by
Darth Plagueis for the purpose of
exploitation

* Perhaps we can put UEFl into a
coma for exploitative purposes as
well?




|
BIOS Lock Enable (BLE) — R/WLO.

{ 0 = Setting the BIOSWE will not cause SMIs.

1 = Enables setting the BIOSWE bit to cause SMIs. Once set, this bit can only be
cleared by a PLTRST#

Flash Configuration Lock-Down (FLOCKDN) — R/W/L. When set to 1, those Flash
is Program Registers that are locked down by this FLOCKDN bit cannot be written. Once

set to 1, this bit cah only be cleared by a hardware reset due to a global reset or host
partition reset in an Intel® ME enabled system.

A reset in which the host platform is reset and PLTRST# is asserted is called a Host
Reset or Host Partition Reset. Depending on the trigger, a host reset may also result in

* The bits that lock down SMM and the
firmware are cleared during a reset

* “sleep”/"suspend” are typically implemented
as an ACPI S3 sleep, which results in these
lockdown bits being cleared

* S3 sleep =dark jedi coma
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Figure 2-2. Role of Boot Script Usage in S3 Resume Boot Path

* During boot, the “platform configuration” is saved to a “boot script” so
that s3 resume can happen more efficiently

* Included in the boot script are the contents of registers involved in
locking down the platform

— Such as TSEG and BIOS_CNTL

http://www.intel.com/content/dam/doc/guide/efi-boot-script-specification-v091.pdf
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Figure 2-2. Role of Boot Script Usage in S3 Resume Boot Path
e Contents of the boot script were stored in ACPI NVS

(unprotected) RAM on the consumer systems we looked at
* Attacker with access to physical memory could manipulate

boot script contents

http://www.intel.com/content/dam/doc/guide/efi-boot-script-specification-v091.pdf



Boot Script

 From [12] “During a normal boot, DXE drivers record the platform’s
configuration in the boot script, which is saved in NVS. During the
S3 resume boot path, a boot script engine executes the script,
thereby restoring the configuration.”

 “The chipset configuration can be viewed as a series of memory,
/0, and PCI configuration operations, which DXE drivers record in
the Framework boot script. During an S3 resume, a boot script
engine executes the boot script to restore the chipset settings.”

#define EFI_BOOT SCRIPT IO WRITE OPCODE 0x00
#define EFI_BOOT SCRIPT IO READ WRITE OPCODE 0x01
#define EFI_BOOT SCRIPT MEM WRITE OPCODE 0x02
#define EFI_BOOT SCRIPT MEM READ WRITE_ OPCODE 0x03
#define EFI_BOOT SCRIPT PCI_CONFIG WRITE OPCODE 0x04
#define EFI_BOOT SCRIPT PCI_CONFIG READ WRITE OPCODE 0x05
#define EFI_BOOT SCRIPT SMBUS EXECUTE OPCODE 0x06
#define EFI_BOOT SCRIPT STALL OPCODE 0x07

===} #define EFI_BOOT_SCRIPT DISPATCH OPCODE 0x08



EFI_BOOT_SCRIPT_DISPATCH_OPCODE

Summary
Adds a record for dispatching specified arbitrary code into a specified boot script table.

Prototype

typedef
EFI_STATUS
(EFIAPI *EFI_BOOT_SCRIPT WRITE) (
IN struct EFI BOOT SCRIPT SAVE PROTOCOL *This,

IN UINT1e6 TableName,
IN UINTI16 OpCode,
IN EFI_PHYSICAL ADDRESS EntryPoint
)

EntryPoint

Entry point of the code to be dispatched. Type EFI_PHYSICAL ADDRESS is
defined in AllocatePages () in the EFI 1.10 Specification.

Description

This function adds a dispatch record into a specified boot script table, with which it can run the
arbitrary code that is specified. This script can be used to initialize the processor. When the script is
executed, the script incurs jumping to the entry point to execute the arbitrary code. After the
execution is returned, it goes on executing the next opcode in the table. If the codes to be
dispatched have dependencies on other PPIs or codes, the caller should guarantee that all
dependencies are sufficient before dispatching the codes.



