

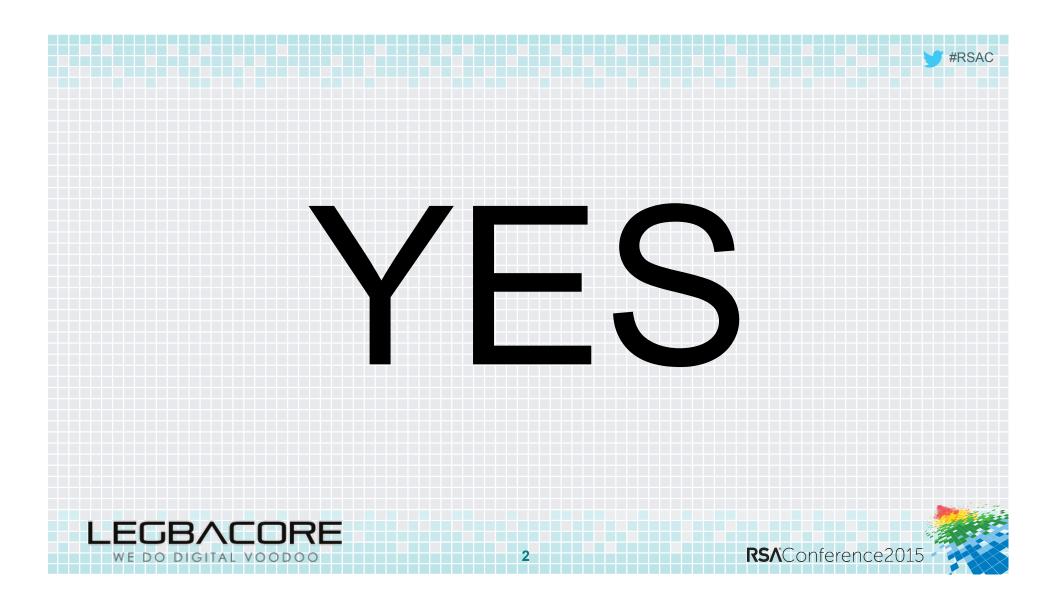
San Francisco | April 20-24 | Moscone Center

CHANGE

Challenge today's security thinking

SESSION ID: HTA-F02

Are you giving firmware attackers a free pass?


