Fix it yourself
detecting and fixing UEFI firmware vulnerabilities
without access to it's source code

Nikolaj Schlej
Software Engineer BIOS, congatec AG
schlej@live.de, @NikolajSchlej

26.11.2015

NIGHTS

About me

- a.k.a. CodeRush

- tinkering with UEFI since 2011

- came to InfoSec from BIOS modding community
- author of UEFITool

- wrote master thesis on CoMs UEFI security

- work for congatec AG as BIOS engineer

O congatec

g an LR

4 N\

Brief Intro to (U)EFI
What an Attacker Can Do?
Attack Vectors
Protections

An Average System
Test Tools

Test Results

What Now?

Prepare to Dig Deep
Fix It Yourself
Conclusion

Q&A

lenovo

FoxXconn

inte

phoeﬁix

Fashaelagive

ARM

Abachute Sormnre Corpont

ardhyne Technelogies PYT LTDL
et Labs,

Ferdbversital
FirmTek.LLC

AMD

smarter Choloe

GIT Japer
HighPoimn Techralogies inc.
Vs Bechevsk gies I
bregpated Device Techrasbongy
[.

American
Megatrends

Lo g n
Warvellirgerratior Lid
Moo Graphics

TOSHIBA

Tewas lnstraments .
h rpatet lac
Tamelsh Corp

Takya Electron Deesios Lod
nafarg Co. Ll
U ke Cpersbidity Laborstory

Magic ine
hrvsloy e
ming Techrakigy
srwecmity by
D Technchogies Beijrg}Lad

Mistsusbita Kb cric Industial
U ———

XX
QLOGIC

MIGHTS
Brief Intro to (U)EFI: What is it?

(Unified) Extensible Firmware Interface

modern industrial standard for x86 firmware

initially developed by Intel as BIOS replacement for I1A64

used by Macs since 2007, PCs since 2009

performs HW initialization required to start an OS

modular and feature rich, uses well defined and known formats
mostly written in C, much easier to develop as legacy BIOS

Pre
Verifier

Security

(SEC)

xR ST
\’ 2 ::.‘ ‘; -
R T
e TP

Brief Intro to (U)EFI: Boot flow
S - st onier [

UEFI OS-Absent
Interface Aln

Transient OS
Environment
Device,
Bus, or
Service
Prver
>

()

FI Driver

Dispatcher

Final OS Boot
Loader

Pre EFI Driver Execution | Boot Dev Transient
Initialization Environment Select System Load

(PEI) (DXE) (BDS) (TSL)

0OS-Present
App

Final OS
Environment

Shutdown

MIGHTS
Brief Intro to (U)EFI: SEC concepts

purpose: initialize enough HW to run code that uses stack
wrote in assembler, microarchitecture dependent
provided by CPU vendor

despite of it's name, makes no security checks by default
switches BSP to 32 bit mode with flat memory

detects and initializes CPU caches

sets L2 cache to no-eviction mode?, so it can be used as
preliminary RAM

finds PEI Core and transfers control to it

Security
(SEC)

[1] a.k.a. Cache-as-RAM, more info here: coreboot.org/images/6/6¢/LBCar.pdf

/ LA

7 \

MIGHTS
Brief Intro to (U)EFI: PEI concepts

- purpose: initialize RAM and mission-critical hardware

- has two sub-phases: BeforeMem and AfterMem

- binaries stored in PE32 and TE? formats

- BeforeMem binaries must be executable in place

- PEI Core and Modules

- PEI dependency expressions

- PEI-to-PEI Interfaces and Hand-Off Blocks

- PeiServices

- on S3 resume, UEFI boot process ends here

- otherwise, control and HOBs are transferred to DXE Core

Pre EFI
Initialization

(PEI)

[2] Terse Executable, a PE32 with most of it's headers cut off to save precious space in L2 cache

/ LA

7 \

MIGHTS
Brief Intro to (U)EFI: DXE concepts

purpose: initialize all remaining hardware

64 bit code on most machines, exceptions are rare
binaries stored in PE32+ format

DXE Core, Dispatcher, Drivers, OROMs and Applications
DXE Protocols

SMM Core, Dispatcher, Drivers and SMI Handlers

DXE dependency expressions

BootServices and RuntimeServices

dispatches all available drivers and starts BDS application

Driver Execution
Environment

(DXE)

MIGHTS
Brief Intro to (U)EFI: BDS concepts

purpose: find a bootloader and transfer control to it
POST screen, BIOS Setup, firmware update, recovery tools, etc.
all UEFI stuff including BootServices, loaded drivers, published
protocols and so on, is available to UEFI bootloaders

final OS bootloader should generate ExitBS event

after that, only runtime services, ACPI tables, SMI handlers and
special purpose memory regions are accessible to OS, all other
memory Is marked free

Boot Dev
Select

(BDS)

What an Attacker Can Do?

