
Fix it yourself
detecting and fixing UEFI firmware vulnerabilities

without access to it’s source code

Nikolaj Schlej

Software Engineer BIOS, congatec AG

schlej@live.de, @NikolajSchlej

26.11.2015

About me

- a.k.a. CodeRush

- tinkering with UEFI since 2011

- came to InfoSec from BIOS modding community

- author of UEFITool

- wrote master thesis on CoMs UEFI security

- work for congatec AG as BIOS engineer

0

Agenda

- Brief Intro to (U)EFI

- What an Attacker Can Do?

- Attack Vectors

- Protections

- An Average System

- Test Tools

- Test Results

- What Now?

- Prepare to Dig Deep

- Fix It Yourself

- Conclusion

- Q&A

1

Brief Intro to (U)EFI 2

Brief Intro to (U)EFI: What is it?

- (Unified) Extensible Firmware Interface

- modern industrial standard for x86 firmware

- initially developed by Intel as BIOS replacement for IA64

- used by Macs since 2007, PCs since 2009

- performs HW initialization required to start an OS

- modular and feature rich, uses well defined and known formats

- mostly written in C, much easier to develop as legacy BIOS

3

Brief Intro to (U)EFI: Boot flow

4

Brief Intro to (U)EFI: SEC concepts

- purpose: initialize enough HW to run code that uses stack

- wrote in assembler, microarchitecture dependent

- provided by CPU vendor

- despite of it’s name, makes no security checks by default

- switches BSP to 32 bit mode with flat memory

- detects and initializes CPU caches

- sets L2 cache to no-eviction mode1, so it can be used as

preliminary RAM

- finds PEI Core and transfers control to it

- [1] a.k.a. Cache-as-RAM, more info here: coreboot.org/images/6/6c/LBCar.pdf

5

Brief Intro to (U)EFI: PEI concepts

- purpose: initialize RAM and mission-critical hardware

- has two sub-phases: BeforeMem and AfterMem

- binaries stored in PE32 and TE2 formats

- BeforeMem binaries must be executable in place

- PEI Core and Modules

- PEI dependency expressions

- PEI-to-PEI Interfaces and Hand-Off Blocks

- PeiServices

- on S3 resume, UEFI boot process ends here

- otherwise, control and HOBs are transferred to DXE Core

[2] Terse Executable, a PE32 with most of it’s headers cut off to save precious space in L2 cache

6

Brief Intro to (U)EFI: DXE concepts

- purpose: initialize all remaining hardware

- 64 bit code on most machines, exceptions are rare

- binaries stored in PE32+ format

- DXE Core, Dispatcher, Drivers, OROMs and Applications

- DXE Protocols

- SMM Core, Dispatcher, Drivers and SMI Handlers

- DXE dependency expressions

- BootServices and RuntimeServices

- dispatches all available drivers and starts BDS application

7

Brief Intro to (U)EFI: BDS concepts

- purpose: find a bootloader and transfer control to it

- POST screen, BIOS Setup, firmware update, recovery tools, etc.

- all UEFI stuff including BootServices, loaded drivers, published

protocols and so on, is available to UEFI bootloaders

- final OS bootloader should generate ExitBS event

- after that, only runtime services, ACPI tables, SMI handlers and

special purpose memory regions are accessible to OS, all other

memory is marked free

8

What an Attacker Can Do? 9

What an Attacker Can Do: PWNAGE 10

- persist across OS reinstall and hard drive change

- obtain full access to hardware, physical memory and CPU context

- steal secrets from OS and sent them out by network

- resist detection to a point of being virtually undetectable without

additional hardware

- in other words: PWN EVERYTHING

What an Attacker Can Do: A quote 11

[3] “How Many Million BIOSes Would You Like to Infect” by Corey Kallenberg and Xeno Kovah

Attack Vectors 12

[4] “UEFI, Open Platforms, and the Defender’s Dilemma” by Vincent Zimmer

Attack Vectors: SPI flash chip 13

- the most desired and dangerous attack vector

- successful attack leads to full system control if verified boot isn’t

used, DoS otherwise

- provides persistence, renders all other protections futile

- there are millions of systems without any SPI flash protection,

waiting to be pwned

Attack Vectors: SMI handlers 14

- one of the most privileged execution modes available

- successful attack very often provides SPI flash access

- tons of systems are (still) vulnerable

- hard to fix even with source code, almost impossible without one

- can’t be disabled without major rework of the whole firmware

[3] “How Many Million BIOSes Would You Like to Infect” by Corey Kallenberg and Xeno Kovah

