
Safeguarding rootkits:
Intel BootGuard

Alexander Ermolov

Security researcher at

a.ermolov@dsec.ru

flothrone@gmail.com

2

#whoami

mailto:a.ermolov@dsec.ru
mailto:flothrone@gmail.com

1. No motherboards were harmed

2. The Intel Boot Guard implementation details given here is a result
of a reverse engineering process, so it may contain some inaccuracy
compared to the Intel Boot Guard specification (which is not public)

3

#disclaimer

Intel x86 platform firmware

4

Execution environments:

• Intel CPU

• Intel chipset subsystems

• ACPI EC

Platform firmware is
stored on common SPI
flash memory

Desktop (Laptop) system overview

5

Skylake

DMI 3.0

PCI-E 3.0

SATA3

PCI-E + SMLink

USB 3.0

TPM 1.2\TPM 2.0

NIC PHY

LPC

HDD

Display
CPU

PCH

DRAM

DDR4

Flash memory

SPI

ACPI EC

eSPIUSB

System firmware is divided into regions:

• Flash Descriptors
• Descriptors of other regions

• Access permissions

• …

• GbE

• ME

• ACPI EC (since Skylake)

• BIOS

Common SPI flash memory

6

Flash Descriptors

GbE

ME

ACPI EC

BIOS

Main execution environment (BIOS\OS)

Privilege levels:

Ring 3 User Mode

…

Ring 0 Kernel Mode

Ring -1 Hypervisor Mode

Ring -2 System Management Mode (SMM)

Intel CPU

Skylake

7

Root of Trust

• Microcode ROM (== Boot ROM ?)

• AES key for decrypting microcode updates

• Hash of an RSA public key which verifies the microcode updates

• Hash of an RSA public key which verifies other Intel blobs (e.g. ACM…)

Intel CPU

8

Chipset subsystem integrated into:

• Q-type chipsets since 960 series (2006)
Intel ME 2.x – 5.x

• All chipsets since 5 series (2010)
Intel ME 6.x – 11.x, TXE 1.x – 3.x, SPS 1.x – 4.x

Platforms affected:

• Desktop, Laptop Intel Management Engine (ME)

• Mobile Intel Trusted Execution Engine (TXE)/Security Engine

• Server Intel Server Platform Services (SPS)

Intel ME

9

Most privileged and hidden
execution environment (Ring -3):

• Hidden from CPU runtime
memory in DRAM

• Full access to DRAM

• Working even when CPU is in S5
(system shutdown)

• Out-of-Band (OOB) access to
network interface

• Runs firmware (based on RTOS
ThreadX) from common SPI flash

Intel ME

10

Intel
CPU

Intel chipset

NIC PHY

DRAM

SPI flash
memory

NIC MAC

ME

NIC MAC

ME UMAME FW
MEI (HECI)

BIOS

IMC

DMI

DDR

PCI-E

SPI

CPU architectures

• ME 2.x – 10.x, SPS 1.x – 3.x
• ARC (ARC32/ARCompact)

• TXE 1.x – 2.x
• SPARC

• ME 11.x, SPS 4.x, TXE 3.x
• x86

Intel ME

11

CPU

Interrupt
controller

HPT\WDT

Code cache

Data cache

Cryptography
engine

DMA

HECI

SRAM

ROM

C-Link

Memory
controllers

In
te

rn
al

 b
u

s

Root of Trust

• ME ROM with the bootcode

• Hash of an RSA public key which verifies ME FW

• AES key to store sensitive data

• Field Programmable Fuses (FPFs)

Intel ME

12

Intel ME FW is divided
into partitions of various
type:

• Code

• Data

• File System

• …

Code partitions
verification flow ->

Intel ME

13

Partition manifest

Code modules table

Bootcode Manifest header

Module 0 header

SHA256 hash

Module 1 header

SHA256 hash

Module N header

SHA256 hash

Code module 0

Code module 1

Code module N

SHA256 hash
RSA2048
pubkey

RSA2048
signature

... ...