MIGHTS
What an Attacker Can Do: PWNAGE 10

persist across OS reinstall and hard drive change

obtain full access to hardware, physical memory and CPU context
steal secrets from OS and sent them out by network

resist detection to a point of being virtually undetectable without
additional hardware

In other words: PWN EVERYTHING

What an Attacker Can Do: A quote 11

TELL EVERYONE THEIR COMPUTERS ARE ARCHITECTURALLY
INSECURE AT THE LOWEST LEVELS AND NOBODY BATS AN EYE

S

¥

e

.H‘,’:\ -
STEAL ONE GPG KEY FROM MEMORY IN

TAILS AND EVERYONE LOSES THEIR MINDS .

[3] “How Many Million BIOSes Would You Like to Infect” by Corey Kallenberg and Xeno Kovah

/ \

NIGHTS
Attack Vectors

SMI
Handlers

UEFI
System

Firmware

BIOS
Settings
NVRAM

[4] “UEFI, Open Platforms, and the Defender’s Dilemma” by Vincent Zimmer

/ LA

7 \

Secure

Boot

12

NIGHTS
Attack Vectors: SPI flash chip 13

the most desired and dangerous attack vector

successful attack leads to full system control if verified boot isn’t
used, DoS otherwise

provides persistence, renders all other protections futile

there are millions of systems without any SPI flash protection,
waiting to be pwned

Intel (R) Flash Programming Tool. Uersion: 8.1.10.1286
Copyright (c) 2007 - 2012, Intel Corporation. All rights reserved.

Platform: Intel(R) Patsburg Chipset - Reserved DID Ox1D4%1
Reading HSFSTS register... Flash Descriptor: Ualid

-- Flash Devices Found ---
W25064BU ID:OxEF401T Size: 8192KB (65536Kb)

PDR Region does not exist.

- Reading Flash [0x003000] 8KB of 8KB - 100% complete.

- Erasing Flash Block [0x003000] - 100% complete.

- Programming Flash [0x003000] 8KB of 8KB - 100% complete.
- Uerifying Flash [0x003000] 8KB of 8KB - 100% complete.
RESULT: The data is identical.

FPT Operation Passed

/ LR

4 \

ZEROR

Attack Vectors: SMI handlers 14

one of the most privileged execution modes available

successful attack very often provides SPI flash access

tons of systems are (still) vulnerable

hard to fix even with source code, almost impossible without one
can’t be disabled W|thout major rework of the whole firmware

THE
INCURSION

[3] “How Many Million BIOSes Would You L|ke to Infect” by Corey Kallenberg and Xeno Kovah

Y\ S aravg g

MIGHTS
Attack Vectors: S3 BootScript 15

set of instructions to restore system configuration on ACPI S3
resume, gathered in DXE phase

enables fast resume, when the whole DXE phase is skipped
was stored in ACPI NVS memory available for OS-level attacker
now copied to SMRAM, a successful attack on SMM renders
SMM-based BootScript protection useless

SPI flash protections can be disabled after a vulnerable S3 cycle
most systems are vulnerable even after a year from disclosure

:s

SLEEP AGAIN

- NIGHTS
Attack Vectors: Option ROMs 16

stored on internal PCl(e) devices

and any external devices capable of PCI bus mastering:

Firewire, Thunderbolt, ExpressCard, etc.

loaded during DXE phase as normal DXE drivers

no verification performed If SecureBoot Is disabled

some systems will launch an Option ROM even if verification fails
attacker can modify an Option ROM of an existing device

Intel(R) Rapid Storage Technology - Option ROM - 18.5.8.1834
Copyright(C) Z26883-11 Intel Corporation. All Rights Reserved.

RAID Volunmes: » = Accelerated Disk/Volune
ID Name Level Strip Size Status Bootable
1 Volune_B888 RAIDB(Cache) 1Z28KB 18.6GB Normal No
Physical Devices:
Port Device Model Serial # Size TypesStatus(Veol ID)
-8 HDC HDZBEADS-BBR HD-HCAVYBBOBG6618 1.87TB Non-RAID Disk
1 INTEL SSDSA2SPBZ LC16188BCJB2BAGN 18.6GB Cache Disk(1)
Press [RLIRSS) to enter Configuration Utility...
/ N\

NIGHTS
Attack Vectors: BIOS Setup 17

can control SPI flash access

controls SecureBoot

settings are stored in NVRAM variable called “Setup”, which can
be changed from UEFI Shell (always) or any UEFI-bootable OS
(if the variable has RT flag)

protected by password, which can be stored using a weak
algorithm, removed with “factory password” or reset by PC vendor