Attack Vectors: S3 BootScript 15

- set of instructions to restore system configuration on ACPI S3

resume, gathered in DXE phase

- enables fast resume, when the whole DXE phase is skipped

- was stored in ACPI NVS memory available for OS-level attacker

- now copied to SMRAM, a successful attack on SMM renders

SMM-based BootScript protection useless

- SPI flash protections can be disabled after a vulnerable S3 cycle

- most systems are vulnerable even after a year from disclosure

Attack Vectors: Option ROMs 16

- stored on internal PCI(e) devices

- and any external devices capable of PCI bus mastering:

Firewire, Thunderbolt, ExpressCard, etc.

- loaded during DXE phase as normal DXE drivers

- no verification performed if SecureBoot is disabled

- some systems will launch an Option ROM even if verification fails

- attacker can modify an Option ROM of an existing device

Attack Vectors: BIOS Setup 17

- can control SPI flash access

- controls SecureBoot

- settings are stored in NVRAM variable called “Setup”, which can

be changed from UEFI Shell (always) or any UEFI-bootable OS

(if the variable has RT flag)

- protected by password, which can be stored using a weak

algorithm, removed with “factory password” or reset by PC vendor

Attack Vectors: SecureBoot 18

- controlled from BIOS Setup

- default mode trusts too many parties: PC vendor, Microsoft,

anyone who get an image signed by Microsoft ($99 only),

Canonical, may be more.

- erasing PK variable disables SecureBoot completely

- various known vulnerabilities can still be present

Attack Vectors: Vendor-specific 19

- engineering backdoors may exist in different parts of the system:

0. factory password for BIOS Setup

1. vendor’s SMM-based BIOS flasher used for SMBIOS

information editing

2. special signature or hash in DB to bypass SecureBoot

3. anything that can help restore a locked or unbootable

configuration without RMA

- vulnerabilities may (sure) exist in vendor flash tools, SMI

handlers, SecureBoot implementations, etc.

- there are almost no public researches for vendor-specific

vulnerabilities, mostly because of NDAs

Protections 20

Protections: SPI flash 21

- read-only flash is the best, but almost impossible because of ME

and NVRAM

- Intel Flash Descriptor restricts access to regions other than BIOS

- hardware-validated boot (Intel BootGuard, AMD PSP) converts

evil SPI reflash from total PWNAGE to an ordinary DoS

- BiosGuard (PFAT) disables SPI reflash from SMM code

- Protected Range Registers can be used to restrict read/write

access to certain flash regions, even for SMM code

- SMM_BWP bit disables SPI reflash from normal OS code

- BLE/BIOS_WE considered broken5 and shouldn’t be used

anymore

[5] “Attacks on UEFI security, inspired by Darth Venamis's misery and Speed Racer” by Korey

Kallenberg and Rafal Wojtczuk

Protections: SMI handlers 22

- the best protection is to disable SMM for good, if possible

- TSEGMB register protects SMM code and data from DMA attacks

- Intel SMI Transaction Monitor can be used to protect the system

from evil SMM code

- Intel Software Guard Extension can be used to protect an

application from all evil code, including SMM

- MSR_SMM_FEATURE_CONTROL can be used to protect from

SMM call-outs

- Phoenix NX trick6 can also be used to protect from SMM call-outs

even on AMD and older-than-Haswell Intel systems

- Defensive coding and multistage code review are very helpful

[6] “UEFI Firmware – Securing SMM” by Dick Wilkins

Protections: S3 BootScript 23

- the best protection is to disable S3 for good

- BootScript can be stored inside security coprocessor (AMD PSP)

