
© 2014 The MITRE Corporation. All rights reserved.
Approved for Public Release,14-3464

X e n o K o v a h
J o h n B u t t e r w o r t h
C o r e y K a l l e n b e r g
S a m C o r n w e l l

Analyzing UEFI BIOS
from Attacker & Defender
Viewpoints

@ x e n o k o v a h
@ j w b u t t e r w o r t h 3
@ c o r e y k a l
@ s s c 0 r n w e l l

| 2 |

Introduction

§ Who we are:
–  Trusted Computing and firmware security researchers at The

MITRE Corporation

§ What MITRE is:
–  A not-for-profit company that runs seven US Government "Federally

Funded Research & Development Centers" (FFRDCs) dedicated to
working in the public interest

–  Technical lead for a number of standards and structured data
exchange formats such as CVE, CWE, OVAL, CAPEC, STIX,
TAXII, etc

–  The first .org, !(.mil | .gov | .com | .edu | .net), on the ARPANET

© 2014 The MITRE Corporation. All rights reserved.

| 3 |

Introduction 2

§ In the talks we've been giving for the last year, we've
repeatedly referred to the new UEFI (Unified
Extensible Firmware Interface) as a double-edged
sword. I.e. there are things about it that help
attackers, and things that help defenders.

§ This talk is a more thorough examination of that
assertion

§ It's also to give you more context for if a tool like
MITRE Copernicus or Intel Chipsec tells you there is a
problem with your BIOS

§ To be clear, we do not work in the area of attacking
BIOSes

© 2014 The MITRE Corporation. All rights reserved.

| 4 |

BIOS is dead, long live UEFI!

§  Not quite
§ We'll never be rid of certain elements of legacy BIOS on x86
§  The initial code will always be hand-coded assembly (or at least C

with lots of inline asm), because C doesn't have semantics for
setting architecture-dependent registers.

§  On all modern systems Intel makes extensive use of PCI internal to
their own CPUs, therefore early in system configuration there will
always be plenty of port IO access to PCI configuration space,
where you're going to be at a loss for what is happening to what,
until you do extensive looking up of things in manuals
–  Add to that plenty of port IO to devices where you have no idea what's

being talked to, since there's no documentation
§  The bad old days live on, and you still have to learn them…
§  But there's a whole lot more new interesting and juicy bits added in

to the system to be explored

© 2014 The MITRE Corporation. All rights reserved.

| 5 |

BIOS/UEFI Commonalities

§ BIOS and UEFI share 2 common traits:
1.  CPU entry vector on the SPI flash chip is the same
2.  They sufficiently configure the system so that it can support

the loading & execution of an Operating System
–  They go about it in different ways
–  call it different names: POST/BIOS vs. Platform Initialization
–  This should include properly locking down the platform for security
–  Where software meets bare metal the machine instructions are the same

(i.e.: PCI configuration, MTRRs, etc…)

§ UEFI, however, is a publically documented, massive framework
§ Has an open-source reference implementation called the EDK2
§  The UDK (UEFI Development Kit) is analogous to a “stable

branch” of the “cutting edge” EDK2 (EFI Development Kit)

| 6 |

§ UEFI = Unified Extensible Firmware Interface
§ As the name implies, it provides a software interface

between an Operating System and the platform firmware
§ The “U” in UEFI is when many other industry

representatives became involved to extend the original EFI
–  Companies like AMD, American Megatrends, Apple, Dell, HP, IBM, Insyde,

Intel, Lenovo, Microsoft, and Phoenix Technologies

§ Originally based on Intel’s EFI Specification (1.10)
§ Does provide support for some legacy components via the

Compatibility Support Module (CSM)
–  Helps vendors bridge the transition from legacy BIOS to UEFI

§  It’s much larger than a legacy BIOS
–  (And the attackers rejoiced!)

About UEFI

| 7 |

Something you may want to read

§ If you don't want to just dive into the
thousands of pages of UEFI
specifications, a good overview is
also given in
Beyond BIOS: Developing with the
Unified Extensible Firmware Interface
2nd Edition by Zimmer et al.

§ Otherwise go enjoy the specs here:
http://www.uefi.org/specifications

7

| 8 |

UEFI Differences: Boot Phases

§ 7 Phases total
§ Phases are defined in the UEFI specification

| 9 |

Bottom up

§  Let's start with the hardware, rather than the software
architecture

© 2014 The MITRE Corporation. All rights reserved.

| 10 |

Legacy BIOS Firmware Storage

§ While there was some semblance of structure and sanity
to the contents stored on the chip, it was in some vendor-
specific format, which people had to reverse engineer

§ To save space, it's probably structured like a "packed" file,
with some small decompressor stub which expands
compressed modules into memory before executing them

BIOS "stuff"

proprietary
vendor-specific

format

SPI Flash

or

Intel Firmware Hub (on older (meaning like 2007) systems)

| 11 |

UEFI Firmware Storage

§ UEFI utilizes the physical flash device as a storage
repository, with 5 currently defined regions (with space for
more), each with differing purposes and access controls

§ The contents of the "BIOS region" is what we're most
interested in

SPI Flash

UEFI/BIOS

Flash Descriptor

Gigabit Ethernet

Platform Data

Management Engine

Firmware Device refers to the flash chip

| 12 |

Firmware Volumes (FVs)

§ A Firmware Device is a physical component such as a flash
chip. But we mostly care about Firmware Volumes(FVs)