&) ACERFTW.rom

Offset(h) 00 01 02 03 04 05 Oe 07
3FED FF FF FF FF FF
N) - .7 £) (7

7 SF 00 00 00 00 00 00 00 00 00 00 OO

JJ O3 3 o J o 44)1C
FF FF FF FF FF
Signature

MNIGHTS
Attack Vectors: SecureBoot 18

controlled from BIOS Setup

default mode trusts too many parties: PC vendor, Microsoft,
anyone who get an image signed by Microsoft ($99 only),
Canonical, may be more.

erasing PK variable disables SecureBoot completely
various known vulnerabilities can still be present

Secure Boot Violation
Invalid signature detected. Check Secure

Boot Policy in Setup

(04

NIGHTS

Attack Vectors: Vendor-specific 19

- engineering backdoors may exist in different parts of the system:
0. factory password for BIOS Setup
1. vendor’'s SMM-based BIOS flasher used for SMBIOS
Information editing
2. special signature or hash in DB to bypass SecureBoot
3. anything that can help restore a locked or unbootable
configuration without RMA

- vulnerabilities may (sure) exist in vendor flash tools, SMI
handlers, SecureBoot implementations, etc.

- there are almost no public researches for vendor-specific
vulnerabilities, mostly because of NDAs

20

R N
B d -
,‘8.’_.’5 '-' P 5

¢ 3 Pl u.).‘ y

-

www.zeronights.org

NIGHTS

Protections: SPI flash 21

- read-only flash is the best, but almost impossible because of ME
and NVRAM

- Intel Flash Descriptor restricts access to regions other than BIOS

- hardware-validated boot (Intel BootGuard, AMD PSP) converts
evil SPI reflash from total PWNAGE to an ordinary DoS

- BiosGuard (PFAT) disables SPI reflash from SMM code

- Protected Range Registers can be used to restrict read/write
access to certain flash regions, even for SMM code

- SMM_BWP bit disables SPI reflash from normal OS code

- BLE/BIOS WE considered broken® and shouldn’t be used
anymore

[5] “Attacks on UEFI security, inspired by Darth Venamis's misery and Speed Racer” by Korey
Kallenberg and Rafal Wojtczuk

/ LA

7 \

NIGHTS

Protections: SMI handlers 22

the best protection is to disable SMM for good, if possible
TSEGMB reqister protects SMM code and data from DMA attacks
Intel SMI Transaction Monitor can be used to protect the system
from evil SMM code

Intel Software Guard Extension can be used to protect an
application from all evil code, including SMM

MSR_SMM_ FEATURE_CONTROL can be used to protect from
SMM call-outs

Phoenix NX trick® can also be used to protect from SMM call-outs
even on AMD and older-than-Haswell Intel systems

Defensive coding and multistage code review are very helpful

[6] “UEFI Firmware — Securing SMM” by Dick Wilkins

/ LA

7 \

Protections: S3 BootScript 23

the best protection is to disable S3 for good

BootScript can be stored inside security coprocessor (AMD PSP)
SmmLockBox can be used to store a copy of the BootScript in
SMRAM to verify that the original is not changed
hardware-reduced platforms and embedded systems can use a
static BootScript-less S3 resume boot path

N

#1: PROTECT YOUR SLEEP

> >

ZERO I

Protections: Option ROMs

disable any external interfaces with PCI bus mastering
enable, setup and use SecureBoot, set it's policy to prevent
launch of unsigned Option ROMs

prevent unnoticed hardware changes

24

ZERO |NIGHTS

‘ Protections: BIOS settings 25

the best protection is to remove NV from NVRAM,

a.k.a. NVRAM emulation

use BIOS password to prevent easy access to BIOS Setup

use SecureBoot to prevent loading of UEFI Shell, which can
access all non-auth variables including “Setup” and “Defaults”
review the code of your bootloader, as it have the same access
level as UEFI Shell until ExitBS event is generated

www.zeronights.org

/ / R AT T M\ \

MIGHTS
Protections: Vendor-specific and O-days 26

the best protection from that stuff is a good old paranoia

second best are KISS principle and common sense

If the system can boot your favorite OS without any given
component, remove it to reduce possible attack surface

remove all vendor-specific flash tools, recovery tools, password
restoration tools, etc.

use a minimal trusted bootloader, write one if you don’t trust shim

§ ultimate
sophistication.”

— Leonardo da Vinci

NIGHTS

An Average System

.- S 8-m

St ~ u‘

Essentia)
Lo 3 App

e

AT ey e N 0 g
et B

[

27

NIGHTS
An Average System: Acer R3-471T 28

entry-level laptop produced by Acer

based on Haswell ULT SoC, Core 13-4030U in my case

uses Quanta ZQX motherboard with 4Gb DDR3L memory and
optional dedicated graphic card onboard

firmware based on Insyde H,O platform, UEFI 2.3.1C compatible
latest firmware version is v1.09, published in July 2015

supports SecureBoot, BIOS Setup password protection,

BIOS Setup unlock via Acer Support

Enter Unlock Password (Key:74003699)

