Safeguarding rootkits: Intel BootGuard

www.zeronights.org

Alexander Ermolov

ZERONIGHTS

#whoami

Security researcher at

a.ermolov@dsec.ru

flothrone@gmail.com

www.zeronights.org

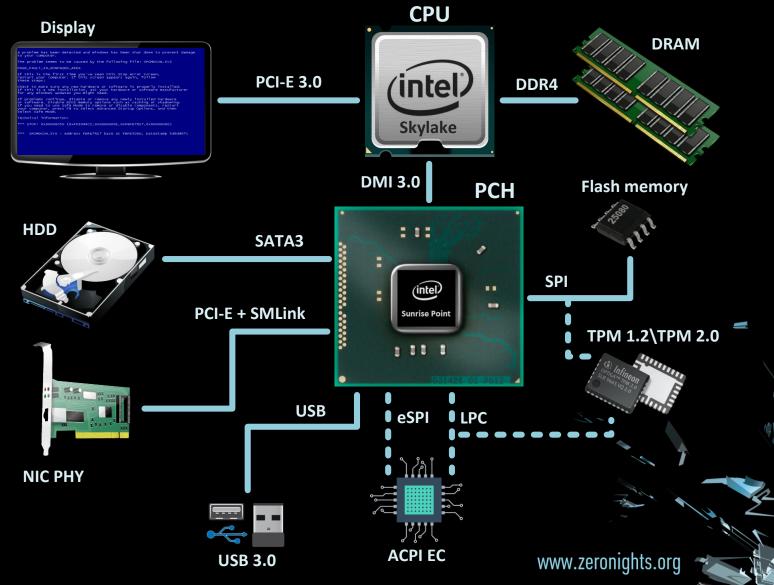
#disclaimer

- 1. No motherboards were harmed
- 2. The Intel Boot Guard implementation details given here is a result of a reverse engineering process, so it may contain some inaccuracy compared to the Intel Boot Guard specification (which is not public)

Intel x86 platform firmware

www.zeronights.org

Desktop (Laptop) system overview


Execution environments:

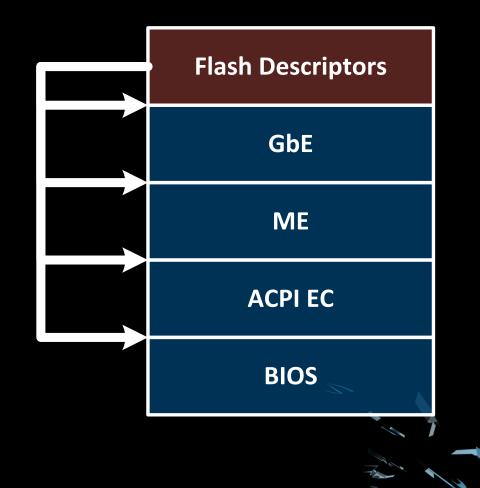
• Intel CPU

NIGHT

- Intel chipset subsystems
- ACPI EC

Platform firmware is stored on common SPI flash memory

Common SPI flash memory


System firmware is divided into regions:

- Flash Descriptors
 - Descriptors of other regions
 - Access permissions
- GbE

•

NIGHT

- ME
- ACPI EC (since Skylake)
- BIOS

Intel CPU

Main execution environment (BIOS\OS)

Privilege levels:

. . .

Ring 3 User Mode

Ring 0 Kernel Mode

Ring -1 Hypervisor Mode

Ring -2System Management Mode (SMM)

