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Abstract—System Management Mode (SMM) in x86 has
enabled a new class of malware with incredible power to
control physical hardware that is virtually impossible to
detect by the host operating system. Previous SMM rootkits
have only scratched the surface by modifying kernel data
structures and trapping on I/O registers to implement PS/2
keyloggers. In this paper, we present new SMM-based mal-
ware that hijacks Universal Serial Bus (USB) host controllers
to intercept USB events. This enables SMM rootkits to
control USB devices directly without ever permitting the OS
kernel to receive USB-related hardware interrupts. Using
this approach, we created a proof-of-concept USB keylogger
that is also more difficult to detect than prior SMM-based
keyloggers that are triggered on OS actions like port I/O.
We also propose additional extensions to this technique and
methods to prevent and mitigate such attacks.

Keywords-Computer security; Embedded software; Uni-
versal Serial Bus;

I. INTRODUCTION

Spyware is a class of malware that logs sensitive inputs

and exfiltrates it to unauthorized parties. For example,

keyloggers record user input without user awareness that

captures content, including passwords or credit card num-

bers, that hackers use to impersonate victims. While there

are a number of attack vectors for implanting loggers, the

most important factor is the logger’s ability to remain hid-

den to collect the most data. As security experts continue

to design new techniques to root out spyware, so too do

attackers find new ways to push the limit of detectability.

In recent years, System Management Mode (SMM) ex-

ploits have become popular because they give attackers an

unparalleled level of access and stealth. In particular, code

executing in SMM has direct control of physical resources

including system physical memory and devices that oth-

erwise are shielded by numerous software- and hardware-

protection mechanisms. Moreover, SMM suspends normal

code execution, which allows anything running in this

mode to remain hidden from the operating system (OS)

kernel without risk of being pre-empted by interrupts.

While SMM offers great potential to manipulate physi-

cal hardware, its utility is limited by its constrained mem-

ory footprint and execution window. Despite this, early

attacks on SMM have demonstrated the design of SMM

malware to modify kernel variables to escalate privilege

[1], subvert secure launch procedures [2], and reprogram

device firmware [3], [4]. More recently, SMM keyloggers

have been published that capture PS/2 keyboard inputs

through ACPI trapping [5] and I/O trapping [6]. More

sophisticated malware designed by national governments

has been discovered that target specific BIOS firmware and

network appliances [7]. Once captured, this data can be

transmitted stealthily via cooperating userspace programs

or even compromised network cards [8] and radios [9].

In this paper, we present a novel SMM-based rootkit

that intercepts and controls communication between Uni-

versal Serial Bus (USB) devices and the OS kernel. Unlike

previous malware that required the kernel to trap to SMM

when reading or receiving interrupts, our custom SMM

rootkit can intercept USB events before they are delivered

to the OS kernel. It does this by reconfiguring the USB

host controller (HC) to route all interrupts to a special

SMM handler normally intended for PS/2 emulation of

USB devices. Using this technique, we designed and

implemented a proof-of-concept USB keylogger and tested

it on a Linux system using recent hardware. During our

experiments, we successfully intercepted, replaced, and

even injected keystrokes with an average overhead per

keystroke of only 61 μs.

In this paper, Section II describes SMM functions and

how rootkits can take advantage of the environment. We

describe the USB protocol and delve into our design for

hijacking the channel between the HC and the OS kernel

in Section III. We detail our implementation in Section IV

and discuss expansions to its capabilities in Section V. We

then offer possible mitigations in Section VI and conclude

with future work in Section VII.

II. BACKGROUND

This section provides a brief overview of SMM includ-

ing how it works, what security mechanisms are used to

protect it, and previous attacks on and from within SMM.

As background for our attack and example keylogger, we

describe the USB protocol and give an example of how a

generic USB keyboard driver functions.