NIGHTS

Test Tools

29

NIGHTS
Test Tools: CHIPSEC 30

platform security assessment framework by Intel ATR

has two versions, open source and proprietary

open source version is available on github.com/chipsec/chipsec
proprietary version is available for systems vendors and has
diagnostics for yet undisclosed vulnerabillities

can be started from Linux and UEFI Shell

detects various misconfigurations and vulnerabilities specific to
the Intel platform it runs on

(intel/ security @

CHIPSEC: Platform Security Assessment
Framework

CHIPSEC is a framework for security assessment of hardware and firmware components on the platform, enabling security
research, testing, and forensics. Intel originally created it to help internal teams find and fix vulnerabilities in platform hardware and

firmware. We have released it as open source so that the external community can benefit from increased confidence in platform

security.
/ | \
\ \
\ \
4 \Y

NIGHTS

Test Tools: UEFITool

31

open source tool to decompose, view and modify UEFI firmware

Images

parses firmware image file into a tree structure, detects some

misconfigurations

reconstructs an image with all modifications done

Name
4BI0S region
Padding

47A935409-0468 -444A-81CE-BBFe17D898DF
818-5AE@-4EB2-B2EB-488B236570822

4 Compressed section
4Raw section
Padding

4 7A9354D09-8468-444A-81CE-BBFE17D896DF
ABB7AFS58-FD2D-4872-A321-CAFCT72977EFA

35B898CA-B6AS-49CE-
AD37DA42 -3ABC-AEDA-
F276BDEC-6C41-21E5-
987EABEA-FBFD-4273-
ESFECCFB-EBB8B-B361-
C8F9282B-8983-4478-
451C9FABC-5243-4473 -

4 FC1BCDBA-7D31-49AA-936A-A468809DDB33

8C72-984735CC49B7
BOEB-BCBE1DBA713B
9E71-BBA13807B45E
B819-A72168ADFE760
BCD1-FE248B2A387E
948A-E65E7AS522780
B265-B3C8FFAFFI9FA

DXE dependency section

PE32 image section

Type
Region
Padding
Volume
File
Section
Section
Padding
Volume
File
File
File
File
File
File
File
File
Section
Section
Section

Subtype

BIOS
Non -

empty

FFSv2

DXE

core

Compressed

Raw
Non -

empty

FFSv2

PEI
DXE
PEI
DXE
DXE
DXE
DXE
DXE

GUID defined
DXE dependency

module
core

module
driver
driver
driver
driver
driver

PE32 image

SmmRelocPeim
DxeMain
PpisNeededByDxeCore
RestoreMtrr
StatusCodeReport
SaveMemoryConfig
SavePegConfig
Crc325SectionExtract

MIGHTS
Test Tools: UEFI Shell 32

loaded as transient UEFI booloader

provides console with access to UEFI state after BDS phase end
has various useful command to view and change physical
memory, load and unload DXE drivers, change NVRAM variables
and so on

can run UEFI applications under itself

acts as modern DOS replacement, single user CUI OS with direct
memory and hardware access

useful for UEFI debugging, extremely dangerous in wrong hands

EFT Shell version 2.00 [4096.11
Current ruming mode 1.1.2
Device mapping tahle
fs0 :Removahle HardDisk - Alias hd52gOb blkO
Acpi (PNPOAO3, 0) /Pci (1D17?) /Ush (6,0) /HD (Part1,Sig90909090)
b1ko :Removahle HardDisk - Alias hd52g0b fs0
Acpi (PNPOAD3, 0) /Pci (1D17) /Ush {6,0) /HD (Part1,3ig90909090)

Press ESC in 1 seconds to skip startup.nsh, any other key to continue.
Shell>

/ LA

7 \Y

33

‘ Test Results

NIGHTS
Test Results: CHIPSEC 34

PR registers set to WP the whole BIOS except NVRAM 0] ¢
PR registers are reset to zero after S3

S3 BootScript is located outside SMRAM, not protected

from any changes, has numerous DISPATCH opcodes
SMM_BWRP is not set, NVRAM region is protected only by
BLE/BIOS WE

“Setup” variable has RT flag

. ¥ A S
\ q J P
QUADRUPLE FACEPALM
/) N\ \

NIGHTS

Test Results: UEFITool 35

- BIOS has Capsule flash services, Insyde IHISI flash interface,

Intel PFAT flash driver, SecureFlash driver MISTRUST
- has WPBT" driver, the firmware can automatically install and run

Windows executables MISTRUST
- has UnlockPwd driver, the attacker can override BIOS Setup

password with Acer’s tech support help MISTRUST
- BIOS Setup password is stored as cleat text