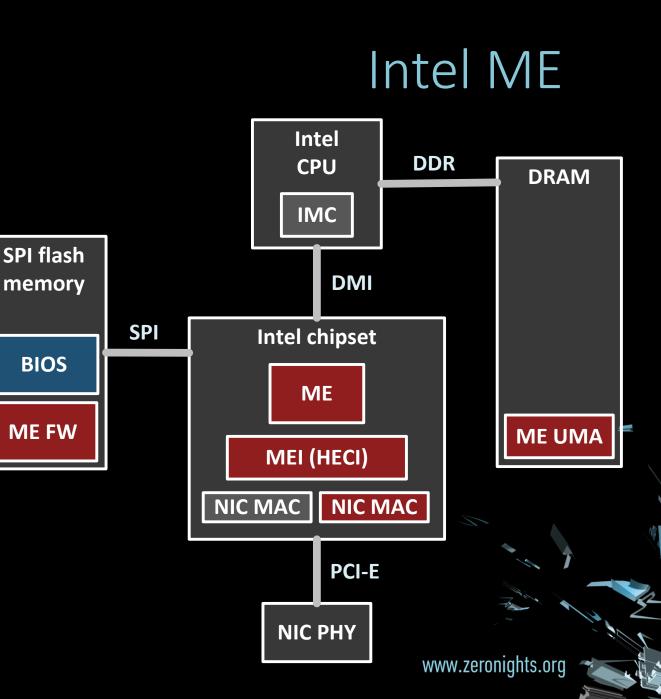
Intel CPU

Root of Trust

- Microcode ROM (== Boot ROM ?)
- AES key for decrypting microcode updates
- Hash of an RSA public key which verifies the microcode updates
- Hash of an RSA public key which verifies other Intel blobs (e.g. ACM...)

Intel ME

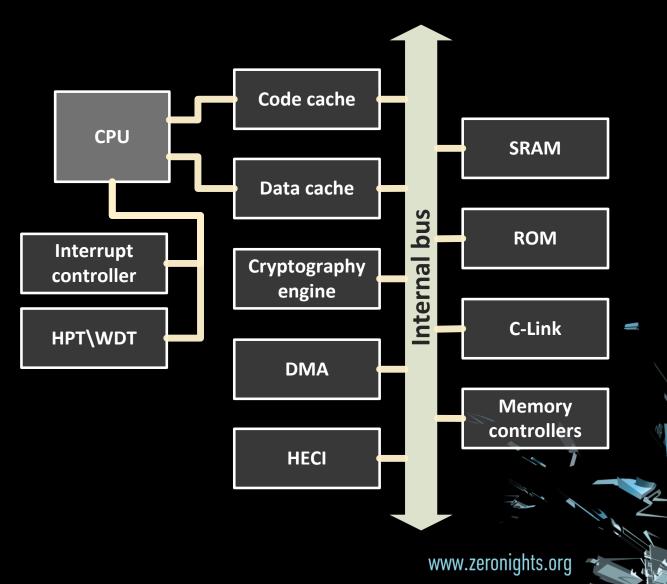
Chipset subsystem integrated into:


- Q-type chipsets since 960 series (2006) Intel ME 2.x – 5.x
- All chipsets since 5 series (2010) Intel ME 6.x – 11.x, TXE 1.x – 3.x, SPS 1.x – 4.x

Platforms affected:

- Desktop, Laptop Intel Management Engine (ME)
- Mobile Intel Trusted Execution Engine (TXE)/Security Engine
- Server Intel Server Platform Services (SPS)

Most privileged and hidden execution environment (Ring -3):


- Hidden from CPU runtime memory in DRAM
- Full access to DRAM
- Working even when CPU is in S5 (system shutdown)
- Out-of-Band (OOB) access to network interface
- Runs firmware (based on RTOS ThreadX) from common SPI flash

CPU architectures

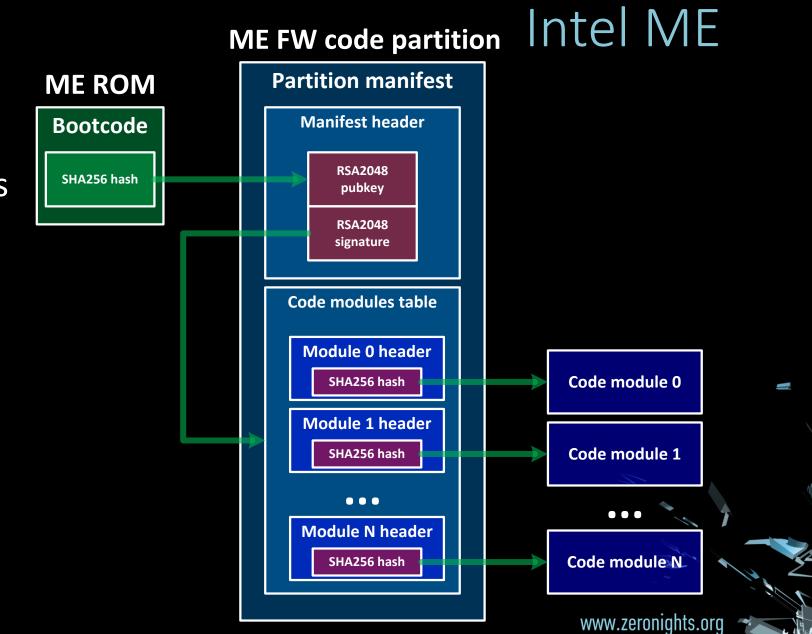
- ME 2.x 10.x, SPS 1.x 3.x
 - ARC (ARC32/ARCompact)
- TXE 1.x 2.x
 - SPARC
- ME 11.x, SPS 4.x, TXE 3.x
 - x86