§  FVs are logical firmware devices that can contain multiple
firmware volumes (nesting)
–  We often see separate volumes for PEI vs. DXE code

§  FVs are organized into a Firmware File System (FFS)
§  The base unit of a FFS is a file

SPI Flash

UEFI/BIOS

Flash Descriptor

Gigabit Ethernet

Platform Data

Management Engine

Firmware Volume(s)
FV does not
have to align
with the start
of the BIOS
region as

configured in
the Flash
Descriptor

FV0

FV1

| 13 |

Firmware File System (FFS)

§ FVs are organized into a Firmware File System (FFS)
§ A FFS describes the organization of files within the FV
§ The base unit of a FFS is a file
§ Files can be further subdivided into sections

FV1

FV0

FFS

| 14 |

Firmware Files

§ PE (Portable Executable) file format
–  Alternatively can be a TE (Terse Executable) which is a “minimalist” PE

Oh, how interesting! My BIOS uses "Windows" executables? I know how to analyze those! Oh, how interesting! My BIOS uses "Windows" executables? I know how to analyze those!

| 15 |

Options for Parsing FFS

§ EFIPWN
– was the first one, so it's what we started from, but it's not actively

maintained, and it's known to not handle some vendor-specific
foibles, so we're moving away from it

–  https://github.com/G33KatWork/EFIPWN
§ UEFITool

–  A nice GUI way to quickly walk through the information, with a
UEFIExtract command line version for extracting all the files

–  https://github.com/LongSoft/UEFITool
§ UEFI Firmware Parser

–  Ted Reed is very responsive when files are found that can't be
parsed with this. We're probably moving to using it in the future

–  https://github.com/theopolis/uefi-firmware-parser

16	

Naviga)on	
 by	
 expanding	

por)ons	
 here	

Parsed	
 metadata	
 here	

Here	
 it's	
 interpre)ng	
 the	

Flash	
 Descriptor	
 and	

telling	
 us	
 which	
 regions	

the	
 BIOS	
 can	
 access	

We'll	
 come	
 back	
 to	
 this	
 later	
 aFer	
 we	
 learn	
 more	

| 17 |

A standard way of putting together
the firmware filesystem, with nice
human readable names, makes it

easier for me to find my way
around to the likely locations I

want to attack

A standard way of putting together
the firmware filesystem, with nice
human readable names, makes it
easier for me to understand the
context of what might have been

attacked if I see a difference there

Yay Standardization!

| 18 |

Security (SEC) Phase

§  The SEC phase is the first phase in the PI architecture
§  Contains the first code that is executed by the CPU
§  Environment is basically that of legacy:

–  Small/minimal code typically hand-coded assembly so architecturally dependent
and not portable

–  Executes directly from flash
–  Will be uncompressed code

Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13

| 19 |

SEC Responsibilities 1 of 2

§ Name is a misnomer, as most security-critical things happen later
(though of course if the system is compromised this early, the
attacker definitely wins)

§  This is where architecturally the core (read-only) security-critical
code should go, but doesn't…

§  The SEC phase handles all platform reset events
–  All system resets start here (power on, wakeup from sleep, etc)

System boot will
follow a different
path based on

what power state
its in on startup!

Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13

ACPI Global Power States, ACPI 5.0 Spec

| 20 |

Quick ACPI Note: Sleep Modes

•  This isn’t a discussion of ACPI (big topic1), but it’s important to
note that alternate boot paths as determined by sleep mode
could make the BIOS vulnerable

•  A system that awakes from Sleep mode will follow a different
path to boot

•  This different code path may not lock down the system the same
way as when the system boots from power down (or vice versa)

•  i.e. your BIOS may be locked down when powered on from
shutdown, but not when waking up from sleep

–  Found on real Dell systems. Patched. (And you all run out and apply the latest patches
whenever they're released, right?) To be talked about at some point in the future.

1http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf

| 21 |

SEC Responsibilities 2 of 2

§  Implements a temporary memory store by configuring the
CPU Cache as RAM (CAR)
–  Also called “no evictions mode”

§ Memory has not yet been configured, so all read/writes
must be confined to CPU cache

§ A stack is implemented in CAR to pave the way for a C
execution environment

§ The processor active at boot time (Boot Strap Processor)
is the one whose cache is used

§  If you are interested in CAR, more info can be found here:
–  http://www.coreboot.org/images/6/6c/LBCar.pdf

| 22 | SEC Phase
§ Upon entry the environment is

the same as on a legacy
platform
–  Hardware settings, not BIOS settings

§ Processor is in Real Mode
§ Segment registers are the same

–  CS:IP = F000:FFF0
–  CS.BASE = FFFF_0000h

§ Entry vector is still a JMP
§ Note that microcode update is

here, which could potentially
mitigate exploitable microcode
errata, by getting it patched
early…assuming it is the kind of
errata which gets a patch and
assuming you have the latest
BIOS w/ the latest microcode…

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

| 23 |

SEC Hand-off to PEI Entry Point

§ Passing handoff information to the PEI phase (to PeiCore):
§ SEC Core Data

–  Points to a data structure containing information about the operating
environment:

–  Location and size of the temporary RAM
–  Location of the stack (in temp RAM)
–  Location of the Boot Firmware Volume (BFV)

§  Located in flash file system by its GUID
§  GUID: 8C8CE578-8A3D-4F1C-3599-35896185C32DD3
§  If not found, system halts