ME ROM

ME FW code partition

Integrated in Intel SoC since ? Bay Trail ?

Seems to be truncated version of Intel ME:

• ROM with bootcode and SRAM

• Has its own HECI

• Has a DMA engine (? shares some memory with ME ?)

• Runs firmware (ISHC partition of ME FW) from common SPI flash

Firmware can be developed and signed by Intel/OEM

Intel Integrated Sensor Hub (ISH)

14

MCU, present only on laptops to make power-management and ACPI-related
features:

• Fn-buttons

• Touchpad/keyboard

• Battery supply

• …

Runs firmware (generally without any protection against modifications) from:

• internal flash (can be updated by BIOS, the update binary is included into BIOS)

• common SPI flash (since Skylake)

Advanced Control and Power Interface (ACPI)
Embedded Controller (EC)

15

• Hardware Write Protect jumper

• Protected Range (PR) registers

• BLE (BIOS_WE)

• SMM_BWP

• Intel BIOS Guard (PFAT)

• Intel Boot Guard

Though some vendors using a few of these, but there are always many
that don’t care…

BIOS protection mechanisms

16

Intel Boot Guard 1.x*

* - not official version number, this is how I order it’s versions

17

Hardware-based boot integrity protection available since Haswell

Operating modes:

• Measured Boot (MB)

• Verified Boot (VB)

• MB + VB

18

Intel Boot Guard

RESET
Intel CPU

boot ROM
IBB BIOS OS

Intel BIOS
ACM

Measured Boot uses the Trusted Platform Module (TPM) Platform
Configuration Registers (PCRs) to reflect boot components integrity

Measure (data):

PCR = H(PCR | H(data))

Some sensitive data can be sealed (TPM_Seal) to the PCRs state

19

Intel BG. Measured Boot

Verified Boot cryptographically verifies the integrity of boot
components

Options, in case of a verification fail:

• Do nothing

• Immediate shutdown

• Shutdown in timeout (e.g. 1 or 30 minutes)

20

Intel BG. Verified Boot

Field Programmable Fuses (FPFs) are the hardware non-volatile storage
inside Intel ME so only it can program and read them

FPFs fits perfect to store the Intel BG configuration:

• Fuses can be one-time programmable

• Access only through Intel ME

21

Intel BG. Configuration

Intel Boot Guard

22

typedef struct BG_PROFILE

{

unsigned long Force_Boot_Guard_ACM : 1;

unsigned long Protect_BIOS_Environment : 1;

unsigned long CPU_Debugging : 1;

unsigned long BSP_Initialization : 1;

unsigned long Measured_Boot : 1;

unsigned long Verified_Boot : 1;

unsigned long Key_Manifest_ID : 4;

unsigned long Enforcement Policy : 2; // 00b – do nothing

// 01b – shutdown timeout

// 11b – immediate shutdown

unsigned long : 20;

};

23

Intel BG. Configuration

BG profiles

• No_FVME Disabled

• VE VB, shutdown timeout

• VME VB + MB, shutdown timeout

• VM VB + MB, do nothing

• FVE VB, immediate shutdown

• FVME VB + MB, immediate shutdown

24

Intel BG. Configuration

Intel BG configuration process

1) Prepare image with ME NVARs that should be committed to FPFs
• Intel Flash Image Tool

2) Close the manufacturing mode and issue a global reset
• Intel Flash Programming Tool