IMELIED FACEPALM
*
{

>

~ o
2 o
= WHEN SOMETHING|IS'JUST SO STUPID THAT A FULL

AND PROPERFACEPALM IS NOT EVEN NECESSARY....
[7] http://download.microsoft.com/download/8/a/2/8a2fb72d-9096-4e2d-a559-4a27cf905a80/windows-

platform-binary-table.docx

5 v W

4 \

Test Results: UEFI Shell 36

UEFI network stack is loaded and operational regardless of PXE

and/or boot settings MISTRUST
SPI flash protection and SecureBoot can both be disabled by

changing “Setup” variable

Facked Up Beyond AH Kecognition,
And Loving 7t/

What Now?

www.zeronights.org

SRR

NIGHTS

What Now: Answers 38

emulate NVRAM to get rid of any flash writes after POST

make the whole BIOS region read-only

protect BIOS password storage from reading

disable S3 and remove it's support for good

setup, test and use SecureBoot

remove WPBT driver, UnlockPwd driver, BIOS protection drivers,
flash drivers, recovery drivers, UEFI network stack and other
unneeded and potentially vulnerable components

prepare a golden BIOS image and periodically check against it

SHE
CESTROY
EVERYTHING

/ TRIZ5A

7 \

39

www.zeronights.org

NIGHTS
Prepare to Dig Deep: Hardware 40

- field surgery on UEFI images will be painful

- it will crash, it will brick, it will go nuts, but you can try again until
ether it is done or you are done

- some things can be done to ease the pain, such as:
0. disassemble the laptop to the bare board and remove all you
can remove from it
1. find or buy board schematics
2. buy (and modify, if needed) mPCle LPC POST card
3. get a decent SPI programmer and replace onboard SPI chip
with ZIF socket, or use a SPI| emulator instead

 NIGHTS
Prepare to Dig Deep: POST card 41

most laptops still use SuperlO controllers on LPC bus

debug port 80h is decoded to LPC bus by default

Sintech makes cheap LPC debug cards, ideal for our purposes
there is no standard LPC debug port pinout, so your system may
use a different one

two possible solutions: either find a compatible card or make one
compatible

MIGHTS
Prepare to Dig Deep: ST8672 card pinout 42

Sintech Is an LPC debug card with mPCle interface
costs about $5, easy to modify because of single-layer PCB

LPC signals are on pins 8 (LADO), 10, 12, 14 and 16 (LFRAME#)
LPC clock is on pin 19, platform reset signal is on pin 17

this is the most popular pinout with the cheapest cards available

PCIE_WAKE® <

: y MINI_BLED - . ’
EC_DEBUGI [> 2 LED_V : ——— AAA—SS ~BLUELED
ag L e > RF_LINK#

AN 107 4 O +3V

‘ <___>USBP10+
PCE_TXP1 [> PCIE_TXP1 3 / 4 1 < > USBP10-
a2 - CIE TR . 5 p DAT SMB - po—e
PCIE_TXNT | T . E— - n SMB 2 1 == L : —ANANAD IS <> PDAT_SMB
29_ <, PCLK_SMB

PCIE_RXP1 <}

SU—{

PCIE_RXN1 < |

— ——— > 2 L LRI <] MINIPLTRST#
PCLK_LPC DEBUG [> NI PLTRSTE 2rved W_DIS | RF_OFF#®

PCIE_MINH_CLKP [
PCIE_MINI_CLKN

T60
BT_COMBO_EN# <}
61

MiNI PCIE H=4.0

NIGHTS
Prepare to Dig Deep: Quanta ZQX pinout 43

- Quanta uses a different pinout for it's newer boards

- LPC signals are still on pins 8, 10, 12, 14 and 16, but reversed

- LPC clock is on pin 45 (instead of 19), platform reset signal is on
pin 47 (instead of 17), some resistors must be added

+WL_VDD

+WL_VDD

+1,5V_MINH_VDD

+WL_VDD ') «+@ TP6
USBP4+
USEP4-

\R1D .0 4
R11. 0 4
iNt_vop R1

PCIE_TX4+_WLAN
PCIE_TX4-_WLAN

PCIE_RX4+_WLAN ;
G ¥4- WLAN 4 M NL VDD i
PCIE_RX4-_WLAN X +WL_VDD R340 _“short 4

AF_EN [29]

Debug
t 4

CLK_PCIE_WLANP
CLK_PCIE_WLANN SuT R hort_4
CLK_PCIE_WLAN_REQ# R 7 . !)_R 72 'short 4 LPC LADO

PCIE WAKE# R ¢ B 5 +WL_VDD

NIGHTS
Prepare to Dig Deep: SPI programmer 44

- cheapest SPI programmers (down to $3) are based on WCH
USB-serial converter, but they totally worth the price

- FTDI -based programmers are relatively cheap (around
$20) and able to flash all current SPI chips using flashrom3

- even better options are Autoelectric and Dediprog
but beware the price

- use voltage level shifter to interface with 1.8V SPI flash chips,
if your programmer doesn’t support them natively