A. System Management Mode

SMM is a special operating mode on x86 processors in

all processors since the Intel 486 [10]. It was designed for

power management, BIOS flash updates, PS/2 keyboard

emulation, bug fixes, and other miscellaneous tasks that

need to be executed by the BIOS. Hence, it is also a highly

privileged mode in which normal execution is suspended

and special code stored in SMRAM is executed, all hidden

from the main OS. SMM is similar to a hypervisor mode

in that the CPU hardware saves the processor state on
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entering SMM, similar to a world switch, and restores it

after leaving SMM. Code executing in SMM is usually

short because it takes control of all processor cores and

masks off all interrupts. As a result, it is nearly impossible

for users to know when their system is in this mode or

for the OS to observe what is occurring.

SMM is entered via an unmaskable system management

interrupt (SMI) to the processor. On receipt, the CPU saves

the processor state to a special region of DRAM, called

SMRAM [11]. It then begins executing the SMI-handler

code also stored in SMRAM. While in this mode, the pro-

cessor is set automatically to 16-bit real mode, paging is

disabled, and all interrupts are masked. When the handler

finishes, it executes the resume from system management

mode (RSM) mode instruction, which restores the CPU

state. Due to the complexities of resource management,

modern CPUs typically enter SMM on all cores when an

SMI arrives, effectively suspending the entire system until

the SMI handler has finished executing [12].

1) Protecting SMRAM: SMM operates at a higher

privilege level than normal ring 0 x86 code, and thus

has access to everything ring 0 code does and more. In

particular, code executing in SMM has exclusive access to

SMRAM [11] and the ability to write to BIOS flash [13].

This is an important restriction because code typically is

loadable only at boot time by the BIOS, which is stored

in the BIOS flash.

Access to SMRAM is fenced off by hardware mecha-

nisms (e.g., northbridge) and allows access only when the

processor is in SMM mode. SRAM is divided further into

two regions. The first, called ASEG, is always located

at the memory address range 0xA0000-0xBFFFF. This

region is known also as the legacy VGA card space and

typically is mapped to the framebuffer. The second region,

called TSEG, is a programmable region for BIOS and

programmable registers specify its size and location.

When the processor is not in SMM and software tries

to access either ASEG or TSEG, the accesses are directed

to MMIO space instead of DRAM. Thus, while address

0xA0000 normally maps to the VGA card, in SMM

mode, it instead maps to DRAM at the same address

(taking advantage of the so-called “VGA memory hole”).

If software outside of SMM tries to set up a DRAM

mapping for any SMRAM address, the hardware will

redirect it to MMIO instead.

As a protection mechanism against malicious uses of

SMM, write access to SMRAM can be locked by setting

a bit in the SMM configuration registers; this bit is

called SmmLock in AMD CPUs [12] and D_LCK in

Intel chips. The intention is that once BIOS has set up

ASEG/TSEG, loaded the appropriate SMI handler, and

locked the configuration, the SMRAM cannot be modified

until a reset, thereby maintaining SMRAM integrity.

2) Previous Attacks on SMM: Many of the properties

that make SMM secure and difficult to modify also make

it an excellent location for nearly undetectable malware

that cannot be seen by normal processes like anti-virus

software or the OS.

In theory, many SMM-based attacks should be pre-

vented by the BIOS’ ability to lock SMRAM. However,

early work by Duflot et al. [1] demonstrated that it was

possible to enable write access to SMRAM and thus insert

a custom SMI handler. An attacker then could disable

privilege separation for the superuser in OpenBSD without

detection by the OS kernel. This attack was possible

in part because the SMRAM lock bit never was set by

some BIOS firmware, thereby permitting the attacker to

enable write access. Subsequently, BIOS vendors began

setting the lock bit to prevent such exploits. In addition to

unlocked SMRAM, Duflot’s attack relied on writes to the

VGA card space that first was unmapped and thus exposed

the SMRAM address range. Later, Heasman [4] presented

additional method of attacking SMM and BSDaemon,

coideloko, and D0nand0n [14] published several additional

techniques for circumventing SMM protections via a set

of libraries for developing portable SMM rootkits.

More sophisticated SMM rootkits were designed by

Embleton and Sparks [5] that used APIC redirection to

trigger SMI on keyboard IRQs. Their custom SMI handler

then would function as a keylogger to capture keystrokes

on PS/2 keyboards and send them out over the network.