Xeno Kovah

CEO & Co-Founder LegbaCore, LLC @XenoKovah

Corey Kallenberg

CTO & Co-Founder LegbaCore, LLC @CoreyKal

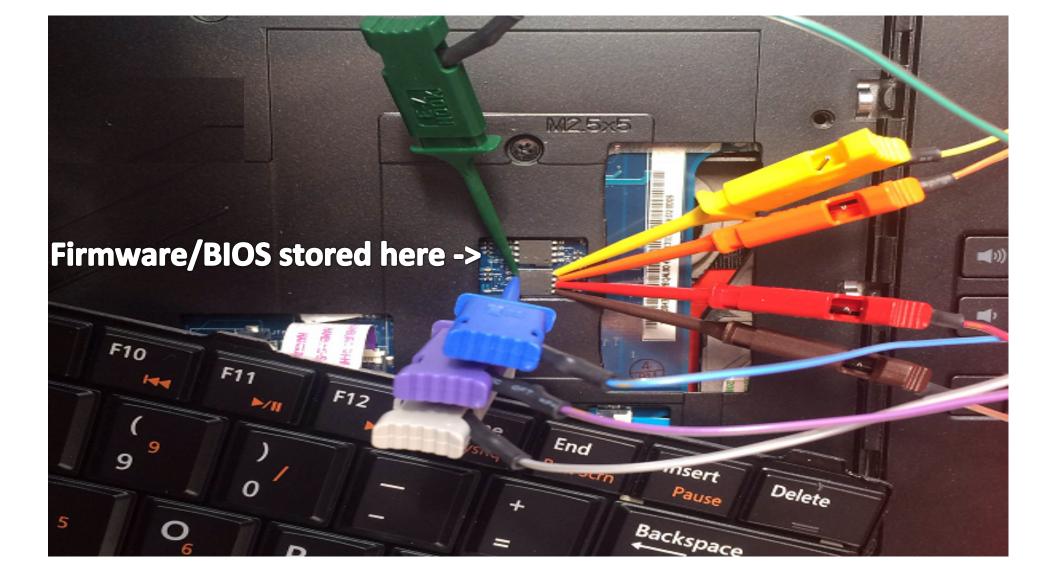
#RSAC

RS∧Conference2015

San Francisco | April 20-24 | Moscone Center

Better know a BIOS

#RSAC

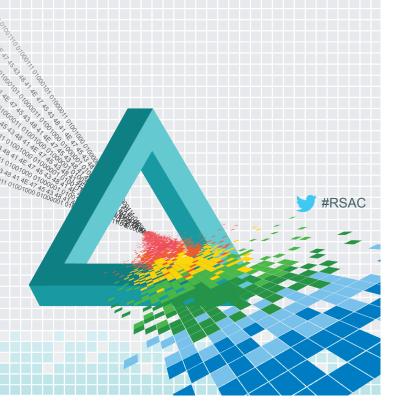


What do we mean when we say...

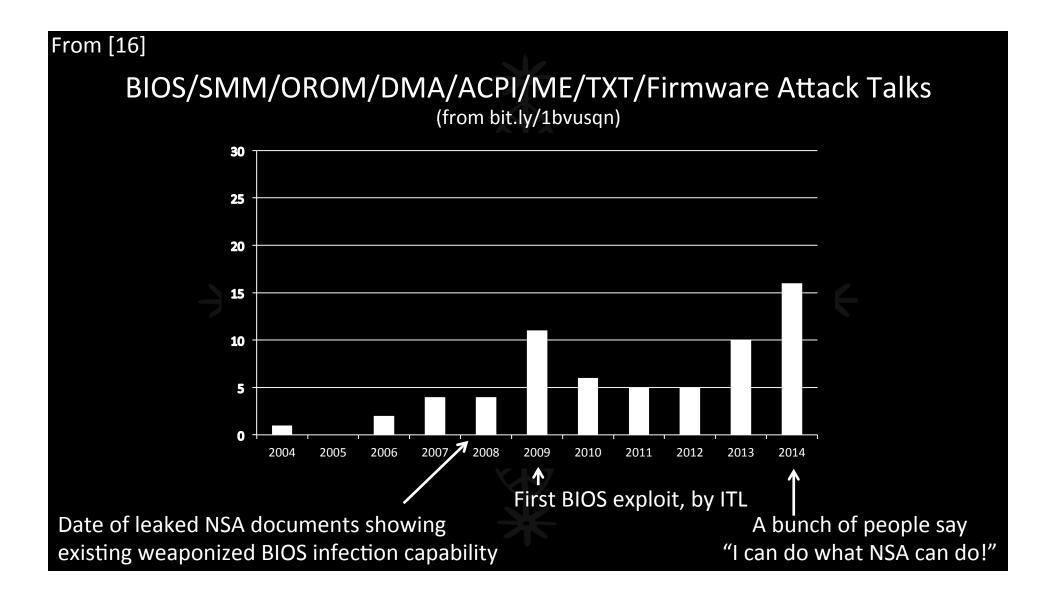
- Firmware is the first software run by a system
 - It is not hardware, though it's job is usually to configure hardware
 - It is only called "firm" because it is typically stored in a non-volatile flash chip, soldered to a circuit board somewhere

What do we mean when we say...

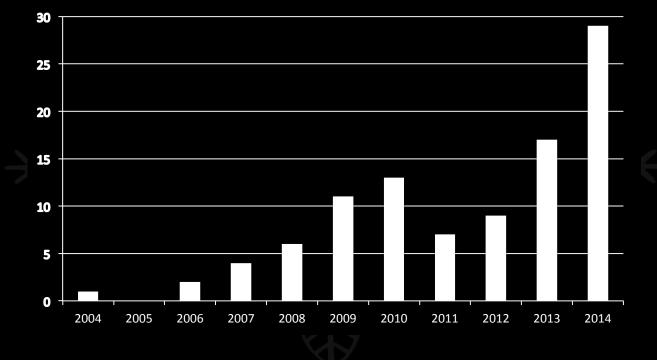
- Firmware is the first software run by a system
 - It is not hardware, though it's job is usually to configure hardware
 - It is only called "firm" because it is typically stored in a non-volatile flash chip, soldered to a circuit board somewhere
- Since the first IBM x86 PCs, an Intel x86 CPU's firmware has been referred to as the BIOS (Basic Input/Output System)
- The new industry standard for BIOS is to comply with the Unified Extensible Firmware Interface (UEFI) specification
 - An open source UEFI reference implementation is publicly available
- System Management Mode (SMM) is the most privileged CPU execution mode on an x86 system