§ PPI List (defined in the upcoming PEI section)
–  A list of PPI descriptors to be installed initially by the PEI Core

§ A void pointer for vendor-specific data (if any)
§ Execution never returns to SEC until the next system reset

Specified in Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13
but the names are derived from the EDK2/UDK

| 24 |

PEI (Pre-EFI) Phase

§  The PEI phase primary responsibilities:
–  Initialize permanent memory
–  Describe the memory to DXE in Hand-off-Blocks (HOBs)
–  Describe the firmware volume locations in HOBs
–  Pass control to DXE phase
–  Discover boot mode and, if applicable, resume from Sleep state

§  Code path will differ based on waking power state (S3, etc.)
§  Power states: http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf

| 25 |

Components of PEI

§ Pre-EFI Initialization Modules (PEIMs)
–  A modular unit of code and/or data stored in a FFS file
–  Discover memory, Firmware Volumes, build the HOB, etc.
–  Can be dependent on PPIs having already been installed

§  Dependencies are inspected by the PEI Dispatcher

§ PEIM-to-PEIM Interface (PPI)
–  Permit communication between PEIMs

§  So PEIMs can work with other PEIMs to achieve tasks and to enable code reuse
–  Contained in a structure EFI_PEI_PPI_DESCRIPTOR containing a GUID

and a pointer
–  There are Architectural PPIs and Additional PPIs
–  Architectural PPIs: those which are known to the PEI Foundation (like that

which provides the communication interface to the ReportStatusCode()
PEI Service)

–  Additional PPIs: those which are not depended upon by the PEI
Foundation.

Platform Initialization Spec Vol. 1, Version 1.3, Section 2.4

| 26 |

Components of PEI

§ PEI Dispatcher
–  Evaluates the dependency expressions in PEIMs and, if they are met,

installs them (and executes them)

§ Dependency Expression(DEPEX)
–  Basically GUIDs of PPIs that must have already been dispatched before a

PEIM is permitted to load/execute

§ Firmware Volumes
– Storage for the PEIMs, usually not compressed in this phase

(but will be by DXE)
§ PEI Services

–  Available for use to all PEIMs and PPIs as well as the PEI foundation itself
–  Wide variety of services provided (InstallPpi(), LocateFv(), etc.)

| 27 |

As the tables turn… PEI Services Table

typedef struct _EFI_PEI_SERVICES {!

 EFI_TABLE_HEADER Hdr;!

 EFI_PEI_INSTALL_PPI InstallPpi;!

 EFI_PEI_REINSTALL_PPI ReInstallPpi;!

 EFI_PEI_LOCATE_PPI LocatePpi;!

 EFI_PEI_NOTIFY_PPI NotifyPpi;!

 EFI_PEI_GET_BOOT_MODE GetBootMode;!

 EFI_PEI_SET_BOOT_MODE SetBootMode;!

 EFI_PEI_GET_HOB_LIST GetHobList;!

 EFI_PEI_CREATE_HOB CreateHob;!

 EFI_PEI_FFS_FIND_NEXT_VOLUME FfsFindNextVolume;!

 EFI_PEI_FFS_FIND_NEXT_FILE FfsFindNextFile;!

 EFI_PEI_FFS_FIND_SECTION_DATA FfsFindSectionData;!

 EFI_PEI_INSTALL_PEI_MEMORY InstallPeiMemory;!

 EFI_PEI_ALLOCATE_PAGES AllocatePages;!

 EFI_PEI_ALLOCATE_POOL AllocatePool;!

 EFI_PEI_COPY_MEM CopyMem;!

 EFI_PEI_SET_MEM SetMem;!

 EFI_PEI_REPORT_STATUS_CODE ReportStatusCode;!

 EFI_PEI_RESET_SYSTEM ResetSystem;!

 EFI_PEI_CPU_IO_PPI CpuIo;!

 EFI_PEI_PCI_CFG_PPI PciCfg;!

} EFI_PEI_SERVICES;!

© 2014 The MITRE Corporation. All rights reserved.

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_PEI_SERVICES

| 28 |

PEI Phase

§  This is a basic diagram of the
PEI operations performed by
the PEI Foundation

§  The PEI foundation builds the
PEI Services table

§  The core of it centers around
the PEI Dispatcher which
locates and executes PEIMs
–  Initializing permanent memory, etc.

§  The last PEIM to be
dispatched will be the DXE IPL
(Initial Program Load) PEIM,
which will perform the
transition to the DXE phase

Platform Initialization Spec Vol. 1, Version 1.3, Section 2.4

PEI
Dispatcher

Invokes
PEIMs

| 29 |

PEI Dispatcher

§  The PEI Dispatcher is basically a state machine and central to
the PEI phase

§ Evaluates each dependency expressions (list of PPIs) of PEIMs
which are evaluated

§  If the DEPEX evaluates to True, the PEIM is invoked, otherwise
the Dispatcher moves on to evaluate the next PEIM

§ One PPI is EFI_FIND_FV_PPI so every PEIM on every Firmware
Volume can be invoked

§ Once all PEIMs that can execute have been, the last PEIM
executed is the DXE IPL PEIM which hands off to DXE phase

PEIM A X Y

PEIM B Y

UEFI will prevent both PEIMs A and B in
this endless cycle from executing.
X and Y are PPIs X

| 30 |

Exit conditions for handoff to DXE

§ The HOB List must contain the following HOBs:

| 31 |

Driver Execution Environment (DXE)

§  The DXE phase is designed to be executed at a high-enough
level where it is independent from architectural requirements

§ Similar to PEI from a high-level PoV: creates services used only
by DXE, has a dispatcher that finds and loads DXE drivers, etc.