More recently, Wecherowski published an SMI keylogger

that uses I/O trapping to raise SMIs when the OS reads

from a PS/2 keyboard (or one in PS/2 emulation mode) [6].

In both of these scenarios, the OS was notified that some

interrupt had occurred. As a result, timing-based detection

schemes could identify unusual response times due to the

SMI interposing on keystrokes. Our approach avoids this

issue by trapping to SMI before the OS ever receives the

interrupt. Moreover, it is not limited to PS/2 keyboard

input; instead, it could interpose on all USB traffic.

Wojtczuk and Rutkowska later showed how to use SMM

to subvert Intel’s TXT technology [2] and how cache

poisoning could lead to writes to SMRAM after the lock

bit was set [15]. Duflot also presented an attack using

cache poisoning to change the SMBASE value to point

SMIs to a malicious SMI handler [16]. This attack would

leave the normal handler untouched, which could fool

integrity monitors that check the SMRAM for changes.

The key take-away from these attacks is that despite

efforts to lock down SMRAM access, SMM remains a

viable vector for launching attacks on the rest of the

system. Even more dangerous is the possibility of BIOS

flash with malicious code through vulnerabilities in the

upgrade process or direct hardware access [7].

B. USB

We now detail the USB standard as background for our

SMM-based rootkit. USB is nearly ubiquitous in modern

computer systems and commonly used for human interface

devices like keyboards and pointers. USB devices are

controlled through the four main components shown in

Figure 1.

At the hardware level, a USB HC, consisting of several

physical USB ports, is connected to one or more USB

endpoint devices (e.g. a keyboard). The USB HC is pre-
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Figure 1. USB uses four components. The endpoint device commu-
nicates at the physical layer over USB to the USB HC. The HCD sends
requests to the HC at the request of the USB device driver.

sented as a PCI device to the OS kernel, which uses a USB

HC driver (HCD) to communicate with it. A higher-level

device driver (e.g., an HID driver) communicates with the

specific endpoint device via the HCD and hardware.

Most HCs use the Open Host Controller Interface

(OHCI) standard [17], which supports USB 1.1 devices.

USB 2.0 is an addition on top of OHCI, called the En-

hanced Host Controller Interface (EHCI), but HID devices

including keyboards/mice always use USB 1.1 regardless

of what the system supports. For this white paper, we will

focus on OHCI.

The USB HC hardware is controlled via a set of

memory-mapped I/O (MMIO) registers. These contain

a number of pointers to various linked lists that track

attached devices and map requests to devices. The HC

periodically polls the attached devices for new information

in response to requests and, on receiving information,

writes that data to main system memory.

USB device drivers talk to devices using the OHCI

specification protocol to issue request packets defined by

the specific HCD used by the OS. On Linux, for example,

a device driver may send a USB request block (URB) [18]

to query information from the device. The HCD creates

a transfer descriptor (TD) for this request and links it to

the appropriate list for the device. Once this request is

completed, the HC hardware will unlink the TD from the

list it was on, and link it to the DoneList. It also writes

any result data into memory via DMA as defined by the

TD, and optionally sends an interrupt indicating it has

new data on the DoneList. On receiving this interrupt,

the HCD walks the DoneList and processes the TDs

found. It then notifies the original driver (typically via

an asynchronous callback) that its URB is complete and

the data is available.

C. A Typical USB Keyboard Driver

As an example, this section describes the basic flow

of a USB keyboard driver, which is applicable on Linux,

and Windows systems, and likely other OSes as well.

On Linux, the USB keyboard driver1 interacts with the

1Located in the kernel source under drivers/hid/usbhid/usbkbd.c
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Figure 2. USB keyboard example. The human interface device (HID)
driver sends a request (e.g., read active LEDs) to the host control driver
(HCD) using an USB request block (URB). The HCD appends a transfer
descriptor (TD) to the appropriate endpoint device’s request queue. The
HC then unlinks a TD, services the request via the OCHI protocol, and
appends the result to done queue.