San Francisco | April 20-24 | Moscone Center



Triumph & Tragedy


- Over the last 2 years we have researched, found, and responsibly disclosed numerous vulnerabilities that would defeat SecureBoot or allow infection of the BIOS or SMM
 - CERT VU#s 912156[1]("Ruy Lopez"), 255726[1]("The Sicilian"), 758382[2] ("Setup bug"), 291102[4] ("Charizard"), 552286[5]("King & Queen's Gambit"), 533140[6] ("noname"), 766164[7] ("Speed Racer"), 976132[8] ("Venamis"), 577140[9]("Snorlax")
- Other groups like the Intel Advanced Threat Research team, and Invisible Things Lab before them have also found and disclosed many vulnerabilities

From [16] Number of Novel Attacks in BIOS/SMM/OROM/DMA/ACPI/ME/TXT/Firmware Attack Talks (from bit.ly/1bvusqn)

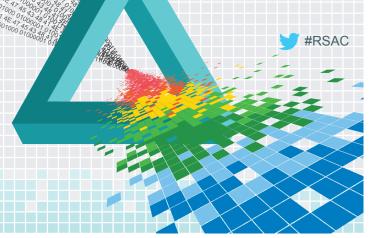
Cumulatively: 99 novel vulnerabilities or malware techniques (+2 talked about in 2015)

Triumph & Tragedy

- The top OEMs issued patches for most vulnerabilities
 - Many smaller OEMs never released patches!
- Even the top OEMs will often only issue patches the last N models
 - We're trying to get them to make N public

Triumph & Tragedy

- From our conversations with companies and individuals, there has been no significant uptick in BIOS patch management becoming part of corporate best practices
- We did the right thing, and were counting on companies to do the same, but it never happened
- This talk will hopefully convince you why this is important