25

Intel BG. Configuration

Intel BG. Verification flow

26

SVN

OEM Root
RSA Pubkey

IBBM RSA
Pubkey hash

RSA
signature

SVN

IBBM RSA
Pubkey

IBB hash

RSA
signature

Key Manifest IBB ManifestFPFs

OEM Root
RSA Pubkey

hash

IBB

SPI flash

Let’s take a deeper look on BG implementation…

• Gigabyte GA-H170-D3H BG support present

• Gigabyte GA-Q170-D3H BG support present

• Gigabyte GA-B170-D3H BG support present

• MSI H170A Gaming Pro BG support not present

• Lenovo ThinkPad 460 BG support present

• Lenovo Yoga 2 Pro BG support not present

• Lenovo U330p BG support not present

27

Researched systems

No image of it for researching, but some docs mention that it does:

1) Find the Firmware Interface Table (FIT)
• FIT base address is located at 0xFFFFFFC0

2) Find Intel BIOS Authenticated Code Module (ACM), verify, load and
execute it
• FIT contains the base address of Intel BIOS ACM

Intel CPU boot ROM

28

Intel CPU boot ROM

29

FIT

SPI flash

Intel CPU

Intel CPU
boot ROM

RESET

0xFFFFFFC0

The FIT is a table of few entries and the first entry is a FIT header

typedef struct FIT_HEADER

{

char Tag[8]; // ‘_FIT_ ’

unsigned long NumEntries; // including FIT header entry

unsigned short Version; // 1.0

unsigned char EntryType; // 0

unsigned char Checksum;

};

Intel CPU boot ROM

30

Other FIT entries have the same format
They describes Intel blobs that are to be parsed\executed before the BIOS,
hence before the Legacy RESET-vector (0xFFFFFFF0)

typedef struct FIT_ENTRY

{

unsigned long BaseAddress;

unsigned long : 32;

unsigned long Size;

unsigned short Version; // 1.0

unsigned char EntryType;

unsigned char Checksum;

};

Intel CPU boot ROM

31

enum FIT_ENTRY_TYPES

{

FIT_HEADER = 0,

MICROCODE_UPDATE,

BIOS_ACM,

BIOS_INIT = 7,

TPM_POLICY,

BIOS_POLICY,

TXT_POLICY,

BG_KEYM,

BG_IBBM

};

Intel CPU boot ROM

32

typedef struct BIOS_ACM_HEADER

{

unsigned short ModuleType; // 2

unsigned short ModuleSubType; // 3

unsigned long HeaderLength; // in dwords

unsigned long : 32;

unsigned long : 32;

unsigned long ModuleVendor; // 8086h

unsigned long Date; // in BCD format

unsigned long TotalSize; // in dwords

unsigned long unknown1[6];

unsigned long EntryPoint;

unsigned long unknown2[16];

unsigned long RsaKeySize; // in dwords

unsigned long ScratchSize; // in dwords

unsigned char RsaPubMod[256];

unsigned long RsaPubExp;

unsigned char RsaSig[256];

};

Intel CPU boot ROM

33

Intel CPU boot ROM

34

FIT

SPI flash

Intel CPU

Intel CPU
boot ROM

RESET

0xFFFFFFC0

Intel BIOS
ACMIntel BIOS

ACM

Intel BIOS ACM

35

Parse FIT:

1) Retrieve hash of OEM Root Pubkey and Boot Policies from Intel ME

2) Locate Key Manifest (KEYM) and verify it

3) Locate IBB Manifest (IBBM) and verify it

Intel BIOS ACM

36

enum FIT_ENTRY_TYPES

{

FIT_HEADER = 0,

MICROCODE_UPDATE,

BIOS_ACM,

BIOS_INIT = 7,

TPM_POLICY,

BIOS_POLICY,

TXT_POLICY,

BG_KEYM,

BG_IBBM

};

Intel CPU boot ROM

37

Intel CPU boot ROM

38

FIT

SPI flash

Intel CPU

Intel CPU
boot ROM

RESET

0xFFFFFFC0

Intel BIOS
ACMIntel BIOS

ACM

FPFs

Intel ME

KEYM

IBBM

typedef struct KEY_MANIFEST

{

char Tag[8]; // ‘__KEYM__’

unsigned char : 8; // 10h

unsigned char : 8; // 10h

unsigned char : 8; // 0

unsigned char : 8; // 1

unsigned short : 16; // 0Bh

unsigned short : 16; // 20h == hash size?

