Attacking Hypervisors
via Firmware and Hardware

Alex Matrosov (@matrosov),
Mikhail Gorobets,

Oleksandr Bazhaniuk (@ABazhaniuk),
Andrew Furtak,

Yuriy Bulygin (@c7zero)

(intel' Security @ Advanced Threat Research

Agenda

T & & 8

g

Hypervisor based isolation

Firmware rootkit vs hypervisor

Attacking hypervisors through system firmware
Tools and mitigations

Conclusions

-l

—

gy
|
f
’
!
J
)
RS
-t
o
W |
- u
‘”v
o
-
e
-
e,
-
|
|\
v
.
¥
N,
|
| y
£
44 _
Al
: N
| U

Hypervisor Based Isolation

Image source

http://www.tripadvisor.com/LocationPhotoDirectLink-g294474-d2372209-i94964664-SoloEast_Travel_Chernobyl_Day_Trip-Kiev.html

Hypervisor Based Isolation

Virtual Machine Virtual Machine

App App App App

Operating System Operating System

VMM [Hypervisor

System Firmware
(BIOS, U/EFI firmware, SMI handlers, Coreboot...)

-
=.
<.
)

Q
®

Hardware
CPU Graphics

Network

Hypervisor Based Isolation

Virtual Machine Virtual Machine

App App App Attack

gy Z
N 7’

Operating System Operating System

'vv

VMM [Hypervisor

-
=.
<.
)

Q
®

System Firmware
(BIOS, U/EFI firmware, SMI handlers, Coreboot...)

Hardware
Memory CPU Graphics

Network

Hypervisor Protections

Software Isolation

CPU / SoC: traps to hypervisor (VM Exits),
MSR & I/O permissions bitmaps, rings (PV)...

Memory / MMIO: hardware page tables (e.g.
EPT, NPT), software shadow page tables

Devices Isolation
CPU / SoC: interrupt remapping
Memory / MMIO: IOMMU, No-DMA ranges

CPU Virtualization (simplified)

VM Guest OS

Instructions, Access to
exceptions, I/O ports

interrupts... Access to CPU Accessto (€.9.0xB2) |

MSRs memory
(e.g. DEBUGCTL) (EPT violations)

Protecting Memory with HW Assisted Paging

--- e e e e e e e e e e e e a
VM Guest OS ¥ VMM Host
I
HUMCS
CR3 Guest Physical |t EpTP Host Physical
I Memory i I Memory
Process Virtual I T |
Memory v GPAO I 1 HPAO
1
VAO Guest Page Tables GPA1 \ EPT HPA1
1
VAL 1 Y GPAO > HPAS HPA2
VA2 GPA2 > HPA5 HPA3
VA3 \ GPA4 > HPA4 HPA4
i (1:1 mapping)
1
VA4 GPA5 /L/'I SEE S [k HPAS
GPAG HPAG

Hypervisor Protections

System Firmware Isolation ?

i
O
O
nd
D
S
=
=
=

Image source

http://www.traduzioniclick.com/wp-content/uploads/2014/07/big_and_small_cat.jpg

What is firmware rootkit?

Virtual Machine Virtual Machine

App App App App

Operating System Operating System

Rootkit
(e.g. DXE driver)

-
=.
<.
5}

Q
®

System Firmware

Hardware
CPU Graphics

Network

Firmware rootkit can open a backdoor for
an attacker VM to access all other VMs

Virtual Machine

o |

App
Operating System

VMM / Hypervisor

System Firmware

;

Attacker VM

_pon | | on

" 3. Now using this
backdoor, attacker VM

can access all of
memory of victim VMs

~

J

Operating System

2. During each boot
rootkit installs a
backdoor for an

attacker controlled VM

4

~N

J

. 1. At some point
Rootkit system firmware got
infected with a rootkit

staying persistent

~N

J

“Backdoor” for attacker’s VM

-

_

1. Firmware rootkit
searches & modifies VM’s
VMCS(B), VMM page tables

: BBbRboopoEee
: BepRB4appoaee
: BEBRBSRRRERE
o % 1% 5% 1% L5 1 S
: BoBloeepoees
: Bopeldeppooes
: BBpRlseppoeee
: BepelCeppoaee
: BBB2000B0E0E
: BEBE248000800
: BBBR280000000
: Pepe2Ce0poeRe
: BeBaz0eRBoeee
: BBBBR348000008