[8] http://flashrom.org/Flashrom

AN azavg e

4 \

NIGHTS
Prepare to Dig Deep: SPI emulator

replaces physical SPI flash chip with virtual one

100x speed-up of flash update, image editing on-the-fly
the only downside compared to SPI programmer Is price,
which starts on $300 and goes up very fast

tried Samedisk and Dediprog ,

10/10 will use again
)

EMI100-Pro

Semas FLass Emaator
Vev.deaivrag.con

45

NIGHTS

Prepare to Dig Deep: Software 46

Linux with python2 for using Chipsec, openssl and efitools for
setting up SecureBoot and signing your bootloader

TianoCore EDK2 build environment to build your PEI/DXE drivers
UEFI Shell binary that works on your platform

UEFITool or any other similar tool to modify UEFI images

good disassembler like radare2 or IDA

Intel ASL compiler for possible DSDT reverse and modification
your favorite hex editor

anything else you will find useful

ZERO [NIGHTS

‘ Fix It Yourself

1 CRAN
FIOX ITE

“

"
=

/ /‘ N T 7 w\ \

47

NIGHTS
Fix It Yourself: NVRAM emulation 48

NVRAM is accessible using four UEFI runtime services:

we need to hook this services after they are published and after
all reads and writes initiated by the firmware are done

possible hook points are on EndOfDxe, ReadyToBoot and ExitBS
EndOfDxe hook will render BIOS Setup useless — too early
ReadyToBoot hook will require auth. variable emulation for
SecureBoot — too hard to implement properly

ExitBS hook is the latest point possible, and a bootloader will
have full access to the firmware — SecureBoot and trusted
bootloader are

NIGHTS

Fix It Yourself: EmuVariable driver 49

- TianoCore has a reference NVRAM emulation driver in MdePkg
- Clover Bootloader has an expanded one® for starting OSX on PC
- changed the driver from Clover to start emulation on ExitBS

EFI System Table

te services being available.

L=

VT_SIGMAL_VIRTUAL_ ADDRESS_CHAMGE

@param[in] ImageHandle The firmware allocated handle for the EFI image.

@param[in] SystemTable A pointer to the EFI System Table.

@retval EFI_SUCCESS Variable service successfully initialized.

EFI_STATUS
EFIAPI
VariableServiceInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
=

[9] http://sourceforge.net/p/cloverefiboot/code/HEAD/tree/EmuVariableUefi/

/ | \
\ \
\ \

NIGHTS
Fix It Yourself: Problems with FLOCKDN 50

- PR registers should be set to write-protect the real NVRAM region
- which means it must also be done on ExitBS
- but we can’t change their values after FLOCKDN bit is set
- It's done by PchinitDxe driver on this platform
- the driver must be patched to prevent locking the flash
configuration in DXE phase, but we absolutely must lock it
In our driver afterwards

PPE0EPe1860001446: BA 08 a8 98 mowv edx,8000h BIT15 - FLOCKDN
f0PRPPA186001448: 41 8D 8D 04 38 00 lea ecx, [r13+00003804h] offset of SPIBAR (3800h) + HSFS register (04h)
5]%]

call 18@0eCo9FC MmioOr16(AddressinEcx, ValuelnEdx)

NGHT
Fix It Yourself: Set PR registers

#pragma warning(disable : 4306))isable the warning about conv ¥ s 54-bit pointers and back
UINT RcbalocationAddress = Bx 30F8; | Memory-mapped PCI d e B
RootComplexBaseAddress (*(UTN *)RcbalocationAddress) & @xFFFFFC

ComplexBaseAddress 3AR
SpiBaseAddress + B8x84; f 0
SpiBaseAddres: : I i o g } i base and limit
SpiBaseAdd : 74; }) ister to e le BIC egic > tection
SpiBaseAddress +

6%)HsfsRegisterAddr
*)BfprRegisterAddress;
BfprR terValue | BIT31; f t PR@ to cov
@x825D825C; I/ PR1 to

I

et new PR® and PR1 values

NIGHTS
Fix It Yourself: Find DSDT 52

ACPI S3 state availability is reported to OS via DSDT table
DSDT must patched to always report S3 as disabled

but it can also be controlled by BIOS Setup

on this platform, DSDT is stored in a RAW section together with
other ACPI tables

Q UEFITool 0.30.0_alphal5 - ZQX.ORG

Structure

Name

| section
| section
! section
! section
! section
| section

section
W section

text "DSDT" found i
text "DSDT" found i
text "DSDT" found i
ASCII text "DSDT" found i

ASCTT tawvt "NDSNOT" fannd

image section at
image section at
image section at
Raw section at offset

PE3? dimaoa cartdinn ot

Action

offset A
offset 1316h
offset 1416h
8h

nffcat ARIN

Type
File
File
File
File
Section
Section
Section
Section
Section
Section
Section
Section

Information
Subtype Text Type: 19h

Terminal Full

Fix It Yourself: Decompile DSDT 53

- ACPI tables are stored in ACPI Machine Language format, but
they can be decompiled into human-readable ACPI Source
Language using Intel iIASL Compileri®