Intel ME

Root of Trust

- ME ROM with the bootcode
- Hash of an RSA public key which verifies ME FW
- AES key to store sensitive data
- Field Programmable Fuses (FPFs)

Intel ME


www.zeronights.org

Intel ME FW is divided into partitions of various type:

- Code
- Data
- File System

• • • •

Code partitions verification flow ->

Intel Integrated Sensor Hub (ISH)

Integrated in Intel SoC since ? Bay Trail ?

Seems to be truncated version of Intel ME:

- ROM with bootcode and SRAM
- Has its own HECI
- Has a DMA engine (? shares some memory with ME?)
- Runs firmware (ISHC partition of ME FW) from common SPI flash

Firmware can be developed and signed by Intel/OEM

ZERONIGHTS Advanced Control and Power Interface (ACPI) Embedded Controller (EC)

MCU, present only on laptops to make power-management and ACPI-related features:

- Fn-buttons
- Touchpad/keyboard
- Battery supply

Runs firmware (generally without any protection against modifications) from:

- internal flash (can be updated by BIOS, the update binary is included into BIOS)
- common SPI flash (since Skylake)

BIOS protection mechanisms

- Hardware Write Protect jumper
- Protected Range (PR) registers
- BLE (BIOS_WE)
- SMM_BWP
- Intel BIOS Guard (PFAT)
- Intel Boot Guard

Though some vendors using a few of these, but there are always many that don't care...

Intel Boot Guard 1.x*

* - not official version number, this is how I order it's versions

17

www.zeronights.org

Intel Boot Guard

Hardware-based boot integrity protection available since Haswell

Operating modes:

- Measured Boot (MB)
- Verified Boot (VB)
- MB + VB

NIGHT

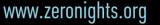
ZER

Intel BG. Measured Boot

Measured Boot uses the Trusted Platform Module (TPM) Platform Configuration Registers (PCRs) to reflect boot components integrity

```
Measure (data):

PCR = H(PCR | H(data))
```


Some sensitive data can be sealed (TPM Seal) to the PCRs state

Intel BG. Verified Boot

Verified Boot cryptographically verifies the integrity of boot components

Options, in case of a verification fail:

- Do nothing
- Immediate shutdown
- Shutdown in timeout (e.g. 1 or 30 minutes)

Intel BG. Configuration

Field Programmable Fuses (FPFs) are the hardware non-volatile storage inside Intel ME so only it can program and read them

FPFs fits perfect to store the Intel BG configuration:

- Fuses can be one-time programmable
- Access only through Intel ME

Intel Boot Guard

hash 256 bit string f
Help Tex
hash string for Boot
Help Tex
of another public ke
oot Guard Policy Prof
igging capability prob
ior when it receives

ZERONIGHTS

Intel BG. Configuration

typedef struct BG PROFILE

```
unsigned long Force_Boot_Guard_ACM : 1;
unsigned long Protect_BIOS_Environment : 1;
unsigned long CPU_Debugging : 1;
unsigned long BSP_Initialization : 1;
unsigned long Measured_Boot : 1;
unsigned long Verified_Boot : 1;
unsigned long Key_Manifest_ID : 4;
unsigned long Enforcement Policy : 2; // 00b - do nothing
// 01b - shutdown timeout
// 11b - immediate shutdown
```

unsigned long : 20;

www.zeronights.org

};

ZERONIGHTS

Intel BG. Configuration

BG profiles

- No_FVME Disabled
- VE VB, shutdown timeout
- VME VB + MB, shutdown timeout
- VM VB + MB, do nothing
- FVE VB, immediate shutdown
- FVME VB + MB, immediate shutdown