unsigned char IbbmKeyHash[32]; // SHA256 of an IBBM public key

BG_RSA_ENTRY OemRootKey;

};

Intel BIOS ACM

39

typedef struct BG_RSA_ENTRY

{

unsigned char : 8; // 10h

unsigned short : 16; // 1

unsigned char : 8; // 10h

unsigned short RsaPubKeySize; // 800h

unsigned long RsaPubExp;

unsigned char RsaPubKey[256];

unsigned short : 16; // 14

unsigned char : 8; // 10h

unsigned short RsaSigSize; // 800h

unsigned short : 16; // 0Bh

unsigned char RsaSig[256];

};

Intel BIOS ACM

40

typedef struct IBB_MANIFEST

{

ACBP Acbp; // Boot policies

IBBS Ibbs; // IBB description

IBB_DESCRIPTORS[];

PMSG Pmsg; // IBBM signature

};

Intel BIOS ACM

41

typedef struct ACBP

{

char Tag[8]; // ‘__ACBP__’

unsigned char : 8; // 10h

unsigned char : 8; // 1

unsigned char : 8; // 10h

unsigned char : 8; // 0

unsigned short : 16; // x & F0h = 0

unsigned short : 16; // 0 < x <= 400h

};

Intel BIOS ACM

42

typedef struct IBBS

{

char Tag[8]; // ‘__IBBS__’

unsigned char : 8; // 10h

unsigned char : 8; // 0

unsigned char : 8; // 0

unsigned char : 8; // x <= 0Fh

unsigned long : 32; // x & FFFFFFF8h = 0

unsigned long Unknown[20];

unsigned short : 16; // 0Bh

unsigned short : 16; // 20h == hash size ?

unsigned char IbbHash[32]; // SHA256 of an IBB

unsigned char NumIbbDescriptors;

};

Intel BIOS ACM

43

Initial Boot Block (IBB) content is described in IBB_DESCRIPTORS

typedef struct IBB_DESCRIPTOR

{

unsigned long : 32;

unsigned long BaseAddress;

unsigned long Size;

};

So the concatenation of blocks (usually all SEC/PEI modules in UEFI image) that are
pointed by IBB descriptors forms the IBB

Intel BIOS ACM

44

typedef struct PMSG

{

char Tag[8]; // ‘__PMSG__’

unsigned char : 8; // 10h

BG_RSA_ENTRY IbbKey;

};

Intel BIOS ACM

45

Intel CPU boot ROM

46

FIT

SPI flash

Intel CPU

Intel CPU
boot ROM

RESET

Intel BIOS
ACMIntel BIOS

ACM

FPFs

Intel ME

KEYM

IBBM

BIOS

IBB

0xFFFFFFC0

IBB

Hence, the SEC/PEI code is verified before the CPU starts executing from the
RESET vector (FFFFFFF0h)

Then the BootGuard supporting code in PEI must verify the DXE volumes

Such PEI module is developed by OEM, e.g.:

• Lenovo
LenovoVerifiedBootPei {B9F2AC77-54C7-4075-B42E-C36325A9468D}

• Gigabyte
BootGuardPei {B41956E1-7CA2-42DB-9562-168389F0F066}

IBB

47

This BootGuard PEI module does:

• Find the hash table by the GUID

• Verify the DXE code pointed by this hash table

IBB

48

if (EFI_PEI_SERVICES->GetBootMode() != BOOT_ON_S3_RESUME)

{

if (!FindHashTable())

return EFI_NOT_FOUND;

if (!VerifyDxe())

return EFI_SECURITY_VIOLATION;