Name - (551, One)

(83, Package (0x04) // 83 : 83

[10] https://www.acpica.org/downloads

Y \
A \

4 \Y

NIGHTS
Fix It Yourself: Patch DSDT 54

- you can try to edit and recompile DSDT, but it can be tricky to get
rid of errors

- it's much easier to patch the default value of SS3 variable from 1
to O and fix DSDT checksum

- decompile the patched file again, IASL tells what the valid
checksum should be

Offset (h) 00 01 02 03] 08 OF
44 53 44 54 07 0 GD| 49 6E 72 79 €4 65 DSDTi.....Insyde

48 53 57 2D 4C 50 5¢ 00 00 00 00 49 o4 4C HEW—LPT...;._j

15 11 13 08 53 53 31 5F 01 08 53 53 32 5§

08 1532 43 5 18 53 53 324 5F 0O

. | l - EI EI I-‘I -
oo i !

NIGHTS
Fix It Yourself: Patch S3 setup handler 55

DSDT patch alone may not be enough, because SS3 variable can
be changed from it's default during DXE phase

find and patch the handler that changes this variable...

...or just replace dangerous SS3 with harmless SS1 in it

you can patch it differently, but the goal is to disable S3 for OS

BA 53 53 5F edx,5F335353h SS3_ ASCII text

00000ee18000050B: 48 8B 4C 24 50 rcx,qword ptr [rsp+58h] new value
ES 9B FC FF FF PEREPRO130080280 SetValue

NIGHTS

Fix It Yourself: Final stone on S3 grave 56

now we need to make sure that S3 boot path will never work, so
even if the attacker manages to prepare the whole new DSDT
with enabled S3, it will only result in hard reset or crash

It can be done by patching PeiGetBootMode to never return
BOOT _ON_S3 RESUME

or by destroying S3 BootScript on ExitBS

or by writing a simple PEI driver that will call PeiResetService if
PeiGetBootMode tells we are in S3 resume

either way is fine

IGHTS

Fix It Yourself: PreventS3Pel driver

EFI_STATUS

EFIAPI

PreventS3PeiEntry (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)

EFI_STATUS Status;
EFI_BOOT_MODE BootMode = BOOT_WITH_FULL_CONFIGURATION;

'/ Get current boot mode

(*PeiServices)->GetBootMode(PeiServices, &BootMode);

Continue normal boot if it's not

if (BootMode != BOOT_OM_S3_RESUME)
return EFI_SUCCESS;

'/ Hang if reset attempt faile
while(1);

. uld never end here
return EFI_INVALID PARAMETER;

57

NIGHTS

Fix It Yourself: SecureBoot key pairs 58

now we have our SPI flash read-only after ExitBS

but still accessible from UEFI Shell and bootloaders
SecureBoot Is to the rescue In this case

to use SecureBoot properly, we need three different key pairs:
1. Platform Key to enable SecureBoot and sign KEK

2. Key Exchange Key to sign db and dbx

3. Image Signing Key to sign bootloaders and executables

all this keys can be generated by using OpenSSL

Fix It Yourself: Generate PK 59

- PK key pair suitable for SecureBoot can be generated by the
following openssl call:
openssl req -new -x509 -newkey rsa:2048 -subj
"/CN=Platform Key/" -keyout PK.key -out PK.crt -days
3650 -nodes -sha256

- cert-to-efi-sig-list utility from efitools package converts generated
certificate to EFI Signature List format:
cert-to-efi-sig-1list -g "$(uuidgen)" PK.crt PK.esl

- PK.esl must be self signed using sign-efi-sig-list utility:
sign-efi-sig-1ist -k PK.key -c PK.crt PK PK.esl
PK.auth

Fix It Yourself: Generate KEK 60

KEK key pair can be generated by a similar openssl call:
openssl req -new -x509 -newkey rsa:2048 -subj
"/CN=Key Exchange Key/" -keyout KEK.key -out KEK.crt
-days 3650 -nodes -sha256

use cert-to-efi-sig-list to convert KEK.crt into KEK.esl:
cert-to-efi-sig-1list -g "$(uuidgen)" KEK.crt KEK.esl

to add multiple certificates into KEK, concatenate their ESL files:
cat KEK.esl MsKek.esl > KEK.esl

combined KEK.esl must be signed by PK using sign-efi-sig-list:
sign-efi-sig-1ist -k PK.key -c PK.crt KEK KEK.esl