Intel BG. Configuration

Intel BG configuration process

1) Prepare image with ME NVARs that should be committed to FPFs

- Intel Flash Image Tool
- 2) Close the manufacturing mode and issue a global reset
 - Intel Flash Programming Tool

Intel BG. Verification flow

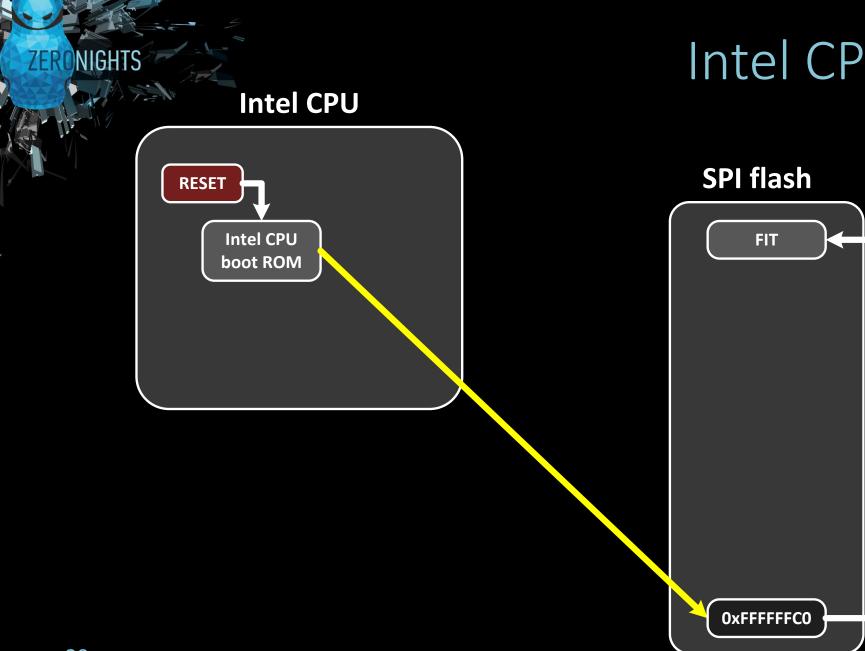
ZERONIGHTS

Researched systems

Let's take a deeper look on BG implementation...

- Gigabyte GA-H170-D3H
- Gigabyte GA-Q170-D3H
- Gigabyte GA-B170-D3H
- MSI H170A Gaming Pro
- Lenovo ThinkPad 460
- Lenovo Yoga 2 Pro
- Lenovo U330p

BG support present


- BG support present
- BG support present
- BG support not present
- BG support present
- BG support not present
- BG support not present

Intel CPU boot ROM

No image of it for researching, but some docs mention that it does:

- 1) Find the Firmware Interface Table (FIT)
 - FIT base address is located at 0xFFFFFC0
- 2) Find Intel BIOS Authenticated Code Module (ACM), verify, load and execute it
 - FIT contains the base address of Intel BIOS ACM

EB:0000h:	5F	46	49	54	5F	20	20	20	09	00	00	00	00	01	80	F2	FIT€ò
EB:0010h:	60	00	E2	FF	00	00	00	00	00	00	00	00	00	01	01	00	`.âÿ
EB:0020h:	60	50	E3	FF	00	00	00	00	00	00	00	00	00	01	01	00	`Pãÿ
EB:0030h:	00	80	EB	FF	00	00	00	00	00	00	00	00	00	01	02	00	.€ëÿ
EB:0040h:	00	00	FE	FF	00	00	00	00	00	20	00	00	00	01	07	00	þÿ
EB:0050h:	00	00	EC	FF	00	00	00	00	00	20	01	00	00	01	07	00	ìÿ
EB:0060h:	00	00	DE	FF	00	00	00	00	00	30	00	00	00	01	07	00	Þÿ0
EB:0070h:																	.PëÿA
EB:0080h:	00	20	EB	FF	00	00	00	00	D3	02	00	00	00	01	0C	00	. ëÿÓ
10.000	1212	1212	1212	1212	1212	1212	1717	1212	17.17	1212	1717	1212	17.17	1717	1717	1212	

Intel CPU boot ROM

Intel CPU boot ROM

The FIT is a table of few entries and the first entry is a FIT header

typedef struct FIT_HEADER

```
char Tag[8]; // '_FIT_ '
unsigned long NumEntries; // including FIT header entry
unsigned short Version; // 1.0
unsigned char EntryType; // 0
unsigned char Checksum;
```