§ System Management Mode set up, Secure Boot enforcement
and BIOS update signature checks are typically implemented in
this phase. Therefore it is the most security-critical.

| 32 |

PEI is to DXE as…

§ PEIMs are to DXE Drivers
§ PEI Dispatcher is to DXE Dispatcher

– DXE uses an almost identical system as PEI to load and invoke
individual units of functionality, as required by the DEPEXs

§ PPI is to Protocol
– DXE drivers register and lookup "protocols"

§ Sec Core Data are to HOBs
–  PEI gets Sec Core Data from SEC, DXE gets HOBs from PEI

© 2014 The MITRE Corporation. All rights reserved.

| 33 |

DXE Phase

§ Use this for mental
visualization, but

§ s/PEI/DXE/g
§ s/PEIM/DXE Driver/g
§ s/DXE IPL/BDS IPL/g

Platform Initialization Spec Vol. 1, Version 1.3, Section 2.4

PEI
Dispatcher

Invokes
PEIMs

| 34 |

As the tables turn… DXE Services Table

typedef struct {!
 EFI_TABLE_HEADER Hdr;!

 EFI_ADD_MEMORY_SPACE AddMemorySpace;!
 EFI_ALLOCATE_MEMORY_SPACE AllocateMemorySpace;!

 EFI_FREE_MEMORY_SPACE FreeMemorySpace;!
 EFI_REMOVE_MEMORY_SPACE RemoveMemorySpace;!

 EFI_GET_MEMORY_SPACE_DESCRIPTOR GetMemorySpaceDescriptor;!
 EFI_SET_MEMORY_SPACE_ATTRIBUTES SetMemorySpaceAttributes;!

 EFI_GET_MEMORY_SPACE_MAP GetMemorySpaceMap;!

 EFI_ADD_IO_SPACE AddIoSpace;!
 EFI_ALLOCATE_IO_SPACE AllocateIoSpace;!

 EFI_FREE_IO_SPACE FreeIoSpace;!
 EFI_REMOVE_IO_SPACE RemoveIoSpace;!

 EFI_GET_IO_SPACE_DESCRIPTOR GetIoSpaceDescriptor;!
 EFI_GET_IO_SPACE_MAP GetIoSpaceMap;!

 EFI_DISPATCH Dispatch;!
 EFI_SCHEDULE Schedule;!

 EFI_TRUST Trust;!

 EFI_PROCESS_FIRMWARE_VOLUME ProcessFirmwareVolume;!
} EFI_DXE_SERVICES;!

© 2014 The MITRE Corporation. All rights reserved.

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_DXE_SERVICES

| 35 |

As the tables turn… Boot Services Table 1

typedef struct {!
 EFI_TABLE_HEADER Hdr;!

 EFI_RAISE_TPL RaiseTPL;!
 EFI_RESTORE_TPL RestoreTPL; !

 EFI_ALLOCATE_PAGES AllocatePages; !
 EFI_FREE_PAGES FreePages; !

 EFI_GET_MEMORY_MAP GetMemoryMap; !
 EFI_ALLOCATE_POOL AllocatePool; !

 EFI_FREE_POOL FreePool; !

 EFI_CREATE_EVENT CreateEvent; !
 EFI_SET_TIMER SetTimer; !

 EFI_WAIT_FOR_EVENT WaitForEvent; !
 EFI_SIGNAL_EVENT SignalEvent; !

 EFI_CLOSE_EVENT CloseEvent; !
 EFI_CHECK_EVENT CheckEvent; !

 EFI_INSTALL_PROTOCOL_INTERFACE InstallProtocolInterface; !
 EFI_REINSTALL_PROTOCOL_INTERFACE ReinstallProtocolInterface; !

 EFI_UNINSTALL_PROTOCOL_INTERFACE UninstallProtocolInterface; !

 EFI_HANDLE_PROTOCOL HandleProtocol; !
 VOID* Reserved; !

© 2014 The MITRE Corporation. All rights reserved.

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES

| 36 |

As the tables turn… Boot Services Table 2

 EFI_REGISTER_PROTOCOL_NOTIFY RegisterProtocolNotify; !

 EFI_LOCATE_HANDLE LocateHandle; !

 EFI_LOCATE_DEVICE_PATH LocateDevicePath; !

 EFI_INSTALL_CONFIGURATION_TABLE InstallConfigurationTable; !

 EFI_IMAGE_LOAD LoadImage; !

 EFI_IMAGE_START StartImage; !

 EFI_EXIT Exit; !

 EFI_IMAGE_UNLOAD UnloadImage; !

 EFI_EXIT_BOOT_SERVICES ExitBootServices; !

 EFI_GET_NEXT_MONOTONIC_COUNT GetNextMonotonicCount; !

 EFI_STALL Stall; !

 EFI_SET_WATCHDOG_TIMER SetWatchdogTimer; !

 EFI_CONNECT_CONTROLLER ConnectController; !

 EFI_DISCONNECT_CONTROLLER DisconnectController;!

 EFI_OPEN_PROTOCOL OpenProtocol; !

 EFI_CLOSE_PROTOCOL CloseProtocol; !

© 2014 The MITRE Corporation. All rights reserved.