KEK.auth
PN g

Fix It Yourself: Generate db 61

db key pair can also be generated by a similar openssl call:
openssl req -new -x509 -newkey rsa:2048 -subj
"/CN=Image Signing Key/" -keyout db.key -out db.crt
-days 3650 -nodes -sha256

use cert-to-efi-sig-list to convert db.crt into db.esl:
cert-to-efi-sig-1list -g "$(uuidgen)" db.crt db.esl

to add multiple certificates into db, concatenate their ESL files:
cat db.esl MsWin.esl UefiCa.esl > db.esl

combined db.esl must be signed by KEK using sign-efi-sig-list:
sign-efi-sig-1ist -k KEK.key -c KEK.crt db db.esl

db.auth
PN g

Fix It Yourself: Sign your bootloader 62

- sign an UEFI Shell binary by db key using sbsign utility:
sbsign --key db.key --cert db.crt --output
bootx64.efli shellx64.efi

- prepare a FAT32-formatted USB flash drive with this signed UEFI
Shell in /EFI/Boot, copy UpdateVars.efi from /usr/share/efitools/efi
onto it:
cp bootx64.efi /media/UsbFlash/EFI/Boot/
cp /usr/share/efitools/efi/UpdateVars.efi
/media/UsbFlash/

- also copy all *.auth files you’ve prepared on
previous steps:
cp *.auth /media/UsbFlash/
NG SR arave i R
PN

\

NIGHTS

Fix It Yourself: Enable SecureBoot 63

go to BIOS Setup and set a good supervisor password

Insert the prepared USB flash drive and try to boot from it with
SecureBoot disabled, it should boot to UEFI Shell

go to Security, select Clear All SecureBoot Variables option, save
and exit BIOS Setup

boot from prepared USB flash drive and execute:

UpdateVars db db.auth

UpdateVars KEK KEK.auth

UpdateVars PK PK.auth

try to execute the last command again, it should fail with

“security violation” message

If SO, we have SecureBoot armed and ready

reboot and test jf the signed UEFI shell is bootable, it should be
| LA

4 N\

‘ Fix It Yourself: Remove UnlockPwd 64

- now we are in control of the boot process, but only if BIOS
password is not known to the attacker and can'’t be reset
- Acer uses UplockPwd driver for resetting forgotten BIOS

passwords
- If the driver is removed, BIOS will crash after 3 failed password

attempts

www.zeronights.org

/ v e e e A \
/AN “L‘:H ‘, K e M‘ ;
J 7) / B V%

NIGHTS

Fix It Yourself: Remove other stuff 65

remove WPBT driver

remove flash drivers: PfatServices, lhisi, SecureFlashDxe,
remove CapsulePel, replace CapsuleDxe with a dummy driver
that overrides UpdateCapsule and QueryCapsuleCapabilities to
return EFI_UNSUPPORTED

remove unused protections: BiosProtect, PchBiosWriteProtect
remove network stack: NetworkLocker, DhcpDummy, Dpc, Mnp,
Arp, Snp, Ip4, Ip4Config, Udp4, Dhcp4, Mtftp4, RtkUndiDxe
remove ME-related drivers: MeFwDowngrade,
BiosExtensionLoader

remove all other stuff you don’t want or need, if the firmware can
still boot your OS - it’s fine to have that components removed

:

/|

- NIGHTS

Conclusion

R S T T

'] ﬂlllll}lllSIllll

,\Jz

ERO ISIEQUALTO/ZERD

66

NIGHTS

Conclusion: Summary 67

PC is still working and can boot an UEFI-compatible OS

after ExitBS:

0. BIOS is read-only for all execution modes including SMM

1. BIOS password storage is inaccessible

2. NVRAM is emulated, no changes can persist across reset
SecureBoot works and allows executing only the images we sign
ACPI S3 is disabled for good

Intel FPT utility can be used for further BIOS updates, but it can
only be performed if BIOS password is known

UEFI network stack is no more

NIGHTS

Conclusion: Issues remaining and new 68

SMM is still vulnerable, but breaching into it grants no persistence
BootXXXX variables can’t be created by OS, we have to add new
bootloaders manually

ACPI S3 doesn’t work, but it can be replaced by S4 on fast SSD
platform security relies upon PR registers, BIOS password,
SecureBoot implementation and bootloader, a breach in any of
them renders it useless

network boot is not working anymore

signed UEFI Shell we've prepared for SecureBoot testing is a
skeleton key for the platform and must either be kept secret or
securely removed

NIGHTS

Conclusion: What else? 69

try to contact Acer once again and push them to fix the mess

or throw the system out and don’t buy from them anymore

fixing security vulnerabilities without sources is hard, but possible
the vendor who care can fix them much faster and much better
BIOS region can be made read-only by hardware SPI protection,
but it requires two SPI chips to be designed in during board
manufacturing

the idea of having NVRAM in the same flash chip as BIOS was
bad from the beginning and gets worse every day

AMD-based platforms may be vulnerable too (harder to test
without CHIPSEC)

publish the sources, patched binaries and slides on GitHub

NIGHTS
Q&A

B

THANK YOU
FOR

your

ATTENTION!
ANY QUESTIONS?

/

70