0 7 8 15

Modifiers Reserved

Keystroke 1 Keystroke 2

Keystroke 3 Keystroke 4

Keystroke 5 Keystroke 6

Figure 3. Format of the data buffer returned by keyboard as
specified by the OHCI specification. The first byte indicates any
modifier keys (e.g. Shift, Ctrl, Alt). Bytes 2-7 are the pressed or
released keys.

OHCI USB HCD2. Once loaded, the USB keyboard driver

submits a URB to the USB keyboard asking for informa-

tion about a keystroke. The resulting TD is configured

such that it will stay pending until there is new keyboard

information, at which point it will be completed and an

interrupt is generated. Typically, the USB HC hardware

is set to poll the keyboard every millisecond for any new

keystrokes.

On a keyboard event (key press or release), the data

from the keyboard is transferred via DMA to memory the

TD points to. The TD packet defines where the DMA

request will point; this is important because any change to

the TD will alter the expected behavior of the HC issuing

the DMA request. For keyboards, this result consists of 8

bytes as defined by the USB HID specification and shown

in Figure 3. The first byte is a bit-field that indicates which

modifier keys are pressed. Bits 0-3 indicate the left CTRL,

SHIFT, ALT, and WINDOWS keys respectively. Bits 4-7

indicate the right-side versions of those keys. Bytes 2-7

indicate the (up to six) keys pressed at that time. For a

table of the key codes for these fields, see [19].

Once completed, the TD is unlinked from the device’s

Request queue and placed in the Done queue. After this

URB is completed, an interrupt is raised to alert the HCD

and thus the keyboard driver to processes the data. Finally,

a new URB is sent to restart this process and request the

2Located in drivers/usb/host/ohci-hcd.c
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Figure 4. HcControl register. Bit 8 is the interrupt routing (IR) bit that
determines how interrupts generated by events are routed. When clear,
interrupts are routed normally on the host bus. When set, an SMI is
triggered instead. The HCD uses this bit to indicate HC ownership by
the BIOS.

next keyboard event.

III. DESIGN OF A USB-CONTROLLING ROOTKIT

This section describes the high-level design of our SMM

rootkit for controlling USB devices. First, we explain how

to hijack the USB HC so it redirects communication to a

custom SMI handler. We then describe the process for

setting up the attack on the system.

A. Interrupt Rerouting to SMI

Because we want to interpose on USB events before
they arrive at the OS, we need a way to prevent the

normal hardware interrupts from being triggered by the

HC. Fortunately, the OHCI specification [17] defines a

feature that does just this. In the HC’s control register

(Figure 4), bit 8, called the interrupt routing (IR) bit,

controls whether events trigger normal hardware interrupts

or instead are diverted to SMM. If the bit is set, an SMI

is raised and the SMI handler processes the USB event.

The IR bit is intended to give BIOS control over USB

devices during boot when no OS is present in memory to

handle the device. It also enables PS/2 emulation of USB

keyboard and pointer devices through the SMI handler.

In this way, USB events can be read using normal PS/2

I/O registers. Normally, the HC sets this bit to 1 at boot

and the OS HCD clears the bit after the kernel is loaded.

However, our experience has shown that default OS HCDs

do not check if the bit is later set.

B. High-level Attack Flow

With the IR bit enabled, a custom SMI could receive all

USB events, modify them as desired, and raise an event

as normal (or not) when done. If we are repurpose this

handler, we must first replace the default SMI handler

provided by the BIOS. On most desktop systems, default

SMI handlers do very little (if anything) and we found

that replacing them resulted in no noticeable effect on our

test system. For systems that use advanced power-saving

features (e.g., laptops and tablets), more care must be taken

to avoid disabling battery management, power stepping,

or the ability to enter lower power states. Given the small

size of the rootkit payload, as will be demonstrated by

our example in Section IV, it should be possible to fit

it within the available memory space. Moreover, existing

SMI code can be accessed from the BIOS flash directly

and disassembled to reengineer the existing handler. The

fact that many devices share common BIOS code makes

this doable before the attack.

Now that we have a custom SMI handler and the ability

to redirect events, our attack flow works as follows:

1) Inject malicious SMI handler into running system.

Alternatively, overwrite BIOS flash to use malicious

SMI handler (see Section IV-B).