LIKE PAGE
LIKE PAGE
LIKE PAGE
AKB PAGE
AKB PAGE

Now attacker VM has full
access to physical memory pA: 8804346600888
of VMM and other VMs

XWR WB GPA: BBBeFFFCFEBRE
XWR WB GPA: B8BaFFFCFCBBE
XWR. WB GPA: BBBAFFFCFDBBE
XWR WB &

2. Rootkit added page
table entries to attacker
VM which expose entire

physical memory
: 00046(0000000
: PER416000E00E
: PER4140000000
: PEP4130P00000E
: PEP41CPePE00E
: PER4200000000
: PEE4240P000000
: PEP423000D000E
: PEP42C0000000
A: PER4300000000

So how would one install a rootkit In
the firmware?

Using hardware SPI flash programmer...

USB & exploiting weak firmware protections...

Software access and exploiting some
vulnerabillity in firmware ...

® From privileged guest (e.g. Dom0). Requires
privesc from normal guest (e.g. DomU) or remote

® From the host OS before/in parallel to VMM

From normal guest if firmware is exposed to the
guest by VMM

&2

For example, if firmware is not adequately
write protected in system flash memory

. by »
i R R

5 G o

DEMO

Rootkit in System Firmware Exposes
Secrets from Virtual Machines
https://youtu.be/sJnliPN0104

Image source

http://consciouslyenlightened.com/wp-content/uploads/2015/07/matrix780023.jpg

® We flashedrootkited part of firmware image
from within a root partition to install the rootkit

2 The system doesn’t properly protect firmware
iIn SPI flash memory so we could bypass
write-protection

® Finally more systems protect firmware on the
flash memory

common.bios wp
CHIPSEC module to test write-protection

% Malware can exploit vulnerabilities in firmware
to install a rootkit on such systems

Attacking and Defending BIOS in 2015

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

VMM “forensics”

With the help of a rootkit in firmware any VM guest
can extract all information about hypervisor and other
VMs ... and just from memory

» VMCS structures, MSR and 1I/O bitmaps for each VM guest
= EPT for each VM guest

» Regular page tables for hypervisor and each VM guest

= |OMMU pages tables for each IOMMU device

= Full hypervisor memory map, VM exit handler...

= Real hardware configuration (registers for real PCle devices,
MMIO contents...)

VMM Hardware Page Tables...

EPTP: 9x0000004ac8000

PMLAE: 0x0000004b1c600
PDPTE: 0x0000004b1ab00
PDE : Bx@@@@@@dblE@BB
PTE : 9xB000000000000
PTE : ©x0000000002000
PTE : ©x0080000003000
PTE : ©x0080000004000
PTE : ©x0080000005000

0x0080000000000
0x0080000002000
0x00000000cB000
0x00800000c9000
0x00800000ce000
0x00000000e0000
0x0000000195000
0x0000000196000
0x0000000198000
0x000000019e000
0x00000001a6000
0xB0008001c8000
0x00epeea1cbooe

EPT Host physical address ranges:

0x0000000000+ 1
0x000000009c 1
0x00000000c 7T
0x00000000cot 1
0x00000000ce T
0x000000019 21
0x0000000195F 1
0x0000000196F 1
0x0000000199+1
0x00000001a3
0x00000001 cAfT
0x0000eRa1c
0x00000001dc 1

[
ol

[
-\._H] i
N e < e - Ll =

= (5N
SO = = Ih

I Bx0000000000000
T Bx8008000002000
I Bx8008000003000
I Bx8008000004000
I Bx8008000005000

Attacking Hypervisors through

System Firmware
(with OS kernel access)

Image source

http://www.hermann-uwe.de/files/images/bios_chip_plcc_socket.jpg

Pointer Vulnerabilities in SMI Handlers

Phys Memory

SMI Handlers in
RAX (code) SMRAM

RBX (pointer) insi

»

Fake structure inside SMRAM
A

RCX (function)
DX

OS Memory

RSI

Exploit tricks SMI handler to write to an address inside SMRAM
Attacking and Defending BIOS in 2015

