
BIOS Necromancy:
Utilizing “Dead Code” for BIOS Attacks

Corey Kallenberg & Xeno Kovah

October 14, 2015

Contents

1 Introduction 3

2 VU #552286 3

3 Raising the dead 4

4 Mitigation And Discussion 5

5 Vendor Response 5

HITB Singapore 2015 2

1 Introduction

The transition from legacy BIOS to UEFI firmware has brought with it a growing interest in firmware level
attacks. At BlackHat USA 2015 alone, several talks [7][5][4] were dedicated specifically to attacks at this
level. The recent NSA and Hacking Team leaks have also underscored the fact that PC firmware attacks
are now used in the wild[1][9]. To further exploration of this security critical domain, this paper uses an old
vulnerability to bring to light a new problematic area of the UEFI ecosystem.

2 VU #552286

In 2013 several memory corruption vulnerabilities[8] were identified in the UEFI reference implementation[3]
firmware update mechanism. CVE-2014-4860 (“Queen’s Gambit”) describes a buffer overflow in firmware
update fragment coalescing in the PEI phase. CVE-2014-4859 (“King’s Gambit”) describes a buffer overflow
in firmware update header processing in the DXE phase. Both of these vulnerabilities can be leveraged by
an attacker to reflash the firmware with an unsigned image, despite the presence of signed firmware update
enforcement.

Because these vulnerabilities were initially located in reference implementation code, as opposed to in an
actual vendor firmware, it was unclear to what degree the vulnerabilities would be present “in the wild.” As
each OEM is free to implement their own firmware update scheme, the only options for discovering which
OEMs the vulnerabilities impacted were to either reverse engineer each OEMs firmware, or rely on the OEMs
to self report.

EDK2 Capsule Update Source Code HP EliteBook Capsule Update HexRays Output

Figure 1: CVE-2014-4860 confirmed in HP EliteBook 2540p

A relatively straight forward way to attempt to detect the presence of the CVE-2014-4860 vulnerability
in an OEM firmware is to use UEFITool[10] and attempt to locate and extract the CapsulePEI module.
Typically this module is assigned guid {C779F6D8-7113-4AA1-9648-EB1633C7D53B}1. Then, one can com-
pile the edk2 CapsulePEI module with full debug symbols. Next, a binary diffing application2 can be used
to compare the edk2 CapsulePEI with the OEM CapsulePEI. Typically this yields strong matches on several
functions, which allows for easy identification of the relevant functions (GetCapsuleInfo in this case) through
cross referencing. Finally, use of a disassembly or decompilation tool allows for rapid confirmation as to
whether or not the vulnerability exists. Figure 1 shows the result of this process against an HP EliteBook
2540p which resulted in a positive confirmation for the existence of CVE-2014-4860.

Although this confirmation process only takes approximately 1 hour, it was not deemed worth the time
to repeat this process across all OEMs and all of their individual models (hundreds in total), each of which
may have been using a customized firmware update routine. Thus ultimately the authors relied on vendors
to self report whether or not they were vulnerable. While many vendors confirmed they were vulnerable[2],
several indicated they were not vulnerable because they had “rolled their own” firmware update mechanism.
This seemed like a reasonable response and so originally the authors did not investigate vendors who claimed
this.

1though this is not necessarily the case on all systems
2e.g. Zynamics BinDiff http://www.zynamics.com/bindiff.html

HITB Singapore 2015 3

3 Raising the dead

While investigating Mac firmware for known PC firmware attacks[7] the authors coincidentally noticed the
presence of a PEI module with the CapsulePEI guid {C779F6D8-7113-4AA1-9648-EB1633C7D53B}. Apple
had been one of the vendors that originally claimed they were not vulnerable to CVE-2014-4860 or CVE-
2014-4859, giving the common reason that they used their own custom firmware update mechanism and
hence were not vulnerable to the vulnerabilities contained in the reference implementation. The authors
already knew this to be the case, based on the description of the Apple firmware update process given in the
original Thunderstrike talk[6].

HP EliteBook CapsulePEI HexRays Output MacBook Air 4,1 CapsulePEI HexRays Output

Figure 2: CVE-2014-4860 identified in MacBook Air 4,1

Repeating the procedure described in Section 2, the presence of CVE-2014-4860 was confirmed in a
MacBook Air. However, there remained the possibility that this was uninvokable dead code, and hence
the platform would still be not vulnerable. The lack of a BIOS debug capability for this platform made
confirming the reachability of this code path non-trivial. Although tedious, eventually the authors were able
to hack in some basic debugging capability by reprogramming the CapsulePEI module on the SPI flash with
an external flash programmer. Then, the authors were able to confirm the reachability of the vulnerable
code path and develop a proof of concept to instantiate the vulnerability on the platform’s release firmware.
The approximate process to invoke the vulnerability on the MacBook Air is described below.

Evil Driver

CapsulePEI

DescriptorArray

Size=0x10000000,Ptr=...

Size=0x10000000,Ptr=...
....

Size=0x10000000,Ptr=...