RSAConference2015

San Francisco | April 20-24 | Moscone Center

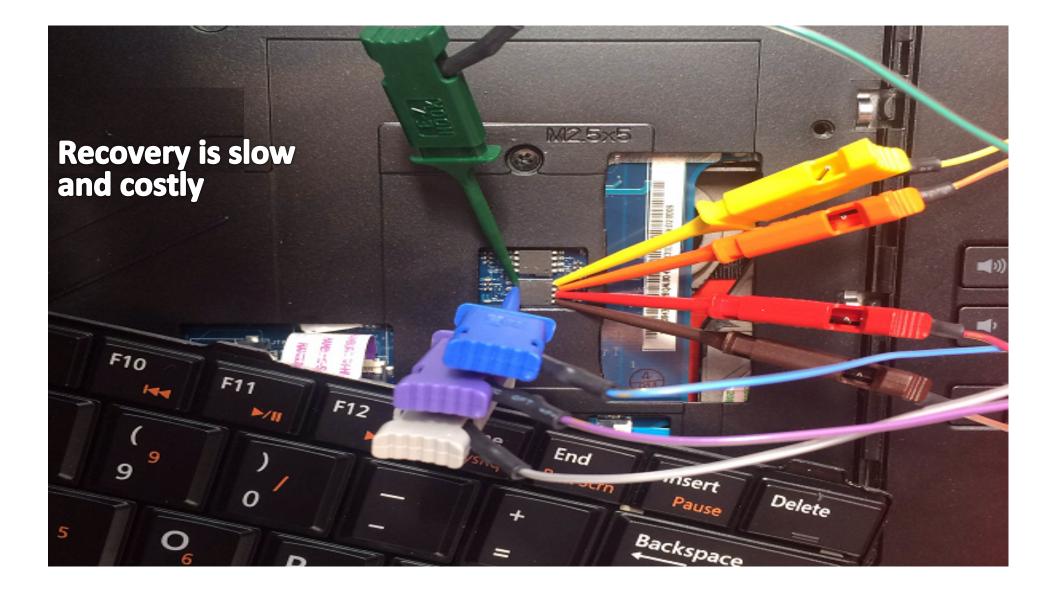
The unfortunate present

Threats

- In Sept. 2011 the first crimeware using BIOS infection (Mebromi) was found [10]
- In Dec 2013 NSA defensive director said other states are developing BIOS attack capabilities [11]
- In Dec 2013 Snowden leaks said NSA offensive has a catalog of offensive capabilities that includes BIOS/SMM implants [12]
- In Jan 2014 CrowdStrike said that some malware they attributed to Russia is collecting BIOS version info (but they didn't say they had seen BIOS infection itself) [13]

The world post-Snowden

- Every country in the world now knows that firmware attacks are unequivocally the way to reliably persist on target networks, unseen, for years at a time
- All the world's intelligence agencies are saying: "Me too! Me too!"



Destructive attacks can get worse

- Some nation state actors have shown the will to exercise destructive HD-wiping attacks
 - Iran against Saudi Aramco
 - North Korea against South Korean banks / Sony
- Firmware-wiping attacks are just as possible, but far more devastating, and far more difficult to recover from

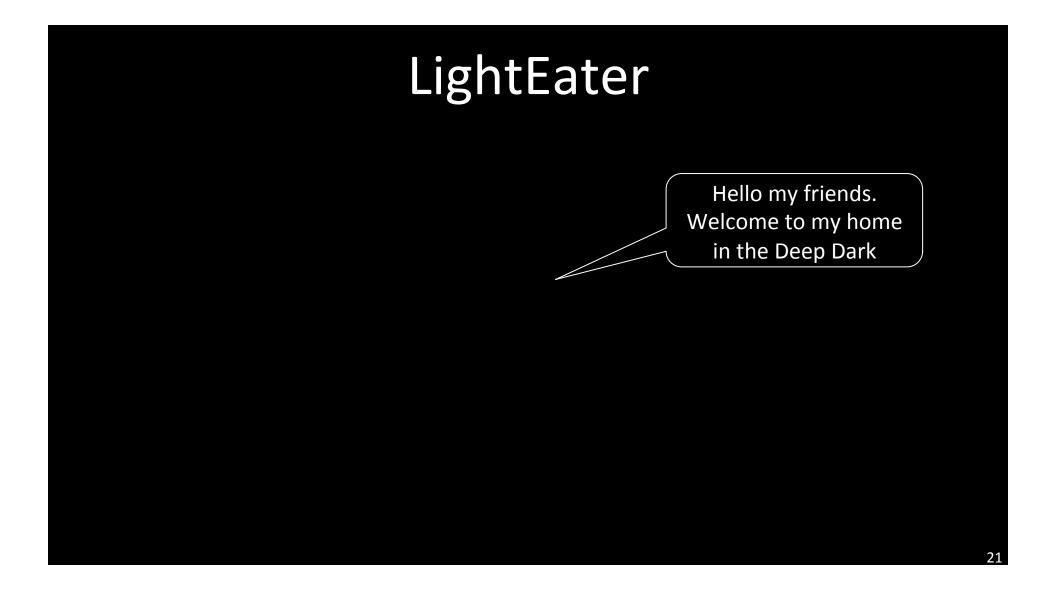
We hold these truths to be non-obvious

- Because almost no one applies BIOS patches, almost every BIOS in the wild is affected by at least one vulnerability, and can be infected
- The high amount of code reuse across UEFI BIOSes means that BIOS infection is automatable and reliable (see [9] for details)

3 paths to infection

- Remote interaction
- Physical interaction
- Supply chain

19



RS∧Conference2015

San Francisco | April 20-24 | Moscone Center

Remote Infection Example

#RSAC

What can a LightEater do?