- SmmLockBox can be used to store a copy of the BootScript in

SMRAM to verify that the original is not changed

- hardware-reduced platforms and embedded systems can use a

static BootScript-less S3 resume boot path

Protections: Option ROMs 24

- disable any external interfaces with PCI bus mastering

- enable, setup and use SecureBoot, set it’s policy to prevent

launch of unsigned Option ROMs

- prevent unnoticed hardware changes

Protections: BIOS settings 25

- the best protection is to remove NV from NVRAM,

a.k.a. NVRAM emulation

- use BIOS password to prevent easy access to BIOS Setup

- use SecureBoot to prevent loading of UEFI Shell, which can

access all non-auth variables including “Setup” and “Defaults”

- review the code of your bootloader, as it have the same access

level as UEFI Shell until ExitBS event is generated

Protections: Vendor-specific and 0-days 26

- the best protection from that stuff is a good old paranoia

- second best are KISS principle and common sense

- if the system can boot your favorite OS without any given

component, remove it to reduce possible attack surface

- remove all vendor-specific flash tools, recovery tools, password

restoration tools, etc.

- use a minimal trusted bootloader, write one if you don’t trust shim

An Average System 27

An Average System: Acer R3-471T 28

- entry-level laptop produced by Acer

- based on Haswell ULT SoC, Core i3-4030U in my case

- uses Quanta ZQX motherboard with 4Gb DDR3L memory and

optional dedicated graphic card onboard

- firmware based on Insyde H2O platform, UEFI 2.3.1C compatible

- latest firmware version is v1.09, published in July 2015

- supports SecureBoot, BIOS Setup password protection,

BIOS Setup unlock via Acer Support

Test Tools 29

Test Tools: CHIPSEC 30

- platform security assessment framework by Intel ATR

- has two versions, open source and proprietary

- open source version is available on github.com/chipsec/chipsec

- proprietary version is available for systems vendors and has

diagnostics for yet undisclosed vulnerabilities

- can be started from Linux and UEFI Shell

- detects various misconfigurations and vulnerabilities specific to

the Intel platform it runs on

Test Tools: UEFITool 31

- open source tool to decompose, view and modify UEFI firmware

images

- parses firmware image file into a tree structure, detects some

misconfigurations

- reconstructs an image with all modifications done

Test Tools: UEFI Shell 32

- loaded as transient UEFI booloader

- provides console with access to UEFI state after BDS phase end

- has various useful command to view and change physical

memory, load and unload DXE drivers, change NVRAM variables

and so on

- can run UEFI applications under itself

- acts as modern DOS replacement, single user CUI OS with direct

memory and hardware access

- useful for UEFI debugging, extremely dangerous in wrong hands

Test Results 33

Test Results: CHIPSEC 34

- PR registers set to WP the whole BIOS except NVRAM OK

- PR registers are reset to zero after S3 FAIL

- S3 BootScript is located outside SMRAM, not protected

from any changes, has numerous DISPATCH opcodes FAIL

- SMM_BWP is not set, NVRAM region is protected only by

BLE/BIOS_WE FAIL

- “Setup” variable has RT flag FAIL

Test Results: UEFITool 35

- BIOS has Capsule flash services, Insyde IHISI flash interface,

Intel PFAT flash driver, SecureFlash driver MISTRUST

- has WPBT7 driver, the firmware can automatically install and run

Windows executables MISTRUST

- has UnlockPwd driver, the attacker can override BIOS Setup

password with Acer’s tech support help MISTRUST

- BIOS Setup password is stored as cleat text FAIL

[7] http://download.microsoft.com/download/8/a/2/8a2fb72d-9b96-4e2d-a559-4a27cf905a80/windows-

platform-binary-table.docx

Test Results: UEFI Shell 36

- UEFI network stack is loaded and operational regardless of PXE

and/or boot settings MISTRUST

- SPI flash protection and SecureBoot can both be disabled by

changing “Setup” variable FAIL

What Now? 37

What Now: Answers 38

- emulate NVRAM to get rid of any flash writes after POST

- make the whole BIOS region read-only

- protect BIOS password storage from reading

- disable S3 and remove it’s support for good

- setup, test and use SecureBoot

- remove WPBT driver, UnlockPwd driver, BIOS protection drivers,

flash drivers, recovery drivers, UEFI network stack and other

unneeded and potentially vulnerable components

- prepare a golden BIOS image and periodically check against it

Prepare to Dig Deep 39

Prepare to Dig Deep: Hardware 40

- field surgery on UEFI images will be painful

- it will crash, it will brick, it will go nuts, but you can try again until

ether it is done or you are done

- some things can be done to ease the pain, such as:

0. disassemble the laptop to the bare board and remove all you

can remove from it

1. find or buy board schematics

2. buy (and modify, if needed) mPCIe LPC POST card

3. get a decent SPI programmer and replace onboard SPI chip

with ZIF socket, or use a SPI emulator instead

Prepare to Dig Deep: POST card 41

- most laptops still use SuperIO controllers on LPC bus

- debug port 80h is decoded to LPC bus by default

- Sintech makes cheap LPC debug cards, ideal for our purposes

- there is no standard LPC debug port pinout, so your system may

use a different one

- two possible solutions: either find a compatible card or make one

compatible

Prepare to Dig Deep: ST8672 card pinout 42

- Sintech ST8672 is an LPC debug card with mPCIe interface

- costs about $5, easy to modify because of single-layer PCB

- LPC signals are on pins 8 (LAD0), 10, 12, 14 and 16 (LFRAME#)

- LPC clock is on pin 19, platform reset signal is on pin 17

- this is the most popular pinout with the cheapest cards available

Prepare to Dig Deep: Quanta ZQX pinout 43

- Quanta uses a different pinout for it’s newer boards

- LPC signals are still on pins 8, 10, 12, 14 and 16, but reversed

- LPC clock is on pin 45 (instead of 19), platform reset signal is on

pin 47 (instead of 17), some resistors must be added

Prepare to Dig Deep: SPI programmer 44

- cheapest SPI programmers (down to $3) are based on WCH

CH341A USB-serial converter, but they totally worth the price

- FTDI FT2232H-based programmers are relatively cheap (around

$20) and able to flash all current SPI chips using flashrom8

- even better options are Autoelectric TL866A and Dediprog SF600,

but beware the price

- use voltage level shifter to interface with 1.8V SPI flash chips,

if your programmer doesn’t support them natively

[8] http://flashrom.org/Flashrom

Prepare to Dig Deep: SPI emulator 45

- replaces physical SPI flash chip with virtual one

- 100x speed-up of flash update, image editing on-the-fly

- the only downside compared to SPI programmer is price,

which starts on $300 and goes up very fast

- tried Samedisk ZC25128 and Dediprog EM100-Pro,

10/10 will use again

Prepare to Dig Deep: Software 46

- Linux with python2 for using Chipsec, openssl and efitools for

setting up SecureBoot and signing your bootloader

- TianoCore EDK2 build environment to build your PEI/DXE drivers

- UEFI Shell binary that works on your platform

- UEFITool or any other similar tool to modify UEFI images

- good disassembler like radare2 or IDA

- Intel ASL compiler for possible DSDT reverse and modification

- your favorite hex editor

- anything else you will find useful

Fix It Yourself 47

Fix It Yourself: NVRAM emulation 48

- NVRAM is accessible using four UEFI runtime services:
GetVariable, SetVariable, GetNextVariableName, QueryVariableInfo