2) Set IR bit to 1 after OS load.

3) On a USB event, the SMI handler parses the HCD

device queues to find the triggering event. If it is

the target of the attack, perform the attack-specific

functions.

4) Optional. Raise the USB event interrupt so the OS

sees the event as normal.

5) Restore the system from SMM mode with an RSM

operation.

Under this scenario, the SMI handler has full control

of all USB devices attached to that HC. The handler can

inspect all events, choose which ones to forward to the

OS, and even communicate to the devices independent

of the OS. However, the data structures managed by the

OS to communicate with the endpoint devices are fairly

complex and an overly lengthy SMI handler could result

in noticeable delay. Also, the SMRAM region is relatively

small, thereby limiting the sophistication of the handler

code. Nevertheless, Section IV will provide an example of

how to implement a USB keylogger in this environment.

Section V discusses additional extensions.

IV. IMPLEMENTING AN SMM KEYLOGGER

We created a USB keylogger to demonstrates how an

attacker could leverage the USB redirection described in

Section III to capture keystrokes stealthily. In this section,

we first describe the implementation of our rootkit’s SMI

handler and how it parses the various USB data struc-

tures to detect keyboard data. We then discuss possible

techniques for acquiring access to SMRAM to install the

SMI handler. Finally, we detail our experiments with the

keylogger and its performance during these tests.

A. Crafting the SMI Handler

Our USB keylogger’s goal is to intercept keystrokes

without the host system noticing. We designed our handler

to process USB events as illustrated in Figure 5. The

custom SMI handler performs three main steps:

1) Parse SMIs for potential keyboard data.

2) Log keystrokes for later exfiltration.

3) Raise an interrupt and restore control to the OS.

Once a USB event raises an SMI, control will pass to

the SMI handler. First, the handler puts the processor into

either 32- or 64-bit mode (depending on our target), but

does not reenable paging that was disabled on entering

SMM. This gives our code easy access to the physical

address space of the system. Next, the handler determines

if the SMI came from a USB device by finding the HC,

which can be anywhere on the PCI bus. However, many

modern systems have integrated southbridges, and the HCs

are at fixed locations depending on CPU manufacturer and

version. Simple CPUID checks can point us to where the

USB HC is if the hardware is unknown, but a known

system will be easier to handle ahead of time. As with
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Figure 5. SMI Handler Flow.

laptops, the keyboard is often on a dedicated bus, which

makes identification trivial.

The OHCI USB HC is controlled by a set of memory-

mapped registers, and the base pointer of these is located

at offset 0x10 in the PCI configuration space [13]. For

example, to get this base address from a USB HC at

Device 0x12 and Function 0, we can use the I/O ports

CF8/CFC as shown in Listing 2. Our handler pushes this

value on the stack to pass it as a parameter (ohci_base)

to a C function defining the rest of the keylogger.

The function in Listing 1 first checks if the HC is assert-

ing WritebackDoneHead, indicating it has finished a

packet. This check is done in line 2 by masking the 0x2
bit of the HcInterruptStatus register. If the bit is

set, the handler then looks for the base of the DoneList,

DoneListHead. This points to the start of a linked list

of completed packets. Our code then walks this list and

looks for a packet from the keyboard.

The OHCI spec does not specify that the TD in the

DoneList must contain any specific information about the

device it came from. The HCD typically includes this

information, and this data format has remained consistent

in Linux. We use the Linux kernel headers to cast this

pointer as a struct td (transfer descriptor) in line 5.

We then can determine the classcode of the device as

follows: The UsbDeviceDescriptor structure includes

the bDeviceClass, bDeviceProtocol, and other rele-

vant information. Keyboards have a device class of 3, and

a device protocol of 1.

Once it has been determined the TD corresponds to a

keyboard, the data is read as on line 9. The HC increments

the buffer end (BE) pointer by 8 as it writes the data.

Because keyboard data is always 8 bytes long, we can

get the pointer to the start of the region by subtracting

7. Alternatively, Linux keeps a copy of this pointer in

td_dma in this structure [20].