- LightEater lives in SMM
- SMM is the most privileged CPU execution mode
- Therefore LightEater trumps all security systems
- And LightEater can perform any attack that a lesser-privileged (e.g. hypervisor, kernel, userspace) attacker can perform

LightEater on ASUS

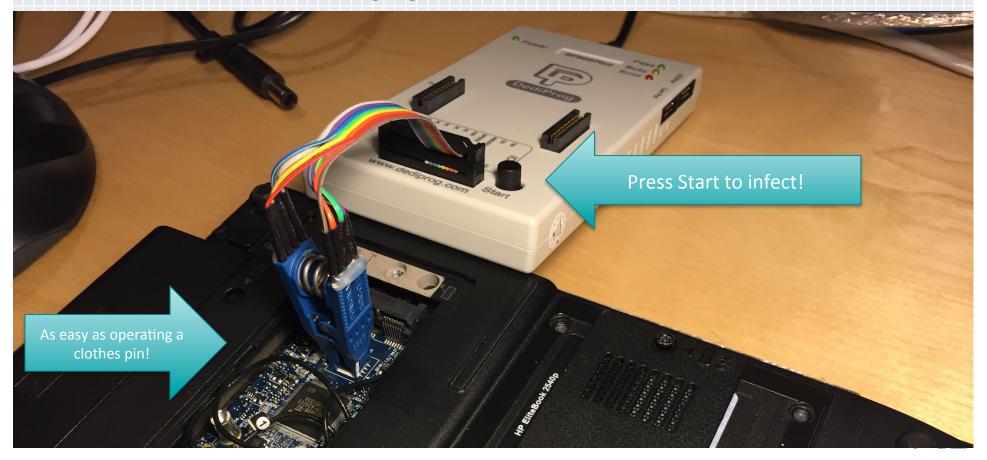
- We chose to show a typical kernel-mode rootkit behavior
 - But instigated from infected SMM
- LightEater will hook into the OS internals to be notified every time a new process starts
 - It can then choose to hack that process or not

RS∧Conference2015

San Francisco | April 20-24 | Moscone Center

Physical Infection Example

#RSAC

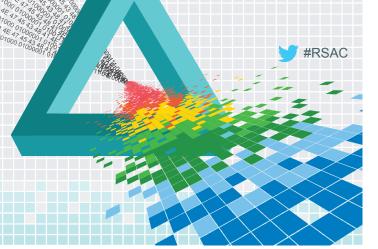

Possible touchpoints

- "Evil Maid" attacks when you leave your laptop in your hotel room, or when your cleaners come into the office for the night
- "Border Guard" attacks when you're crossing international borders

It's easier for an unskilled accomplice than you think: **RSAC unscrew 1 screw, clip, press "start", wait 50 seconds, done

LightEater on HP

- In this case LightEater will exfiltrate data over the network using Intel Serial-Over-Lan
 - A legitimate capability found in many enterprise-grade systems
 - No low level driver needed. Write data to a port, packets come out
- Has an option to "encrypt" data with bitwise rot13 to thwart network defenders ;)



RS∧Conference2015

San Francisco | April 20-24 | Moscone Center

Supply chain infection

RS∧Conference2015

San Francisco | April 20-24 | Moscone Center

Do something about it TODAY

BIOS problems are detectable, if you only look!

- 2 kinds of problems we want to look for:
- Vulnerabilities
 - "Can this system be hacked?"
- Infections
 - "Has this system been hacked?"

Can this system be hacked?

Copernicus [14]

- Xeno ran this project at previous employer
- Designed for enterprise deployment
 - Run on ~10k systems in production environments
- Supports Intel CPUs on Windows >= 7 32/64bit
- Previously freely distributed as signed binary
 - After we left, they added a requirement to fill out a "FastLicense request" form to get a copy of the binary

Can this system be hacked?