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

Exploiting firmware SMI handler to attack VMM

Virtual Machine
(child partition)

| ren | [e

Root partition

VMM allows VM to h

App Attack invoke SMI handlers
(grants access to SW

) SMI'I/O port OxB2)
Operating System Operating System

Compromised VM)
injects SMM payload

through the input
pointer vulnerability in

SMI Handlers SMI handler /
System Firmware ‘

Hypervisor

SMI Pointer

SMM firmware R
Hardware payload modifies

hypervisor code or
VMCS/EPT to install

a backdoor)

Root cause? Port B2h is open to VM in I/O bitmap

CPU_BASED_VM_EXEC_CONTROL :
Bit 2: @ Interrupt-window exiting
Bit Use TSC offsetting 0x0020
Bit HLT exiting 0x0021
Bit INVLPG exiting 0x0064
Bit 1@: MWAIT exiting @x08a0
Bit 11: RDPMC exiting 0x@0al
Bit RDTSC exiting Ox0ct8
Bit : CR3-load exiting Ox@cfc
Bit ° CR3-store exiting Ox@ctd
Bit : CR8-load exiting Oxacfe
Bit CR8-store exiting Ox@ctt
i Use TPR shadow
NMI-window exiting RD MSR Bitmap (doesn't cause a VM exit):
MOV-DR exiting 0x00000174
OxB0E175
0xB0ee176

Bit 27: Monitor trap flag Ux 8000100
Bit 28: 1 Use MSR bitmaps Bxc8000101
Bit 29: 1 MONITOR exiting Ux 8000102
Bit 3@: PAUSE exiting

Bit 31: 1 Activate secondary controls

I0 Bitmap (causes a VM exit):

1
1
@
1
1
@
@
%
@
@
1
@
1

WR MSR Bitmap (doesn't cause a VM exit):
Ox00000174

SECONDARY_VM_EXEC_CONTROL : 0x00080175
Bit : 1 Virtualize APIC accesses 0x00000176
Bit 1: 1 FEnable EPT Oxc0080100
Bit 2: 1 Descriptor-table exiting Bxc8000101
Bit 3: 1 FEnable RDTSCP 0xc0080162

So this Is firmware issue, right? What
If firmware validates pointers?

Still exploitable...

Phys Memory

SMI Handlers in
SMRAM

RAX (code)
RBX (pomter)

RCX (functlon)
RDX Hypervisor Memory

(Protected by EPT)

RSI

Firmware SMI handler validates input pointers to ensure they
are outside of SMRAM preventing overwrite of SMI code/data

Point SMI handler to overwrite VMM page!

Phys Memory

SMI Handlers in

RAX (code) SMRAM

RBX (pointer)

v

RCX (function) VMM

RDX Hypervisor Memory rotections
(Protected by EPT) re OFF

RSI VMM Protected Page

« VT state and EPT protections are OFF in SMM (without STM)
« SMI handler writes to a protected page via supplied pointer

Attacking VMM by proxying through SMI handler

Virtual Machine
(child partition)

| ren | [e

Root partition

[VM with direct access to\
m Attack SMiIs invokes SMi
handler and supplies a

. pointer to some VMM
Operating System Operating System page y
VMM / Hypervisor

SMI Handlers SMI handler writes to
System Firmware the supplied pointer
overwriting contents of

protected VMM page

Hardware

J

Do Hypervisors Dream
of Electric Sheep?

Vulnerability used in this section is VU#976132 a.k.a. S3 Resume

Boot Script Vulnerability independently discovered by ATR of Intel
Security, Rafal Wojtczuk of Bromium and LegbaCore

It's also used in Thunderstrike 2 by LegbaCore & Trammell Hudson

http://www.kb.cert.org/vuls/id/976132
http://www.intelsecurity.com/advanced-threat-research/content/WP_Intel_ATR_S3_ResBS_Vuln.pdf
http://www.intelsecurity.com/atr
http://www.bromium.com/
http://www.legbacore.com/

Waking the system from S3 “sleep” state

Virtual Machine

S3 Boot
Script Table

Restores j L E
hardware config ScnptEngHua:

Platform Init §

S3 RESUME

NORMAL BOOT

What is S3 boot script table?