Our keylogger is now able to read and manipulate the

keystrokes. We choose a location in physical memory

and write the results to that memory buffer. One easily

imagines more complex exfiltration techniques such as

writing to a cooperating process or even sending data out

through a compromised network card [3].

The remaining step for our keylogger is to pass the

keystroke to the OS. This maintains the illusion that noth-

ing has intercepted the input. To do this, we need to send

a normal interrupt to the CPU with the same vector that

the HC uses. The vector assigned to the HC is dependent

on the system configuration, but can be obtained easily

in Linux by looking at /proc/interrupts while the

system is running. The mapping of devices to interrupt

vectors generally is static, so the same vector will be used

on every boot. On our test system, the HC in which we

were interested used interrupt vector 0x29.

To send this interrupt, the handler writes to the interrupt

command request (ICR) register in the APIC. The address

of this register generally is fixed on systems, and we can

use the ICR register to ask for specific interrupts [12]. In

Listing 3, we create a pointer to the ICR location and write

to it to request vector 0x29.

Finally, the handler must acknowledge the SMI inter-

rupt, allowing future SMIs to be set. This is done by setting

an end-of-SMI (EOS) bit. While the exact mechanism

varies between Intel and AMD platforms, example code

can be found in the SMI handler of the open-source BIOS,

Coreboot [21]. Because our SMI handler did not modify

any HC state, on leaving SMM (via RSM), the standard

Linux interrupt routine is triggered and the USB keyboard

driver still sees the keystroke as normal.
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1 HcInterruptStatus = *(int*)(ohci_base+0xC);
2 if (!(HcInterruptStatus & 0x2)) {
3 Hcaa_base = *(unsigned char**)(ohci_base+0x18); \\Host Communication Area
4 DoneListHead = *(unsigned char**)(Hcaa_base+0x8);
5 TdPointer = (struct td*)(DoneListHead);
6 UrbPointer = TdPointer->urb;
7 UsbDevice = UrbPointer->dev;
8 UsbDeviceDescriptor = UsbDevice.descriptor;
9 DataPtr = (TdPointer->hwBE)-7;

Listing 1. SMI handler code. This snippet shows how the handler finds keystrokes in the HC data structures.

1 movw $0xCF8, %dx
2 movl $0x80009010, %eax
3 outl %eax, %dx
4 movw $0xCFC, %dx
5 inl %dx, %eax

Listing 2. Assembler code in AT&T syntax that locates
the MMIO base address [12]. In line 2, specifies Bus=0,
Device=0x12, Function=0, Offset=0x10.

1 unsigned int* APIC_ICR = NULL;
2 APIC_ICR = (unsigned int*) 0

xFEE00300;
3 *APIC_ICR = 0x4C029; // Set

vector to 0x29

Listing 3. Code to raise a normal USB HC interrupt vector
through APIC. The interrupt is requested to be asserted and
sent to the requesting processor.

Without our handler complete, we wanted to measure

how much delay our handler would impose on normal

USB devices. During our initial tests, we could not visu-

ally observe any delays. Given how small this SMI handler

is, and that USB keyboards report events only every

millisecond, the handler should not surprisingly go beyond

the polling frequency. To confirm this, we instrumented the

handler to record average execution times using the CPU’s

time-stamp counter. After 200 invocations, we found the

handler ran 61 μs with very minor variance. This was in

line with our performance expectations.

B. Installing the SMI Handler

Once the SMI handler is complete, an attack must install

it into the SMRAM at runtime. Because modern systems

lock the SMRAM configuration during boot, installing an

SMM rootkit or other malware requires more creativity

than a simple memcpy. We discuss two main approaches

to installing custom SMM code: exploiting bugs and

flashing a new BIOS image.

Exploiting Bugs: Bugs that grant access to SMRAM

are not unheard of. Previous work has documented a

cache-poisoning bug in Intel processors that allowed writ-

ing to TSEG and redirecting the SMM handler [15]. In

addition, bugs may be present in BIOS code (including

the SMM handler) that allow unauthorized access to SMM

mode. This type of vulnerability is made worse because

users rarely (if ever) update their BIOS code, so security

vulnerabilities are likely to stick around in the wild longer

than typical security bugs. In fact, many BIOS prior to

2005 did not lock SMRAM at all [5]. Furthermore, failure

by OEMs to lock access to BIOS flash storage or prevent

unauthenticated updates may enable root privileged code

to modify the existing SMI handler.