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES

| 37 |

As the tables turn… Boot Services Table 3

 EFI_OPEN_PROTOCOL_INFORMATION OpenProtocolInformation; !

 EFI_PROTOCOLS_PER_HANDLE ProtocolsPerHandle; !

 EFI_LOCATE_HANDLE_BUFFER LocateHandleBuffer; !

 EFI_LOCATE_PROTOCOL LocateProtocol; !

 EFI_INSTALL_MULTIPLE_PROTOCOL_INTERFACES InstallMultipleProtocolInterfaces; !

 EFI_UNINSTALL_MULTIPLE_PROTOCOL_INTERFACES UninstallMultipleProtocolInterfaces; !

 EFI_CALCULATE_CRC32 CalculateCrc32; !

 EFI_COPY_MEM CopyMem; !

 EFI_SET_MEM SetMem;!

 EFI_CREATE_EVENT_EX CreateEventEx;!

} EFI_BOOT_SERVICES;!

© 2014 The MITRE Corporation. All rights reserved.

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES

| 38 |

As the tables turn… Runtime Services Table

typedef struct {!

 EFI_TABLE_HEADER Hdr;!

 EFI_GET_TIME GetTime;!

 EFI_SET_TIME SetTime;!

 EFI_GET_WAKEUP_TIME GetWakeupTime;!

 EFI_SET_WAKEUP_TIME SetWakeupTime;!

 EFI_SET_VIRTUAL_ADDRESS_MAP SetVirtualAddressMap;!

 EFI_CONVERT_POINTER ConvertPointer;!

 EFI_GET_VARIABLE GetVariable;!

 EFI_GET_NEXT_VARIABLE_NAME GetNextVariableName;!

 EFI_SET_VARIABLE SetVariable;!

 EFI_GET_NEXT_HIGH_MONO_COUNT GetNextHighMonotonicCount;!

 EFI_RESET_SYSTEM ResetSystem;!

 EFI_UPDATE_CAPSULE UpdateCapsule;!

 EFI_QUERY_CAPSULE_CAPABILITIES QueryCapsuleCapabilities;!

 EFI_QUERY_VARIABLE_INFO QueryVariableInfo;!

} EFI_RUNTIME_SERVICES;!

© 2014 The MITRE Corporation. All rights reserved.

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_RUNTIME_SERVICES

Used for our ring 3 BIOS exploit -
BH USA 2014, by Kallenberg et al.
[31] CERT VU # 552286
SetVariable also used for CERT VU
#758382. Co-discovered with Intel,
and first described at CSW 2014

| 39 |

Relative magnitude of PEIMs vs. DXE drivers

§  (3/2011) Lenovo X220: 65 PEIMs, 278 DXE drivers
§  (1/2014) Lenovo X240: 80 PEIMs, 352 DXE drivers
§  (3/2010) HP Elitebook 2540p: 42 PEIMs, 164 DXE drivers
§  (1/2014) HP Elitebook 850 G1: 117 PEIMs, 392 DXE drivers
§  (11/2010) Dell Latitude E6410: 32 PEIMs, 315 DXE drivers
§  (2/2014) Dell Latitude E6440: 63 PEIMs, 456 DXE drivers
§ DXE has got it going on!
§  Increase in code & complexity over time? Sounds like we're on

the highway to hell, not a stairway to heaven…

© 2014 The MITRE Corporation. All rights reserved.

Machine release dates are not definitive, just based on first page of Google previews

| 40 |

UEFI Non-Volatile Variables

§  The (much more extensible and (eventually) secure)
replacement for "CMOS" / "NVRAM" as a BIOS configuration
mechanism

§ Stored on the SPI flash chip along with the rest of the BIOS code
§ Growing pains: there've been at least two examples (Samsung &

Lenovo) of systems that were implemented incorrectly and once
the variable space was filled up (e.g. accidentally by an OS
logging mechanism), the system was bricked

§ Are be accessed in PEI (the CapsuleUpdate variable of
VU#552286 fame certainly was), but overall, variables are more
likely to be accessed in DXE and later phases (up to and
including runtime)

© 2014 The MITRE Corporation. All rights reserved.

Samsung - http://mjg59.dreamwidth.org/22028.html
Lenovo - https://bugzilla.redhat.com/show_bug.cgi?id=919485

| 41 |

EFI Variable Attributes

§ Each UEFI variable has attributes that determine how
the firmware stores and maintains the data:

§ ‘Non_Volatile’
–  The variable is stored on flash

§  ‘Bootservice_Access’
–  Can be accessed/modified during boot. Must be set in order for

Runtime_Access to also be set

* UEFI 2.3.1 Errata C Final

| 42 |

EFI Variable Attributes

§ ‘Runtime_Access’
–  The variable can be accessed/modified by the Operating System or

an application

§ ‘Hardware_Error_Record’
–  Variable is stored in a portion of NVRAM (flash) reserved for error

records

§ ‘Authenticated_Write_Access’
–  The variable can be modified only by an application that has been

signed with an authorized private key (or by present user)
–  KEK and DB are examples of Authorized variables

§ ‘Time_Based_Authenticated_Write_Access’
–  Variable is signed with a time-stamp

§ ‘Append_Write’
–  Variable may be appended with data

| 43 |

EFI Variable Attributes Combinations

§ If a variable is marked as both Runtime and
Authenticated, the variable can be modified only by an
application that has been signed with an authorized
key