Okaaaayyy...arbitrary code eh?

* |t means that if we can achieve any of the below

then we can force S3 suspend/resume cycle and
run arbitrary code in the context of the Boot

Script interpreter
— Alter the content of the Boot Script (insert a custom
dispatch opcode)
— Alter the target of any of existing EFI BOOT SCRIPT
DISPATCH OPCODE
— Alter the data structures used by firmware to locate
the Boot Script



Exploitation Visualized 1/2

ACPI NVS

GetFirmwareEnvironmentVariable ———4 “AcpiGlobalVariable” structure

T +0x18: Boot Script Pointer
Kernel Driver ‘ g Original Boot Script

* Pointer to the boot script can be discovered by
reading the contents of the “AcpiGlobalVariable”
UEFI non-volatile variable.

— Contents of “AcpiGlobalVariable” point to a structure
— At +0x18 is a pointer to the boot script



Exploitation Visualized 2/2

ACPI NV5
GetFirmware EnvironmentVariable ————j “AcpiGlobalVariable” structure
T = +0x18: Boot Script Pointer
Kernel Driver Original Boot Script

Evil Dispatch Code
Copied Boot Script
é‘%\ Shellcode

. Attacker makes a copy of original boot script

. Attacker inserts an evil dispatch at the top of the
copied boot script

. Attacker overwrites AcpiGlobalVariable boot script
pointer with a pointer to his evil boot script
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Figure 12 S3 Resume Boot Path with BootScript in LockBox

* All of the available systems we evaluated stored boot script
in unprotected ACPI NVS

 However, EDK2[5] protects the contents of the boot script
with a “lockbox” which is protected in SMRAM

Picture from [11]



Hardened Boot Script Exploitation

SMRAM
_ — Protected RAM
Boot Script
-
Dispatch
ACPI NVS
: : Unprotected RAM
Dispatched Function }

Inline Hook

&Shellmde K—"

 The only system we identified that used the SMM lockbox to
protect the boot script was a UEFI development motherboard[6]

* |tsimplementation was vulnerable because it dispatched
functions in unprotected ACPI NVS

e An attacker could hook these functions to gain arbitrary code
execution in the context of the boot script




Boot Script Execution Context

e Platform is largely “unlocked” at this point

 BIOS_CNTL unlocked so BWE can be freely
enabled

— This means we don’t necessarily have to break into
SMM to attack the firmware

— But it would still be fun!
* Regarding SMM:
— SMRRs are set, so ho CPU read/write access to
SMRAM

— TSEG is unlocked however

* So we can disable TSEG by locking it to a value that doesn’t
actually protect SMRAM



SMM Protection

Device

TSEG

CPU

SMM

SMRR

e SMM is protected from non-SMM CPU access by SMM
Range Registers (SMRR)

— SMRRs are enabled in boot script context

e SMM is protected from DMA by TSEG
— TSEG is unlocked in boot script context!



SMM Protection Disabled

_— Device
Do DMA
CPU I SMM L
SMRR

 We were able to disable TSEG by locking it to a value
above SMRAM (FFO00000)

 DMA code is very device specific, so we wait until
context has returned to the OS and then use a hard

disk driver to initiate the DMA transaction on our
behalf[7]



Venamis Summary

Assigned CERT VU #976132

All of the UEFI systems we surveyed
were vulnerable

Allows a kernel level attacker to:
— Bypass BIOS_CNTL flash protections
— Escalate to SMM

Relatively easy to exploit, just requires
some reversing of the boot script
format




Co-discovery

 CERT VU #976132 was co-reported by
the Intel Advanced Threat Research
Team!