};

Intel CPU boot ROM

Other FIT entries have the same format

They describes Intel blobs that are to be parsed\executed before the BIOS, hence before the Legacy RESET-vector (0xFFFFFF0)

typedef struct FIT_ENTRY

unsigned long BaseAddress; unsigned long : 32; unsigned long Size; unsigned short Version; // 1.0 unsigned char EntryType; unsigned char Checksum;

};

www.zeronights.org

Intel CPU boot ROM

enum FIT ENTRY TYPES FIT HEADER = 0, MICROCODE_UPDATE, $BIOS_INIT = 7$, TPM POLICY, BIOS_POLICY, TXT_POLICY, BG_KEYM, BG_IBBM };

www.zeronights.org

32

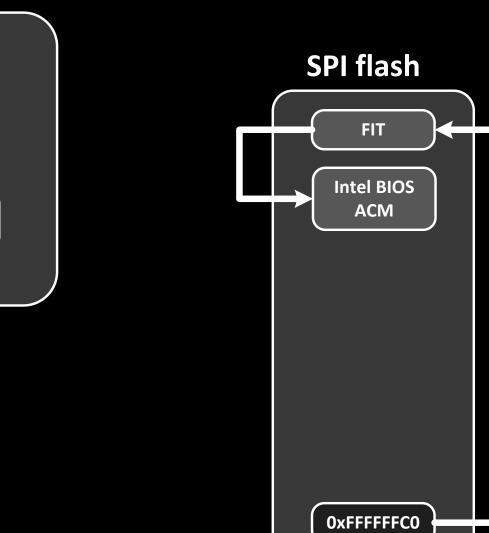
Intel CPU boot ROM

typedef struct BIOS_ACM_HEADER

unsigned		ModuleType;		
unsigned		ModuleSubType;		
unsigned	long	HeaderLength;	in	dwords
unsigned	long	: 32;		
unsigned	long	: 32;		
unsigned	long	ModuleVendor;	808	36h
unsigned	long	Date;	in	BCD format
unsigned	long	TotalSize;	in	dwords
unsigned	long	unknown1[6];		
unsigned	long	EntryPoint;		
unsigned	long	unknown2[16];		
unsigned	long	RsaKeySize;	in	dwords
unsigned	long	<pre>ScratchSize;</pre>	in	dwords
unsigned				
unsigned	long			
unsigned				