- we need to hook this services after they are published and after

all reads and writes initiated by the firmware are done

- possible hook points are on EndOfDxe, ReadyToBoot and ExitBS

- EndOfDxe hook will render BIOS Setup useless – too early

- ReadyToBoot hook will require auth. variable emulation for

SecureBoot – too hard to implement properly

- ExitBS hook is the latest point possible, and a bootloader will

have full access to the firmware – SecureBoot and trusted

bootloader are mission-critical

Fix It Yourself: EmuVariable driver 49

- TianoCore has a reference NVRAM emulation driver in MdePkg

- Clover Bootloader has an expanded one9 for starting OSX on PC

- changed the driver from Clover to start emulation on ExitBS

[9] http://sourceforge.net/p/cloverefiboot/code/HEAD/tree/EmuVariableUefi/

Fix It Yourself: Problems with FLOCKDN 50

- PR registers should be set to write-protect the real NVRAM region

- which means it must also be done on ExitBS

- but we can’t change their values after FLOCKDN bit is set

- it’s done by PchInitDxe driver on this platform

- the driver must be patched to prevent locking the flash

configuration in DXE phase, but we absolutely must lock it

in our driver afterwards

Fix It Yourself: Set PR registers 51

Fix It Yourself: Find DSDT 52

- ACPI S3 state availability is reported to OS via DSDT table

- DSDT must patched to always report S3 as disabled

- but it can also be controlled by BIOS Setup

- on this platform, DSDT is stored in a RAW section together with

other ACPI tables

Fix It Yourself: Decompile DSDT 53

- ACPI tables are stored in ACPI Machine Language format, but

they can be decompiled into human-readable ACPI Source

Language using Intel iASL Compiler10

[10] https://www.acpica.org/downloads

Fix It Yourself: Patch DSDT 54

- you can try to edit and recompile DSDT, but it can be tricky to get

rid of errors

- it’s much easier to patch the default value of SS3 variable from 1

to 0 and fix DSDT checksum

- decompile the patched file again, iASL tells what the valid

checksum should be

Fix It Yourself: Patch S3 setup handler 55

- DSDT patch alone may not be enough, because SS3 variable can

be changed from it’s default during DXE phase

- find and patch the handler that changes this variable…

- …or just replace dangerous SS3 with harmless SS1 in it

- you can patch it differently, but the goal is to disable S3 for OS

Fix It Yourself: Final stone on S3 grave 56

- now we need to make sure that S3 boot path will never work, so

even if the attacker manages to prepare the whole new DSDT

with enabled S3, it will only result in hard reset or crash

- it can be done by patching PeiGetBootMode to never return

BOOT_ON_S3_RESUME

- or by destroying S3 BootScript on ExitBS

- or by writing a simple PEI driver that will call PeiResetService if

PeiGetBootMode tells we are in S3 resume

- either way is fine

Fix It Yourself: PreventS3Pei driver 57

Fix It Yourself: SecureBoot key pairs 58

- now we have our SPI flash read-only after ExitBS

- but still accessible from UEFI Shell and bootloaders

- SecureBoot is to the rescue in this case

- to use SecureBoot properly, we need three different key pairs:

1. Platform Key to enable SecureBoot and sign KEK

2. Key Exchange Key to sign db and dbx

3. Image Signing Key to sign bootloaders and executables

- all this keys can be generated by using OpenSSL

Fix It Yourself: Generate PK 59

- PK key pair suitable for SecureBoot can be generated by the

following openssl call:
openssl req -new -x509 -newkey rsa:2048 -subj
"/CN=Platform Key/" -keyout PK.key -out PK.crt -days
3650 -nodes -sha256

- cert-to-efi-sig-list utility from efitools package converts generated

certificate to EFI Signature List format:
cert-to-efi-sig-list -g "$(uuidgen)" PK.crt PK.esl

- PK.esl must be self signed using sign-efi-sig-list utility:
sign-efi-sig-list -k PK.key -c PK.crt PK PK.esl
PK.auth

Fix It Yourself: Generate KEK 60

- KEK key pair can be generated by a similar openssl call:
openssl req -new -x509 -newkey rsa:2048 -subj
"/CN=Key Exchange Key/" -keyout KEK.key -out KEK.crt
-days 3650 -nodes -sha256

- use cert-to-efi-sig-list to convert KEK.crt into KEK.esl:
cert-to-efi-sig-list -g "$(uuidgen)" KEK.crt KEK.esl

- to add multiple certificates into KEK, concatenate their ESL files:
cat KEK.esl MsKek.esl > KEK.esl

- combined KEK.esl must be signed by PK using sign-efi-sig-list:
sign-efi-sig-list -k PK.key -c PK.crt KEK KEK.esl
KEK.auth

Fix It Yourself: Generate db 61

- db key pair can also be generated by a similar openssl call:
openssl req -new -x509 -newkey rsa:2048 -subj
"/CN=Image Signing Key/" -keyout db.key -out db.crt
-days 3650 -nodes -sha256

- use cert-to-efi-sig-list to convert db.crt into db.esl:
cert-to-efi-sig-list -g "$(uuidgen)" db.crt db.esl

- to add multiple certificates into db, concatenate their ESL files:
cat db.esl MsWin.esl UefiCa.esl > db.esl