Flashing a New BIOS: Because BIOS code sets up

the SMRAM and SMM handler, installing a custom BIOS

that is loaded on every reset is a persistent method to

compromise a system. Although many modern systems

allow for preventing writes to the BIOS flash when not in

SMM, we have found that this feature is not enabled on

the systems we tested.

Writing to flash requires ring 0 access, but that is hardly

a burden in many scenarios. For example, an “evil maid”

attack can occur if someone is permitted to gain physical

access to the host machine. This person may then run

Linux Live-CD and boot the system into that, thereby

allowing full root access. Utilities like flashrom3 then can

be used to write to the BIOS, allowing for installation of a

malicious BIOS. This malicious BIOS could be a modified

version of Coreboot, which has broad support for many

systems [21]. Once installed, the Live-CD can be removed

and the system will return to its normal state, with SMM

malware installed and ready to go.

Another attack vector is to compromise the system

before it is installed, such as in the case of a compro-

mised equipment supplier, boarder inspection, or delivery

service [7]. A rogue agent (whether a company or an

individual) could ship a brand new system with a com-

promised BIOS containing the SMM malware. Alterna-

tively, the malicious party could intercept the device and

exploit known (or unknown) weaknesses in the firmware

or hardware to install the payload. This malware could sit

dormant on a machine, unlikely to be detected, until it is

chosen to be activated.

V. EXTENDING THE PAYLOAD

In this section, we present two modifications to the

SMM payload. This shows how the rootkit can go beyond

keylogging to disable security features and hide physical

devices from the OS.

A. Man in the Middle Attacks

A simple extension of our keylogger is to use it for

a man-in-the-middle attack. Because our keylogger runs

before the OS sees the keystroke, the SMM handler code

could change the keystroke seen by the OS. A prime

target for this type of attack would be something like the

3http://flashrom.org
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Sequence Keystrokes
05 00 4C LEFT CTRL+LEFT ALT+DEL

41 00 4C LEFT CTRL+RIGHT ALT+DEL

14 00 4C RIGHT CTRL+LEFT ALT+DEL

50 00 4C RIGHT CTRL RIGHT ALT+DEL

Table I
Possible secure attention sequences.

Windows CTRL+ALT+DEL command. Software generally

assumes this sequence is secure, and applications cannot

intercept this command. However, our SMM keylogger

can intercept this by checking if the first 3 bytes of

the keyboard data seen is one of the following values

indicating CTRL+ALT+DEL.

An example attack might be to conspire with a user

application to trick users into thinking they changed their

password. When they press CTRL+ALT+DEL, the SMM

keylogger replaces the keystroke, which the user applica-

tion uses to display a fake password change dialog. An

alternative attack would be to fake a CTRL+ALT+DEL se-

quence, potentially allowing malware to bypass the secu-

rity implied by the secure attention command.

B. Hidden Devices

Another potential attack using a custom SMM handler

would involve hiding a physical device from the OS. When

the IR bit is set, all USB interrupts go through the SMM

handler, including interrupts about devices being plugged

in or removed. By removing the final step of our keylogger

(sending the interrupt to the OS), our malware can hide

all device activity from the OS.

For example, a USB thumb drive could be attached

covertly to a compromised system. It even might be

installed inside the chassis where no one is likely to look,

perhaps directly connected to a motherboard USB header.

While the system is running, data (such as keystrokes, or

other sensitive data) may be written to that USB thumb

drive without any knowledge of the OS. All data and

interrupts related to this device are handled by the SMM

code, and it would not show up in the Windows device

manager or in the Linux lspci command.

This sort of attack might be useful for a system that

otherwise is not connected to the external world. A rogue

agent could install this USB drive, and later remove it

to analyze the data. A worrisome scenario for many

companies is one in which a newly purchased server is

compromised with a custom BIOS, and a secret USB drive

attached inside. When the server is later serviced, the drive

could be removed and customer information stolen.