— Yuriy Bulygin, Mikhail Gorobets, Andrew
Furtak, Oleksander Bazhaniuk, Alexander
Matrosov



Where we’re at

Protected Range Mask

BIOS_CNTL

* One last hurdle remains:
— Protected Range register masks



Protected Range Masks

SPI Flash

\

R Write Protection

SMM

Unmasked

R Write Protection /

* Protected Range registers allow you to define
regions on the flash that are non-writable

e Even SMM is unable to make writes to these
regions



Flash Protections and UEFI

SPI Flash
d \
PR Write Protection — UEFI Code
_ Non-Volatile
SMM Writeable — Variables
g /

 The UEFI Code region may (or may not) be write
protected by PR masks

e Region of the flash where UEFI Non-Volatile Variables
are stored must be left writable at runtime, because
the variables may be updated by the operating system



Flash Protections and UEFI

SPI Flash
é \
PR Write Protection — UEFI Code
_ Non-Volatile o\ \, v
SMM Writeable — Variables | v
N~

* Can we find something in the Non-Volatile
Variable region that will allow us to corrupt
the rest of the firmware?



ldea #1

SPI Flash
UEFI Code
Non-Volatile
Variables
2|

* Force a memory corruption vulnerability in the
UEFI code by corrupting the contents of the Non-

Volatile variable region

* If this vulnerability occurs before PR masks are
set during boot, we win




Status = FindVariable (
AUTHVAR_KEYDB_NAME,
ZgEfiAuthenticatedVariableGuid,
ZVariable,
ZmVariableModuleGlobal->VariableGlobal,
FALSE
);

if (Variable.CurrPtr == NULL) {

} else {

//

// Load database in global wariable for cache.

//

DataSize = DataSizeOfVariable (Variable.CurrPtr);
Data = GetVariableDataPtr (Variable.CurrPtr);

ASSERT ((DataSize != 0) && (Data !'= NULL));

CopyMem (mPubKeyStore, (UINT8 *) Data, DataSize); -

 Normally we can’t control DataSize because it’s part of
an authenticated variable

« SMM is able to arbitrarily modify this data however

AutenticatedVariableServicelnitialize() in UDK2014/SecurityPkg/VariableAuthenticated/RuntimeDxe/AuthService.c [8]



Variable = (VARIABLE_HEADER #*) (VariableStoreHeader + 1);

ValidBufferSize = sizeof (VARIABLE_STORE_HEADER) ;
while (IsValidVariableHeader (Variable)) {

NextVariable = GetNextVariablePtr (Variable); -

if (Variable->State == VAR_ADDED) {
VariableSize = (UINTN) NextVariable - (UINTN) Variable;

EfiCopyMem (CurrPtr, (UINT8 %) Variable, VariableSize); -
ValidBufferSize += VariableSize;
CurrPtr += VariableSize;

e An SMM attacker can control the metadata
associated with the variables, and hence control
what is returned by GetNextVariablePtr

* This can lead to buffer overflow during the
EfiCopyMem

Reclaim() in EDK/Sample/Universal/Variable/RuntimeDxe/FS/FSVariable.c [9]



* Vulnerabilities assigned CERT VU#533140

* May allow bypassing of PR masks if they can be
triggered early in the boot up process
— Implementation dependent

* But wait! You said we wouldn’t have to do

complicated, difficult to reproduce, memory
corruption vulnerabilities to hack our BIOS’s!



There is no
Protected
Range!

* Upon further investigating the UEFI code[8], it was
determined that authenticated variable contents are
used to verify incoming firmware updates

— So SMM can reflash the firmware by leveraging the normal
firmware update path

* Private discussions with a UEFI developer confirmed
that this is the case, and that SMM is in the trusted
code base for UEFI in general

— A new hardware feature[10] will address this in the future



BIOS_CNTL

It turns out that many systems do not even make use of PR

masks[2]

Of all the system’s we surveyed, only HP made use of PR masks

— And they had incomplete coverage over the code region of the flash
chip

So on most UEFI systems, if you can get into SMM, UEFI will also

fall



Summary

* An important component of firmware flash protections
on Intel chipsets is subject to a race condition

— Patched on newer systems, but only if the OEM makes use
of a new feature, which many don’t

— Consequence is DoS or a malicious reflash of the firmware
— Easily exploited with 2 kernel drivers

 The UEFI boot script can be maliciously modified to
break into SMM

— Every UEFI system we surveyed was vulnerable

— Easy to exploit with a kernel driver and some reverse
engineering of the boot script format

* An attacker who escalates to SMM can likely reflash
your firmware

— A new hardware feature will help address this in the
future[10]
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