- Intel ChipSec http://github.com/chipsec/chipsec
 - Designed for modularity excellent for security researchers
 - Meant to run on single test systems which are representative of a broader population
 - Very prominent warning.txt says not to run on production systems
 - Supports Windows/Linux/UEFI Shell
 - Distributed as source, it requires you to sign it yourself to run on Windows (usually use a self-signed key on non-production system)

Example vulnerability assessment scenarios

- Representative sample audit
 - Collect one of each model that is in your corporate lifecycle program
 - Update BIOS on representative systems to latest
 - Run ChipSec on each model
 - If it shows no vulnerabilities, then you should update all Models in your environment to that version
 - If it shows vulnerabilities, then you should contact the vendor and contact us so we can help work with the vendor to fix the vulnerabilities

Example vulnerability assessment scenarios

Full enterprise audit

- Push Copernicus kernel driver and a script to run it to all endpoints, using your patch management system
- Collect Copernicus output to central server
- Use Copernicus' protections.py with the "per-version" option to create a summary document that shows which Vendor/Model/Revision BIOSes in your environment are currently vulnerable

This has been done on ~10k production systems

BIOS problems are detectable, if you only look!

- 2 kinds of problems we want to look for:
- Vulnerabilities
 - "Can this system be hacked?"
- Infections
 - "Has this system been hacked?"

Has this system been hacked?

Use Copernicus

- Copernicus, ChipSec, and Flashrom can dump the contents of the flash chip which contains the BIOS
- But only Copernicus includes an integrity check mechanism
- bios_diff.py compares two UEFI BIOSes' firmware filesystem and prints any differences

Example integrity checking scenarios

Evil Maid scenario

- Dump the BIOS before a system travels abroad
- Dump the BIOS after, and diff against the before
- Enterprise audit acceptable scenario
 - Bucket all your BIOSes according to Vendor/Model/Revision
 - Treat one BIOS as golden, and diff all others against it
- Enterprise audit best case scenario
 - Extract a known clean BIOS image from a BIOS update that the vendor provides on their website
 - Diff all matching Vendor/Model/Revision BIOSes against that gold copy

RSAConference2015

BIOS integrity check failures

- If an integrity failure is found, you have a few options to determine if it is a genuine malware detection, or a tool problem
 - 1. Insource the analysis by sending your malware analysts/forensics experts to our BIOS security training
 - 2. Ask your friendly neighborhood intelligence agency
 - 3. Ask the OEM
 - 4. Ask us :)

RS∧Conference2015

San Francisco | April 20-24 | Moscone Center

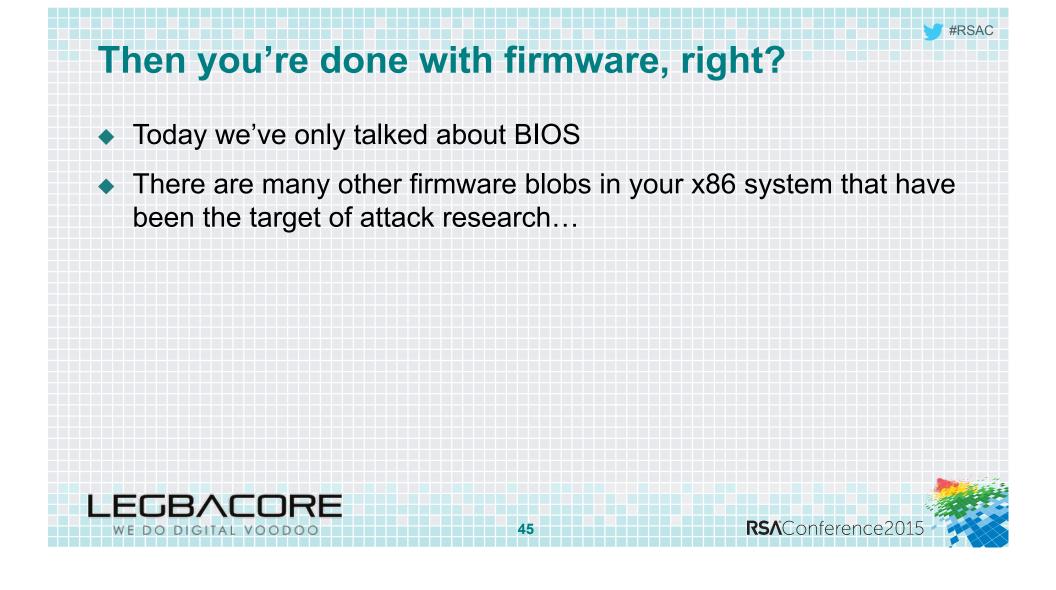
Stop giving firmware attackers a free pass!