A similar attack could involve a hidden listening device,

such as a microphone or webcam. With such a device

physically hidden and no information about the device

appearing in the OS, a user could be recorded secretly.

The recorded information could be stored to a hidden flash

device, sent over the network, or otherwise exfiltrated.

VI. POSSIBLE MITIGATION

We now discuss some possible defenses against this

class of malware and how to detect its presence.

A. Protecting SMRAM

The most straightforward defense is to prevent any

unauthorized changes to SMRAM. If the malicious han-

dler cannot be installed, then SMI redirection either will

have no effect or, more likely, will hang the system. In

addition to setting the lock on SMRAM after boot, BIOS

also should ensure that writes to flash can be performed

only from within SMM. While some BIOS permit writes

from ring 0 to facilitate easy BIOS flashing, this is a

potential security risk. Instead, the SMI handler should

perform the BIOS flash update after first performing an

authenticity check via a signature check.

B. UEFI Secure-Boot

More recently, motherboard vendors have started to

replace legacy BIOS with a newer standard, Unified Ex-

tensible Firmware Interface (UEFI) [22]. UEFI supports a

secure-boot mechanism that performs code-signing checks

as each piece of the firmware is loaded. A move towards

this standard should help close loopholes in legacy BIOS

that enables installation of malicious SMM rootkits. The

ROM performs the signature check using a key stored in

the ROM. This check prevents unauthorized code from

overwriting the flash. However, bugs in signature checks

or leaked encryption keys still could enable attackers to

bypass this defense.

C. Detecting SMI Redirection

The IR bit in our attack enables SMI handlers to get full

control over USB devices. Normally, the OS clears this bit

after boot, so there should be very little reason for it to be

set in the future (except for PS/2 emulation). It might be

prudent for the OS HCD or some other malware detection

service to check this bit periodically to see if it was

set. This would indicate something unusual is happening

and that additional steps should be taken to check for

compromise.

D. Stand-alone Security Processor

A more complete solution would be to have a dedicated

security processor in the system that can verify SPI-

ROM storage (flash) integrity and monitor SMRAM for

unauthorized code or access. The AMD Platform Security

ProcessorTM (PSP) is an example of such a processor. This

core, independent of the normal x86 cores on the SoC,

implements a form of hardware validated boot by verifying

the first block of the BIOS in flash before permitting

the CPU to continue the boot processes [23]. The keys

used to verify the BIOS code’s signature are stored in an

immutable ROM within the PSP itself.

In addition to validating the boot process, such a

dedicated security processor could be used to establish

access control protections that require writes to SMRAM

to come from the security process. This would give the

system more flexibility to update SMRAM during runtime,

while still providing authorization checks on the updated

contents. Moreover, the security processor functions in-

dependently of x86 cores during SMM, which lets the
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security processor detect when an unusual number of

SMIs are raised or inspect critical memory locations and

registers that our attack would modify.
This protection scheme goes beyond the capabilities

of existing hardware security modules like the Trusted

Platform Module (TPM), which can only passively store

hashes of data provided to it or perform basic crypto-

graphic operations and key management [24].

VII. FUTURE WORK

In this paper, we presented an SMM-based exploit

for interposing on normal USB event-triggered hardware

interrupts. Our proof-of-concept keylogger was able to

capture keystrokes before the OS without any noticeable

delay; it introduced only a 61 μs delay per keystroke on

average. This exploit leverages the IR bit in the HC’s

configuration register, which never was intended to wrest

legitimate control of USB devices from the OS. This

makes it possible for rootkits to monopolize the USB

HC completely and undermine secure input mechanisms

or hide malicious peripheral devices. As a precaution,

we recommend administrators check for suspicious HC

settings that might indicate the presence of such attacks.
In future work, we plan to refine our rootkit to include

exfiltration methods that take advantage of the privileged

access that SMM code provides. We also will study

additional techniques for intercepting a broad range of

USB device information such as mass storage and pointer

devices. Finally, we will explore the limitations of main-

taining stealthiness while running in SMM, which includes

execution overhead and memory footprint.
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