§ If a variable is marked as Runtime but not as
Authenticated, the variable can be modified by any
application
– The Setup variable (of VU#758382 fame) is marked like this

| 44 |

"Authenticate how?"
Keys and Key Stores
§  UEFI implements 4 variables which store keys, signatures, and/or

hashes:
§  Platform Key (PK)

–  "The platform key establishes a trust relationship between the platform owner and the
platform firmware." - spec

–  Controls access to itself and the KEK variables
–  Only a physically present user or an application which has been signed with the PK is

supposed to be able to modify this variable
–  Required to implement Secure Boot, otherwise the system is in Setup Mode where keys

can be trivially modified by any application
§  Key Exchange Key (KEK)

–  "Key exchange keys establish a trust relationship between the operating
system and the platform firmware." - spec

–  Used to update the signature database
–  Used to sign .efi binaries so they may execute

§  Signature Database (DB)
–  A whitelist of keys, signatures and/or hashes of binaries

§  Forbidden Database (DBX)
–  A blacklist of keys, signatures, and/or hashes of binaries

UEFI Version 2.3.1, Errata C

| 45 |

UEFI Variables (Keys and Key Stores) 2

§ As stated earlier, these variables are stored on the Flash
file system

§ Thus, if the SPI flash isn’t locked down properly, these
keys/hashes can be overwritten by an attacker

§ The problem is, the UEFI variables must rely solely on
SMM to protect them!

§ The secondary line of defense, the Protected Range
registers cannot be used

§ The UEFI variables must be kept writeable because at
some point the system is going to need to write to them

§ See our "Setup for Failure" [29] talk to see an example of
SMI suppression to write to the DB to whitelist the
"Charizard" PoC bootkit (also check out the video ;) [33])

| 46 |

DXE & SMM, BFF 4EVA!

© 2014 The MITRE Corporation. All rights reserved.

§ DXE loads SMM IPL
§ SMM IPL loads SMM Core
§ SMM Core loads SMM drivers

| 47 |

Boot Device Selection (BDS)

§  The BDS will typically be encapsulated into a single file loaded by the DXE
phase.

§  It consults the configuration information to decide whether you're going to
boot an OS or "something else"

§  It has access to the full UEFI Boot Services Table of services that DXE set
up. E.g. HD filesystem access to find an OS boot loader
–  So that should tell you an attacker in DXE gets that capability too

Runtime
Interface

| 48 |

I give unto thee: an interface!

§ Unlike the transition from SEC -> PEI or PEI ->
DXE, there's no collecting of information to
give to BDS

§ Instead what's given is a pointer to the
system table, which in turn points to the boot
services and DXE services tables, for the BDS
(and next) phase(s) to use as need be.

© 2014 The MITRE Corporation. All rights reserved.

| 49 |

Transient System Load (TSL)

§ This is the point where we hand off from firmware-derived
code, to typically HD-stored code.

§  If the system is running with SecureBoot turned on, the
BDS will have checked the signature before loading code
in this phase, and denies anything un-signed (e.g. super
1337 "Oooh look at me, I made the first UEFI bootkit!!1"
bootkits ;))

Runtime
Interface

| 50 |

© 2014 The MITRE Corporation. All rights reserved.

Pierre Chifflier, UEFI and PCI Bootkits, PacSec 2013 [34]

| 51 |

© 2014 The MITRE Corporation. All rights reserved.

Pierre Chifflier, UEFI and PCI Bootkits, PacSec 2013 [34]

Rootkit Detection Framework for UEFI (RDFU),
Vuksan & Pericin, BH USA 2013 [35]

What if we forced boot to go through a randomized
OS absent security application (that ideally uses
the TPM/TXT to ensure its trustworthiness?)

| 52 |

Run Time (RT)

§ Typically when the OS boot loader is done, it will call
ExitBootServices() in the UEFI Boot Services table. This
will reclaim the majority of UEFI memory so the OS can
use it

§ However some memory is retained, to be used for the
Runtime Services Table talked about a while ago

Runtime
Interface

| 53 |

After Life (AL)

§ We haven't checked extensively, but we don't think anyone
is doing anything with this right now

§ We think it's just something put there so that
architecturally they would have the option to do "stuff"
upon graceful shutdown (e.g. clearing secrets?)

| 54 |

Where does UEFI SecureBoot fit into all this?

§ Verifies whether an executable is permitted to load and execute
during the UEFI BIOS boot process

§ When an executable like a boot loader or Option ROM is
discovered, the UEFI checks if:
–  The executable is signed with an authorized key, or
–  The key, signature, or hash of the executable is stored in the

authorized signature database
§ UEFI components that are flash based (SEC, PEI, DXECore) are

not verified for signature
–  The BIOS flash image has its signature checked during the update

process (firmware signing)
§ Yuriy Bulygin, Andrew Furtak, and Oleksandr Bazhaniuk have

the best slides that describe the Secure Boot process
–  http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-

Bazhniuk_BHUSA2013.pdf (Black Hat USA 2013)

| 55 |

Firmware Signing

§ Flash-based UEFI components are verified only during the
update process when the whole BIOS image has its
signature verified

http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf

If I can get onto the flash
chip, there's no requirement
to check my signature before

I run each time, so I win!!