Apply – NEXT WEEK

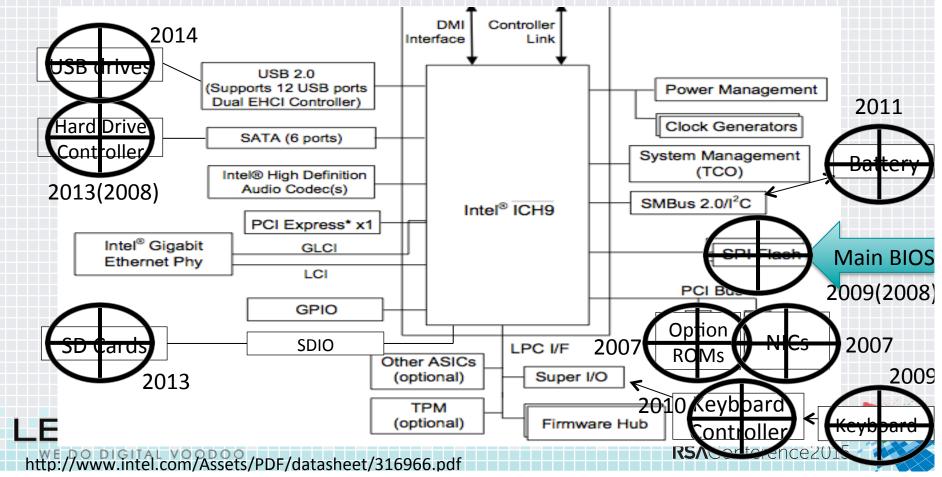
- Find out if your asset management software collects information about hardware models' BIOS revisions.
 - If not, tell your vendor you want that capability
 - If so, build a histogram of your most common hardware models for prioritization
- Have IT patch the BIOS and run ChipSec or Copernicus on the small collection of "representative machines"
 - If no vulnerabilities, prepare BIOS patch management procedures
 - If vulnerabilities, let us know so we can talk to the OEM

Apply – 3 MONTHS

- Patch the BIOS for at least the single model of PC that is most common in your environment
- Push Copernicus/Flashrom through your patch management system to collect vulnerability & integrity information for all your systems
- Institute a loaner-laptop policy for traveling employees & perform integrity checks on the firmware with Copernicus upon return



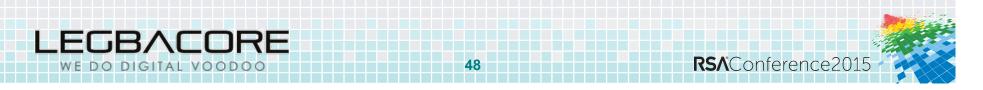
RS^AC onference


Apply – 12 MONTHS

- Be collecting BIOS version information incorporated into your asset management product of choice
- Make BIOS patch management for all models in your environment part of your standard procedures
- Analyze vulnerability/integrity data returned by Copernicus/Flashrom
- Utilize our services to do a more trustworthy audit on systems you think are potential high value/mission critical targets
- Provision your Trusted Platform Modules (TPMs) to enable more trustworthy assessment technologies (sorry, Macs are out of luck)
- Ask your OEM if they utilize "Dual Monitor Mode" to stop SMM from being able to completely compromise the system

Conclusion

- Stop giving firmware attackers a free pass! Start patching!
- Checking UEFI BIOS for vulnerabilities and infections is no longer a research problem. It's something you can start doing TODAY!



Questions?

- Contact: {xeno,corey}@legbacore.com
- http://legbacore.com/Contact.html for our GPG keys
- http://legbacore.com/Research.html for the latest slides

 Go check out <u>OpenSecurityTraining.info</u> for the free classes from Xeno and Corey on x86 assembly & architecture, binary executable formats, stealth malware, and exploits. As well as lots of good classes from others

References

[0] Low level PC attack Papers Timeline by Xeno Kovah http://timeglider.com/timeline/5ca2daa6078caaf4