www.zeronights.org

33


The second secon

Intel BIOS

ACM

Intel CPU boot ROM

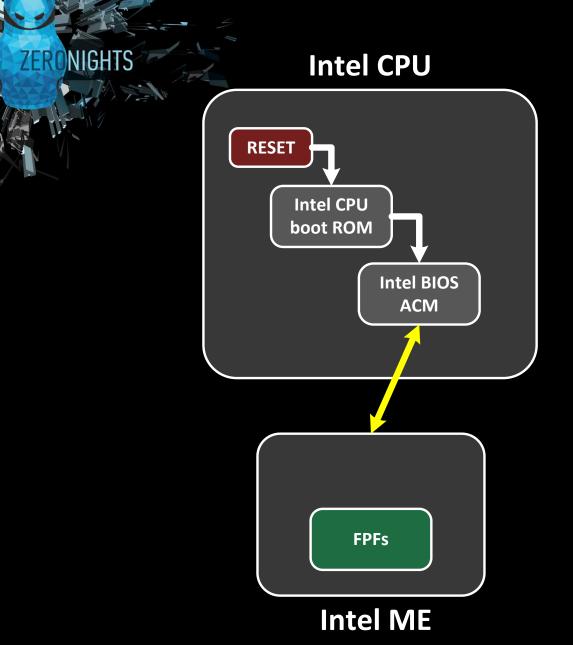
www.zeronights.org

	- 2								
	- 1	00003912 BootGuard	proc nea	ar ; CODE)	XR				
ZERONIGHTS		00003912				NTAL	\mathbf{H}	S AC	
E ZEROINOTINO		00003912 var_10		ptr -10h					
		00003912 var_C		ptr -Och					
HANSON AND A TENN		00003912 var_8							
		00003912 var_4	= dword						
		00003912 arg_0	= dword	pur o					
		00003912 00003912	nuch	ohn	00004345	BootGuardInit	proc ne	ar	; CODE XF
00003BB1 Start	proc nea		push mov	ebp ebp, esp	00004345				,
	mov	ax, ds	sub	esp, 10h	00004345	arg_0	= dword	lptr 4	
	mov	ss, ax	push	ebx	00004345		= dword		
	mov	es, ax	mov	ebx, [ebp+arg_0]	00004345	2-			
		fs, ax	push	esi	00004345		push	edi	
	mov	gs, ax	push	edi	00004346		mov	edi, [esp+4+a	arg_0]
	mov	esp, ebp	xor	eax, eax	0000434A		call	KeyM	-
	add	esp, 1000h	lea	esi, [ebx+6000h]	0000434F		test	eax, eax	
		eax, ebp	push	ebx	00004351		jnz	short loc_43	34
	add	eax, 4C8h	push	esi	00004353		mov	eax, edi	
00003BCF	lidt	fword ptr [eax]	mov	[ebp+var_10], OFFFOh	00004355		call	IbbM	
00003BD2	push	ebp	mov	[ebp+var_C], eax	0000435A		test	eax, eax	
	call	BootGuard	mov	[ebp+var_8], eax	0000435C		jnz	short_loc_43	54
	mov	ebx, eax	mov	[ebp+var_4], eax	0000435E		mov	edx, [edi+1F	
	mov	edx, 0	call	PlatformInit	00004364		mov	ecx, [esp+4+a	arg_4 j
	mov	eax, 3	mov	edi, eax	00004368 0000436A		add	[ecx], edx	
00003BE4	getsec		рор	ecx	0000436A 0000436C		mov add	edx, [ecx] edx, [edi+1F	2061
		00003940	pop	ecx	00004300		push	esi	son
		00003941	test	edi, edi	00004373		mov	[ecx], edx	
		00003943	jnz	loc_3A3E			movzx	esi, word pt	[edi+15BEh]
		00003949 00003950	movzx	eax, word ptr [esi+1F0El	0000437C		shi	esi, OCh	[curresouri
		00003950	test jz	al, 3 loc_3ADA	0000437F		add	esi, edx	
		00003958	push	esi : int	00004381		mov	[ecx], esi	
		00003959	call	GetBootGuardData	00004383		pop	esi	
		0000395E	mov	edi, eax	00004384		F - F		
		00003960	pop	ecx	00004384	loc_4384:			; CODE XF
		00003961	test	edi, edi	00004384				; BootGua
		00003963	inz	loc_3A3E	00004384		рор	edi	-
		00003969	lea	eax, [ebp+var_C]	00004385		retn		
		0000396C	push	eax	00004385	BootGuardInit	endp		
		0000396D	push	esi	00004305				
		0000396E	call	BootGuardInit					
		00003973	mov	edi. eax					al Ja

Intel BIOS ACM

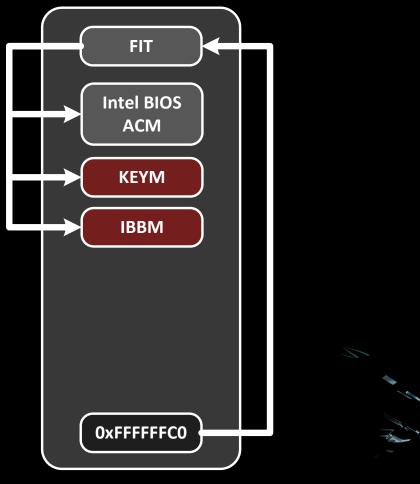
Parse FIT:

- 1) Retrieve hash of OEM Root Pubkey and Boot Policies from Intel ME
- 2) Locate Key Manifest (KEYM) and verify it
- 3) Locate IBB Manifest (IBBM) and verify it


Intel CPU boot ROM

enum FIT_ENTRY_TYPES

FIT_HEADER = 0, MICROCODE_UPDATE, BIOS_ACM, BIOS_INIT = 7, TPM_POLICY, BIOS_POLICY, TXT_POLICY, BG_KEYM, BG_IBBM


};

www.zeronights.org

Intel CPU boot ROM

SPI flash

Intel BIOS ACM

typedef struct KEY_MANIFEST

char	Tag[8];	// `KEYM′
unsigned char	: 8;	// 10h
unsigned char	: 8;	// 10h
unsigned char	: 8;	// 0
unsigned char	: 8;	// 1
unsigned short	: 16;	// 0Bh
unsigned short	: 16;	// 20h == hash size?
unsigned char	<pre>IbbmKeyHash[32];</pre>	// SHA256 of an IBBM public key
BG_RSA_ENTRY	OemRootKey;	