}

LenovoVerifiedBootPei

49

Hash table PEI module {389CC6F2-1EA8-467B-AB8A-78E769AE2A15}

typedef struct HASH_TABLE

{

char Tag[8]; // ‘$HASHTBL’

unsigned long NumDxeDescriptors;

DXE_DESCRIPTORS[];

};

typedef struct DXE_DESCRIPTOR

{

unsigned char BlockHash[32]; // SHA256

unsigned long Offset;

unsigned long Size;

};

LenovoVerifiedBootPei

50

int bootMode = EFI_PEI_SERVICES->GetBootMode();

if (bootMode != BOOT_ON_S3_RESUME &&

bootMode != BOOT_ON_FLASH_UPDATE &&

bootMode != BOOT_IN_RECOVERY_MODE)

{

if (!FindHashTable())

return EFI_NOT_FOUND;

if (!VerifyDxe())

return EFI_SECURITY_VIOLATION;

}

BootGuardPei

51

Hash table PEI module {389CC6F2-1EA8-467B-AB8A-78E769AE2A15}

typedef HASH_TABLE DXE_DESCRIPTORS[];

typedef struct DXE_DESCRIPTOR

{

unsigned char BlockHash[32]; // SHA256

unsigned long BaseAddress;

unsigned long Size;

};

BootGuardPei

52

Safeguarding rootkits

53

One day I found out that some systems have the SPI flash regions unlocked
and the BootGuard configuration not set (nor enabled, nor disabled):

• All Gigabyte systems

• All MSI systems

• 21 Lenovo branded notebook machine types and 4 ThinkServer machine
types

• other few vendors I cannot mention at the moment

That’s because of the close manufacturing fuse was not set at the end of the
manufacturing line.

The issue

54

«Lenovo has released fixes for the affected products, which can be
found at https://support.lenovo.com/solutions/LEN_9903 or via our
security advisory website,
https://support.lenovo.com/product_security, and we have adjusted
manufacturing processes, where necessary, to prevent reoccurrence of
this issue in the future. We sincerely appreciate Mr. Ermolov's
responsible disclosure and partnership in this matter.»

Lenovo statement

55

«Intel’s guidance to our business partners is to close manufacturing
mode at the end of production in order to maximize the security of the
platform.»

Intel statement

56

So any user could configure the Intel BG instead of OEM:

• Load into OS

• Modify BIOS

• Write proper BG configuration and verification entities (KEYM, IBBM)
using Intel Flash Image Tool

• Set the closemnf fuse using the Intel Flash Programming Tool

This will permanently enable Intel BG on the system and will protect
modified BIOS

Safeguarding rootkits

57

DEMO

58

The rootkit can be an SMM driver with the following capabilities:

1) Executed during OS
• Registers a SMI ISR and configure a timer to generate SMI events

2) Full (except ME UMA) access to CPU physical address space and
complete isolation from OS
• SMRAM

3) An encrypted blob which self-decrypts itself during upon each
execution

Safeguarding rootkits

59

Hence, the issue allows:

• to create hidden, black box and irremovable (even with SPI flash
programmer) rootkit on a platform

• to modify the ISH firmware on the platform which opens a new attack
surface

Safeguarding rootkits

60

Safeguarding rootkits

61

Conclusion

* - not official version number, this is how I order it’s versions

62

• Description of Intel BootGuard implementation

• There are so many proprietary Intel blobs executing before RESET-
vector

• The number of execution environments is increasing (CPU x86_64,
ME x86, ISH x86, …)

• A scenario to make any past BIOS modification permanent and
updatable only from BG Root Key owner

Conclusion

63

• Vendors that intentionally left the closemnf fuse unset in servicing
purposes should find another way

• Vendors that left the closmnf fuse by mistake should roll out a fix
(Lenovo have already done this)

• Users can disable the Intel BG technology manually:
Just run the MEinfo to make sure the Intel BG in not configured on the platform
and run the FPT with –closemnf argument

Mitigation

64

Mitigation

65

Mitigation

66

Thank you

67