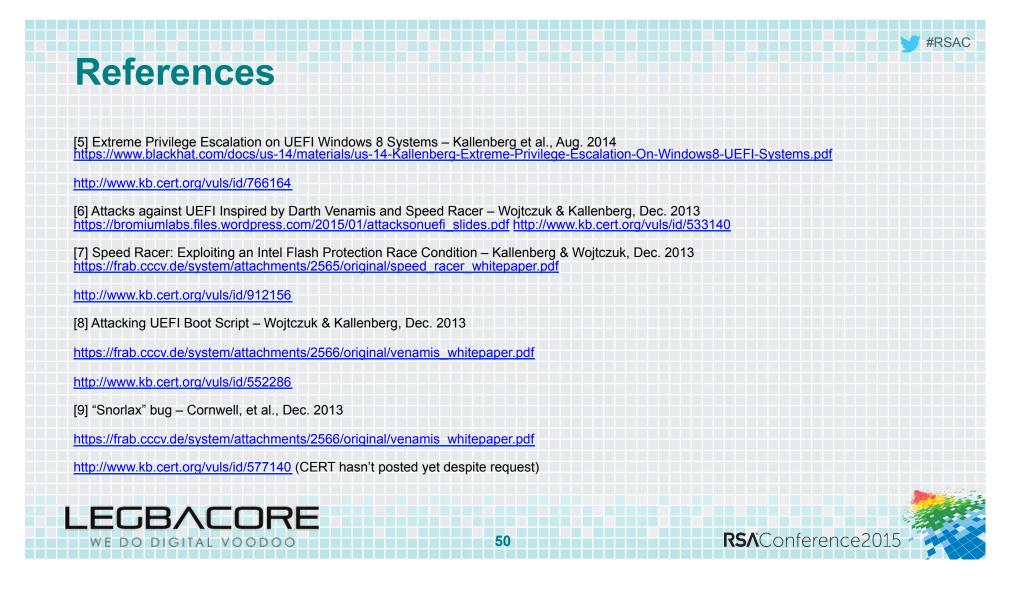
[1] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013 http://conference.hitb.org/hitbsecconf2013kul/materials/D1T1%20-%20Kallenberg,%20Kovah,%20Butterworth%20-%20Defeating%20Signed %20BIOS%20Enforcement.pdf

http://www.kb.cert.org/vuls/id/912156

http://www.kb.cert.org/vuls/id/255726 (CERT hasn't posted yet despite request)

[2] All Your Boot Are Belong To Us (MITRE portion) – Kallenberg et al. – Mar. 2014, delayed from publicly disclosing potential for bricking until HITB at Intel's request https://cansecwest.com/slides/2014/AllYourBoot_csw14-mitre-final.pdf

http://www.kb.cert.org/vuls/id/758382


[3] All Your Boot Are Belong To Us (Intel portion) - Bulygin et al. - Mar. 2014 https://cansecwest.com/slides/2014/AllYourBoot csw14-intel-final.pdf

[4] Setup for Failure: Defeating UEFI Secure Boot - Kallenberg et al., Apr. 2014 http://syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/ SyScan2014 CoreyKallenberg SetupforFailureDefeatingSecureBoot.zip

http://www.kb.cert.org/vuls/id/291102 (CERT hasn't posted yet despite request)

References

[10] "Mebromi: the first BIOS rootkit in the wild"
http://www.webroot.com/blog/2011/09/13/mebromi-the-first-bios-rootkit-in-the-wild/
[11] "NSA Speaks Out on Snowden Spying", Dec 2012
http://www.cbsnews.com/news/nsa-speaks-out-on-snowden-spying/
[12] "To Protect And Infect" - Jacob Applebaum, Dec. 2012
https://www.youtube.com/watch?v=vlLAlhwUgIU (contains leaked classified NSA documents)
[13] "U.S. Gas, Oil Companies Targeted in Espionage Campaigns", Jan. 2013
http://threatpost.com/u-s-gas-oil-companies-targeted-in-espionage-campaigns/103777
[14] Copernicus: Question Your Assumptions about BIOS Security, John Butterworth, Jul. 2013
https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
[15] Betting BIOS Bugs Won't Bite Y'er Butt? – Kovah & Kallenberg, Jan. 2015
http://legbacore.com/Research_files/2015_ShmooCon_BIOSBugs.pdf