- combined db.esl must be signed by KEK using sign-efi-sig-list:
sign-efi-sig-list -k KEK.key -c KEK.crt db db.esl
db.auth

Fix It Yourself: Sign your bootloader 62

- sign an UEFI Shell binary by db key using sbsign utility:
sbsign --key db.key --cert db.crt --output
bootx64.efi shellx64.efi

- prepare a FAT32-formatted USB flash drive with this signed UEFI

Shell in /EFI/Boot, copy UpdateVars.efi from /usr/share/efitools/efi

onto it:

cp bootx64.efi /media/UsbFlash/EFI/Boot/

cp /usr/share/efitools/efi/UpdateVars.efi
/media/UsbFlash/

- also copy all *.auth files you’ve prepared on
previous steps:
cp *.auth /media/UsbFlash/

Fix It Yourself: Enable SecureBoot 63

- go to BIOS Setup and set a good supervisor password

- insert the prepared USB flash drive and try to boot from it with

SecureBoot disabled, it should boot to UEFI Shell

- go to Security, select Clear All SecureBoot Variables option, save

and exit BIOS Setup

- boot from prepared USB flash drive and execute:
UpdateVars db db.auth
UpdateVars KEK KEK.auth
UpdateVars PK PK.auth

- try to execute the last command again, it should fail with

“security violation” message

- if so, we have SecureBoot armed and ready

- reboot and test if the signed UEFI shell is bootable, it should be

Fix It Yourself: Remove UnlockPwd 64

- now we are in control of the boot process, but only if BIOS

password is not known to the attacker and can’t be reset

- Acer uses UplockPwd driver for resetting forgotten BIOS

passwords

- if the driver is removed, BIOS will crash after 3 failed password

attempts

Fix It Yourself: Remove other stuff 65

- remove WPBT driver

- remove flash drivers: PfatServices, Ihisi, SecureFlashDxe,

- remove CapsulePei, replace CapsuleDxe with a dummy driver

that overrides UpdateCapsule and QueryCapsuleCapabilities to

return EFI_UNSUPPORTED

- remove unused protections: BiosProtect, PchBiosWriteProtect

- remove network stack: NetworkLocker, DhcpDummy, Dpc, Mnp,

Arp, Snp, Ip4, Ip4Config, Udp4, Dhcp4, Mtftp4, RtkUndiDxe

- remove ME-related drivers: MeFwDowngrade,

BiosExtensionLoader

- remove all other stuff you don’t want or need, if the firmware can

still boot your OS - it’s fine to have that components removed

Conclusion 66

Conclusion: Summary 67

- PC is still working and can boot an UEFI-compatible OS

- after ExitBS:

0. BIOS is read-only for all execution modes including SMM

1. BIOS password storage is inaccessible

2. NVRAM is emulated, no changes can persist across reset

- SecureBoot works and allows executing only the images we sign

- ACPI S3 is disabled for good

- Intel FPT utility can be used for further BIOS updates, but it can

only be performed if BIOS password is known

- UEFI network stack is no more

Conclusion: Issues remaining and new 68

- SMM is still vulnerable, but breaching into it grants no persistence

- BootXXXX variables can’t be created by OS, we have to add new

bootloaders manually

- ACPI S3 doesn’t work, but it can be replaced by S4 on fast SSD

- platform security relies upon PR registers, BIOS password,

SecureBoot implementation and bootloader, a breach in any of

them renders it useless

- network boot is not working anymore

- signed UEFI Shell we’ve prepared for SecureBoot testing is a

skeleton key for the platform and must either be kept secret or

securely removed

Conclusion: What else? 69

- try to contact Acer once again and push them to fix the mess

- or throw the system out and don’t buy from them anymore

- fixing security vulnerabilities without sources is hard, but possible

- the vendor who care can fix them much faster and much better

- BIOS region can be made read-only by hardware SPI protection,

but it requires two SPI chips to be designed in during board

manufacturing

- the idea of having NVRAM in the same flash chip as BIOS was

bad from the beginning and gets worse every day

- AMD-based platforms may be vulnerable too (harder to test

without CHIPSEC)

- publish the sources, patched binaries and slides on GitHub

Q&A 70