A table of opcodes in physical memory which restores
platform configuration

S3 BOOTSCRIPT MEM WRITE opcode writes some value to
specified memory location on behalf of firmware

[378] Entry at offset @x31B@ (len = 0x24, header len = 0x8):

Data:
A2 02 B8 00 80 B0 608 R 84 a8 a0 =20 a0 PE 00 a8 | aa +] p
& 21

) 90 00 00 00 38 Ge 00

Decoded:

Opcode : S3 BOOTSCRIPT_MEM _WRITE (@x@2)
Width : ex82 (4 bytes)

Addr :

Count

Values :

S3 BOOTSCRIPT DISPATCH/2
S3_BOOTSCRIPT PCI CONFIG WRITE

S3 BOOTSCRIPT IO WRITE

Xen exposes S3 boot script table to DomO

VM modifies S3 boot]
Privileged PV guest (Dom0) script table in memory

Exploit Upon resume, fwmware
executes rogue S3 script

S3 Boot
Script Table

S3 RESUME

Restores !

hardware config SCfipt Engine i
0xDBAA4000 Platform PEI

NORMAL BOOT

DEMO
Attacking Xen

In Its sleep

https://youtu.be/Dsu-scEJyJg

Image source

http://static.comicvine.com/uploads/original/11111/111119146/3326198-9193344603-Fredd.jpg

Déja vu?

Dom0 modifies the MBR

Xen Owning Trilogy (Part 3) by Invisible Things Lab

http://invisiblethingslab.com/resources/bh08/part3.pdf

So these firmware vulnerabilities are
exploitable from privileged guest (e.g. root
partition, Dom0O ..)

What about use cases where guests must be
strongly isolated from the root partition”?

https://www.sciencenews.org/sites/default/files/styles/article-main-image-large/public/main/articles/tools_opener.jpg?itok=gY5ql0Nf

First things first - fix that firmware!

% Firmware can be tested for vulnerabilities!

common.uefi.s3bootscript
(tests S3 boot script protections)
tools.smm.smm ptr
(tests for SMI pointer issues)

® Protect the firmware in system flash memory

common.bios wp

common.spi_lock

(tests firmware protections in system flash memory)

Testing hypervisors...

% Simple hardware emulation fuzzing
modules for open source CHIPSEC

tools.vmm. *_fuzz

/O, MSR, PCle device, MMIO overlap, more soon ...

® Tools to explore VMM hardware config
chipsec util iommu (IOMMU)
chipsec util vm (CPU VM extensions)

Dealing with system firmware attacks..

% A number of interfaces through which
firmware can be attacked or relay attack onto
VMM

= UEFI variables, SMI handlers, S3 boot script, SPI flash
MMIO, FW update..

= FW doesn't know memory VMM needs to protect

% VMM need to be careful with which of these it
exposes to VMs including to administrative
(privileged) guests

= Some need not be exposed (e.g. S3 boot script), some
may be emulated and monitored

Conclusions

« Compromised firmware is bad news for VMM.
Test your system’s firmware for security issues

 Windows 10 enables path for firmware
deployment via Windows Update

« Secure privileged/administrative guests; attacks
from such guests are important

 Vulnerabilities in device and CPU emulation are
very common. Fuzz all HW interfaces

« Firmware interfaces/features may affect
hypervisor security If exposed to VMs. Both need
to be designed to be aware of each other

References

CHIPSEC: https://github.com/chipsec/chipsec

Intel’s ATR Security of System Firmware

Attacking and Defending BIOS in 2015 by Intel ATR

Xen Owning Trilogy by Invisible Things Lab

http://www.legbacore.com/Research.html

1.
2
3
4. Hardware Involved Software Attacks by Jeff Forristal
5
6
7

Low level PC attack papers by Xeno Kovah

https://github.com/chipsec/chipsec
http://www.intelsecurity.com/advanced-threat-research/security-system-firmware.html
http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf
http://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf
http://invisiblethingslab.com/itl/Resources.html
http://www.legbacore.com/Research.html
http://timeglider.com/timeline/5ca2daa6078caaf4

2015

<)

‘v

4

—

-

)"

K>
\ AN
N