Only checking the
signature at the time of

update, but not thereafter,
is a necessary

performance tradeoff to
ensure fast boot times

| 56 |

UEFI Secure Boot

§ DXE verifies non-embedded XROMs, DXE drivers, UEFI
applications and boot loader(s)

§ This is the UEFI Secure Boot process
http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf

| 57 |

Windows 8 Secure Boot

§ Microsoft Windows 8 adds to the UEFI secure boot process
§ Establishes a chain of verification
§ UEFI Boot Loader -> OS Loader -> OS Kernel -> OS Drivers

http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf

| 58 |

58

UEFI SecureBoot makes it
easier to keep out low-level
attackers like bootkits, which

are a serious threat that
undercuts OS security…

When I inevitably break
SecureBoot (like I've broken every
other access control mechanism
ever), they won't think to look for

me down there, because they'll be
complacent and think it's already

secured

| 59 |

Demo: Back to the FFS!

§ Now that you know a bit more, let's go back and look a bit more

© 2014 The MITRE Corporation. All rights reserved.

| 60 |

Subzero.io

§  Ted Reed has created a website that allows you to upload BIOS
files, and they will be processed with his UEFI firmware parser
–  Similar to firmware.re, but PC BIOS specific
– Does one thing and does it well

§  Just in time for BH EUR, he also started parsing Copernicus
CSV output with protections.py in order to report whether your
BIOS is vulnerable or not

§  In a business day or two, a new version of Copernicus should be
bundled and posted to the MITRE website which has a script
which will automatically submit your BIOS for analysis at the
site.

§  The site will serve to crowd source what good BIOSes look like,
so that we can report when we see something that doesn't look
like everyone elses

© 2014 The MITRE Corporation. All rights reserved.

| 61 |

© 2014 The MITRE Corporation. All rights reserved.

| 62 |

© 2014 The MITRE Corporation. All rights reserved.

| 63 |

Identifying Changes in BIOS
(bios_diff.py)

§ Copernicus provides us the full dump of the BIOS flash
–  Any BIOS dump should work as long as it’s a UEFI BIOS (structured for better

parsing)
§ Comparing BIOS dumps over time can provide change detection
§  bios_diff.py now out of beta and included with Copernicus

–  "python bios_diff.py –dpan –e <path to EFIPWN> <path to file 1>
<path to file 2> -o <output directory>"

§  This script uses EFIPWN to parse and diff the modules between
two BIOS dumps

§ EFIPWN decomposes the BIOS into its firmware volumes (FVs)
and then decomposes those into the individual files/modules

§  In this example we’re analyzing an earlier “known-good” BIOS
with one which we suspect has changed
–  We took a known good and purposefully made a small change in the “haxed”

one

63

| 64 |

Identifying Changes in BIOS
(bios_diff.py)

§  The script has found a difference located in firmware volume 3
§ Some files/modules have user-friendly names and if this is the

case the script outputs this name:
"AmiTcgPlatformPeiBeforeMem"

§  "Ami" could mean it's derived from an AMI (American
Megatrends Inc.) codebase

§  "Tcg" could be Trusted Computing Group and "BeforeMem"
likely means this PEIM executes before memory is established

64

| 65 |

Making sense of UEFI PE files in IDA Pro

§ You can watch a 15 minute example of super basic analysis here
§  https://www.youtube.com/watch?v=R-5UO6jLkEI

| 66 |

Conclusion

© 2014 The MITRE Corporation. All rights reserved.

| 67 |

Conclusion

§  UEFI brings with it important improvements to boot-time security,
and
–  That's why we already do it with Copernicus, and are looking for

commercial organizations to incorporate equivalent capabilities
–  Google "MITRE Copernicus" to download the binary-only version
–  Contact us with a proposal of what data you will share to get the src

§  Standardization, being programmed in a high level language,
availability of developer platforms, and an open source code base
has made it easier for attackers to get started creating firmware
attacks
–  Thanks to the FUD surrounding UEFI SecureBoot, it's highly unlikely

that typical open source advocates are doing extensive code review/
contribution to the UEFI EDK2 code base

§ We can no longer ignore firmware security as a credible threat

© 2014 The MITRE Corporation. All rights reserved.

| 68 |

Questions?

§  Thanks for listening!

§ Email contact:
{xkovah, ckallenberg, jbutterworth, scornwell, rheinemann} at
mitre dot org
§  Twitter contact:
@xenokovah, @coreykal, @jwbutterworth3, @ssc0rnwell

Obligatory "Check out OpenSecurityTraining.info" plug :)

| 69 |

References

§  The best place to look: our timeline bibliography:
http://timeglider.com/timeline/5ca2daa6078caaf4

§  [1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf

§  [2] TPM PC Client Specification - Feb. 2013
http://www.trustedcomputinggroup.org/developers/pc_client/specifications/

§  [3] Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is Insecure on Many
Systems – Yuriy Bulygin – Mar. 2013
http://cansecwest.com/slides/2013/Evil%20Maid%20Just%20Got%20Angrier.pdf

§  [4] A Tale of One Software Bypass of Windows 8 Secure Boot – Yuriy Bulygin – Jul. 2013
http://blackhat.com/us-13/briefings.html#Bulygin

§  [5] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna Rutkowska –
Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

§  [6] Another Way to Circumvent Intel® Trusted Execution Technology - Rafal Wojtczuk,
Joanna Rutkowska, and Alexander Tereshkin – Dec. 2009
http://invisiblethingslab.com/resources/misc09/Another%20TXT%20Attack.pdf