1
2

4
3

Firmware

Figure 3: Instantiating CVE-2014-4860 on MacBook Air 4,1

1 A malicious kernel driver stages an evil capsule descriptor array in memory.

2 The malicious kernel driver creates the EFI variable “CapsuleUpdateData.” The contents of this
variable are a pointer to the evil capsule descriptor array.

3 The sum of the evil capsule descriptor array size elements overflows the total capsule size variable,
leading to an undersized capsule reconstruction memory area.

HITB Singapore 2015 4

4 CapsulePEI notices the presence of “CapsuleUpdateData” and begins the EDK2 firmware update
process. Memory corruption occurs when the capsule fragments are copied into the undersized capsule
reconstruction area.

4 Mitigation And Discussion

We refer to this technique as “necromancy” because we are resurrecting dead code3 that exists on the SPI
flash4 purely for the purposes of exploitation. Under normal circumstances this code should never be invoked.
This leads to a situation where the BIOS developers may look at some piece of code where a vulnerability is
found and think “we don’t invoke this ourselves, so the vulnerability is uninvokable.”, which ends up being a
deadly assumption. Hence, there are actually 2 unique firmware update code paths that can be invoked. This
effectively doubles the attack surface against the platform’s firmware. Although our case study in Section
3 focuses on a specific Apple platform, we know this issue is not unique to Apple and is instead a general
problem with the UEFI ecosystem.

Evil Driver
OEM/IBV Custom Code

UEFI Firmware

Vestigial Reference Code

Figure 4: Doubled attack surface

Firmware developers will often opt to replace parts of the reference implementation with their own
custom code paths for “value-add” purposes. However, unless they explicitly evict the original reference
implementation code from their firmware, that code will remain invokable by an attacker and hence increases
the attack surface against the firmware. The obvious mitigation against this unnecessary attack surface
increase is to identify and remove vestigial code in the firmware. Unfortunately we believe this task is non-
trivial because identifying code paths that should never be called under any legitimate circumstances can be
difficult, unless the BIOS developers have very robust unit tests and QA processes. If sufficient tests are not
available, the common practice for firmware developers is to err on the side of caution, and not remove any
code. Because the worst case penalty for removing code that may be necessary under some circumstances is
very tangible: a bricked platform. The reward for successfully removing vestigial code is much less tangible:
decreased attack surface. Although as security researchers we encourage firmware developers to attempt to
identify and evict vestigial code, we recognize it is a non-trivial task.

5 Vendor Response

For the specific issue considered in this paper, Apple’s vulnerability to CVE-2014-4860, Apple has indicated
that it has “made modifications to EFI to protect against running unused functions” and that a patch for
this issue will be forthcoming in the OS X 10.11.1 security update.

References

[1] J. Appelaum, J. Horchert, O. Reissman, M. Rosenbach, J. Schindler, and C. Stocker. NSA’s secret
toolbox: Unit offers spy gadgets for every need. http://www.spiegel.de/international/world/

nsa-secret-toolbox-ant-unit-offers-spy-gadgets-for-every-need-a-941006.html. Accessed:
6/01/2015.

3To be clear, we do not mean dead code, in the sense that a compiler could automatically optimize the code out. Rather,
we mean it in the sense that the UEFI compile system is relatively complex, and there exist opportunities for code to be built
and may be placed into the firmware filesystem, but never actually be looked up or invoked under normal circumstances.

4In this case, the referencing implementation capsule coalescing code.

HITB Singapore 2015 5

[2] CERT. VU #552286. http://www.kb.cert.org/vuls/id/552286. Accessed: 10/13/2015.

[3] Intel Corporation. UEFI Development Kit 2010. http://sourceforge.net/apps/mediawiki/

tianocore/index.php?title=UDK2010. Accessed: 06/13/2014.

[4] C. Domas. The memory sinkhole - unleashing an x86 design flaw allowing universal privilege escalation.
In BlackHat, Las Vegas, USA, 2015.

[5] M. Gorobets, O. Bazhaniuk, A. Matrosov, A. Furtak, and Y. Bulygin. Attacking hypervisors using
firmware and hardware. In BlackHat, Las Vegas, USA, 2015.

[6] T. Hudson. Thunderstrike. https://trmm.net/Thunderstrike. Accessed: 6/01/2015.

[7] T. Hudson, X. Kovah, and C. Kallenberg. Thunderstrike 2: Sith strike. In BlackHat, Las Vegas, USA,
2015.

[8] C. Kallenberg, X. Kovah, J. Butterworth, and S. Cornwell. Extreme privilege escalation on windows
8/uefi systems. In BlackHat, Las Vegas, USA, 2014.

[9] Intel Advanced Threat Research. Hacking team’s bad bios: A commercial rootkit for uefi
firmware? http://www.intelsecurity.com/advanced-threat-research/ht_uefi_rootkit.html_

7142015.html. Accessed: 10/13/2015.

[10] Nikolaj Schlej. Uefitool source code. https://github.com/LongSoft/UEFITool. Accessed: 6/01/2015.

HITB Singapore 2015 6