§  [7] Exploring new lands on Intel CPUs (SINIT code execution hijacking) - Rafal Wojtczuk and
Joanna Rutkowska – Dec. 2011
http://www.invisiblethingslab.com/resources/2011/
Attacking_Intel_TXT_via_SINIT_hijacking.pdf

| 70 |

References 2

§  [7] Meet 'Rakshasa,' The Malware Infection Designed To Be Undetectable And
Incurable - http://www.forbes.com/sites/andygreenberg/2012/07/26/meet-rakshasa-
the-malware-infection-designed-to-be-undetectable-and-incurable/

§  [8] Implementing and Detecting an ACPI BIOS Rootkit – Heasman, Feb. 2006
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

§  [9] Implementing and Detecting a PCI Rookit – Heasman, Feb. 2007
http://www.blackhat.com/presentations/bh-dc-07/Heasman/Paper/bh-dc-07-
Heasman-WP.pdf

§  [10] Using CPU System Management Mode to Circumvent Operating System
Security Functions - Duflot et al., Mar. 2006
http://www.ssi.gouv.fr/archive/fr/sciences/fichiers/lti/cansecwest2006-duflot-
paper.pdf

§  [11] Getting into the SMRAM:SMM Reloaded – Duflot et. Al, Mar. 2009
http://cansecwest.com/csw09/csw09-duflot.pdf

§  [12] Attacking SMM Memory via Intel® CPU Cache Poisoning – Wojtczuk &
Rutkowska, Mar. 2009
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf

§  [13] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013
§  http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/

SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

| 71 |

References 3

§  [14] Mebromi: The first BIOS rootkit in the wild – Giuliani, Sept. 2011
http://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-
in-the-wild/

§  [15] Persistent BIOS Infection – Sacco & Ortega, Mar. 2009
http://cansecwest.com/csw09/csw09-sacco-ortega.pdf

§  [16] Deactivate the Rootkit – Ortega & Sacco, Jul. 2009
http://www.blackhat.com/presentations/bh-usa-09/ORTEGA/BHUSA09-
Ortega-DeactivateRootkit-PAPER.pdf

§  [17] Sticky Fingers & KBC Custom Shop – Gazet, Jun. 2011
http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-
stickyfingers_slides.pdf

§  [18] BIOS Chronomancy: Fixing the Core Root of Trust for
Measurement – Butterworth et al., May 2013
http://www.nosuchcon.org/talks/
D2_01_Butterworth_BIOS_Chronomancy.pdf

§  [19] New Results for Timing-based Attestation – Kovah et al., May 2012
http://www.ieee-security.org/TC/SP2012/papers/4681a239.pdf

| 72 |

References 4

§  [20] Low Down and Dirty: Anti-forensic Rootkits - Darren Bilby, Oct.
2006
http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Bilby-up.pdf

§  [21] Implementation and Implications of a Stealth Hard-Drive Backdoor
– Zaddach et al., Dec. 2013
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/acsac13.pdf

§  [22] Hard Disk Hacking – Sprite, Jul. 2013
http://spritesmods.com/?art=hddhack

§  [23] Embedded Devices Security and Firmware Reverse Engineering -
Zaddach & Costin, Jul. 2013
https://media.blackhat.com/us-13/US-13-Zaddach-Workshop-on-
Embedded-Devices-Security-and-Firmware-Reverse-Engineering-
WP.pdf

§  [24] Can You Still Trust Your Network Card – Duflot et al., Mar. 2010
http://www.ssi.gouv.fr/IMG/pdf/csw-trustnetworkcard.pdf

§  [25] Project Maux Mk.II, Arrigo Triulzi, Mar. 2008
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-PACSEC08-
Project-Maux-II.pdf

| 73 |

References 5

§  [26] Copernicus: Question your assumptions about BIOS Security – Butterworth,
July 2013
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/
copernicus-question-your-assumptions-about

§  [27] Copernicus 2: SENTER the Dragon – Kovah et al., Mar 2014
https://cansecwest.com/slides/2014/Copernicus2-SENTER_the-Dragon-CSW.pptx

§  [28] Playing Hide and Seek with BIOS Implants – Kovah, Mar 2014
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/playing-
hide-and-seek-with-bios-implants

§  [29] All your boot are belong to us – Joint Intel & MITRE talk – Kallenberg et al. &
Bulygin et al., Mar 2014
–  MITRE slides: https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf
–  Intel slides: https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf

§  [30] Setup for Failure: Defeating UEFI Secure Boot – Kallenberg et al., Apr 2014
http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/
SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

§  [31] "Charizard" attack (CERT VU#758382) demo video -
http://youtu.be/XfJ4S42MVLw

| 74 |

References 6

§  [32] SENTER Sandman: Using Intel TXT to Attack BIOSes – Kovah
et al., June 2014 - slides not posted anywhere yet

§  [33] Extreme Privilege Escalation on UEFI Windows 8 Systems –
Kallenberg et al., Aug 2014 -
https://www.blackhat.com/docs/us-14/materials/us-14-
Kallenberg-Extreme-Privilege-Escalation-On-Windows8-
UEFI-Systems.pdf

§  [34] UEFI and PCI Bootkits, Pierre Chifflier, Nov 2013 -
http://pacsec.jp/psj13/psj2013-day2_Pierre_pacsec-uefi-pci.pdf

§  [35] Rootkit Detection Framework for UEFI (RDFU) - Vuksan &
Pericin, July 2013 -
http://www.reversinglabs.com/technology/open-source.html