Intel BIOS ACM

typedef struct BG RSA ENTRY

unsigned char : 8; // 10h unsigned short : 16; // 1 unsigned char : 8; // 10h unsigned short RsaPubKeySize; // 800h unsigned long RsaPubExp; unsigned char RsaPubKey[256]; unsigned short : 16; // 14 unsigned char : 8; // 10h unsigned short RsaSigSize; // 800h unsigned short : 16; // 0Bh

www.zeronights.org

};

ZERONIGHTS

Intel BIOS ACM

typedef struct IBB MANIFEST

ACBP Acbp; // Boot policies

IBBS Ibbs; // IBB description

IBB DESCRIPTORS[];

PMSG Pmsg; // IBBM signature

www.zeronights.org

Intel BIOS ACM

typedef struct ACBP

char		Τā	ag[8];
unsigned	char	•	8;
unsigned	char	•	8;
unsigned	char	:	8;
unsigned	char	•	8;
unsigned	short	•	16;
unsigned	short	•	16;

`ACBP′
10h
1
10h
0
x & F0h = 0

Intel BIOS ACM

typedef struct IBBS

char		Τā	ag[8];	/ /
unsigned	char	:	8;	/ /
unsigned	char	•	8;	/ /
unsigned	char	:	8;	/ /
unsigned	char	:	8;	/ /
unsigned	long	:	32;	/ /
unsigned	long	Ur	1known[20];	
unsigned	short	:	16;	/ /
unsigned	short	•	16;	/ /
unsigned	char		bHash[32];	/ /
unsigned	char	Nι	mIbbDescriptors;	

```
// `__IBBS__'
// 10h
// 0
// 0
// 0
// x <= 0Fh
// x & FFFFFF8h = 0
// 0Bh
// 0Bh
// 20h == hash size ?
// SHA256 of an IBB</pre>
```


Intel BIOS ACM

Initial Boot Block (IBB) content is described in IBB_DESCRIPTORS

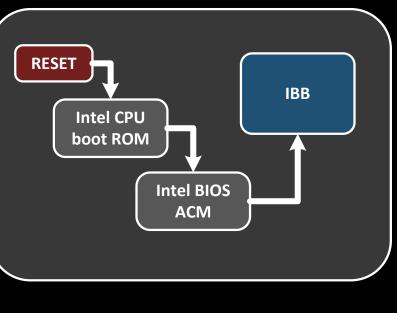
```
typedef struct IBB_DESCRIPTOR
```

```
unsigned long : 32;
unsigned long BaseAddress;
unsigned long Size;
```

};

So the concatenation of blocks (usually all SEC/PEI modules in UEFI image) that are pointed by IBB descriptors forms the IBB

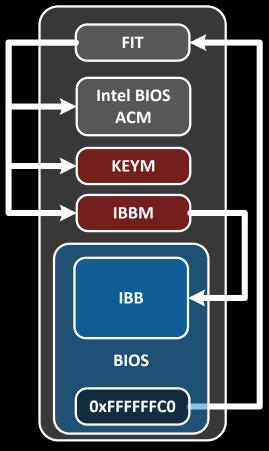
Intel BIOS ACM


typedef struct PMSG

char Tag[8]; unsigned char : 8; BG_RSA_ENTRY IbbKey;

// **`__**PMSG**__'** // 10h

www.zeronights.org


Intel CPU

Intel CPU boot ROM

SPI flash

Hence, the SEC/PEI code is verified before the CPU starts executing from the RESET vector (FFFFFF0h)

Then the BootGuard supporting code in PEI must verify the DXE volumes

Such PEI module is developed by OEM, e.g.:

Lenovo

LenovoVerifiedBootPei {B9F2AC77-54C7-4075-B42E-C36325A9468D}

• Gigabyte

BootGuardPei {B41956E1-7CA2-42DB-9562-168389F0F066}

IBB

This BootGuard PEI module does:

- Find the hash table by the GUID
- Verify the DXE code pointed by this hash table

NIGHTS

ZER

LenovoVerifiedBootPei

(EFI PEI SERVICES->GetBootMode() != BOOT ON S3 RESUME)

if (!FindHashTable())
 return EFI NOT FOUND;

if (!VerifyDxe())
 return EFI SECURITY VIOLATION;

LenovoVerifiedBootPei

Hash table PEI module {389CC6F2-1EA8-467B-AB8A-78E769AE2A15}

typedef struct HASH_TABLE

char Tag[8]; // `\$HASHTBL'
unsigned long NumDxeDescriptors;

```
DXE_DESCRIPTORS[];
```

};

```
typedef struct DXE_DESCRIPTOR
```

unsigned char BlockHash[32]; // SHA256 unsigned long Offset; unsigned long Size;

};

www.zeronights.org

BootGuardPei

nt bootMode = EFI PEI SERVICES->GetBootMode();

```
if (bootMode != BOOT_ON_S3_RESUME &&
    bootMode != BOOT_ON_FLASH_UPDATE &&
    bootMode != BOOT_IN_RECOVERY_MODE)
```

if (!FindHashTable())
 return EFI_NOT_FOUND;

```
if (!VerifyDxe())
        return EFI_SECURITY_VIOLATION;
```


BootGuardPei

Hash table PEI module {389CC6F2-1EA8-467B-AB8A-78E769AE2A15}

typedef HASH_TABLE DXE_DESCRIPTORS[];

typedef struct DXE DESCRIPTOR

unsigned char BlockHash[32]; // SHA256 unsigned long BaseAddress; unsigned long Size;

Safeguarding rootkits

The issue

One day I found out that some systems have the SPI flash regions unlocked and the BootGuard configuration not set (nor enabled, nor disabled):

- All Gigabyte systems
- All MSI systems
- 21 Lenovo branded notebook machine types and 4 ThinkServer machine types
- other few vendors I cannot mention at the moment

That's because of the close manufacturing fuse was not set at the end of the manufacturing line.

Lenovo statement

«Lenovo has released fixes for the affected products, which can be found at https://support.lenovo.com/solutions/LEN_9903 or via our security advisory website, https://support.lenovo.com/product_security, and we have adjusted manufacturing processes, where necessary, to prevent reoccurrence of this issue in the future. We sincerely appreciate Mr. Ermolov's responsible disclosure and partnership in this matter.»

Intel statement

«Intel's guidance to our business partners is to close manufacturing mode at the end of production in order to maximize the security of the platform.»

Safeguarding rootkits

So any user could configure the Intel BG instead of OEM:

- Load into OS
- Modify BIOS
- Write proper BG configuration and verification entities (KEYM, IBBM) using Intel Flash Image Tool
- Set the closemnf fuse using the Intel Flash Programming Tool

This will permanently enable Intel BG on the system and will protect modified BIOS

DEMO

www.zeronights.org

Safeguarding rootkits

The rootkit can be an SMM driver with the following capabilities:

- 1) Executed during OS
 - Registers a SMI ISR and configure a timer to generate SMI events
- 2) Full (except ME UMA) access to CPU physical address space and complete isolation from OS
 - SMRAM
- 3) An encrypted blob which self-decrypts itself during upon each execution

Safeguarding rootkits

Hence, the issue allows:

- to create hidden, black box and irremovable (even with SPI flash programmer) rootkit on a platform
- to modify the ISH firmware on the platform which opens a new attack surface

Safeguarding rootkits

Flash Layout	 Integrated Sensor Hu 	h					
Flash Settings	 Integrated Sensor Hub 						
Intel(R) ME Kernel	Parameter		Value				
Intel(R) AMT	Integrated Sensor Hub Supported	Yes		Thi			
Platform Protection	Integrated Sensor Hub Initial P	Disabled		Thi			
Integrated Clock Controller	Integrated Sensor Hub Signing	OEM		Thi			
Networking & Connectivity	 ISH Image 			_	 Graphics uController 		
Flex I/O	- Ion Indge		Platform Protection				
Internal PCH Buses	Parameter		Integrated Clock Contr	oller	Parameter	Value	
GPIO	Length	0x40000	Networking & Connect	ivity	GuC Encryption Key	00 00 00 00 00 00 00 00 00 00	T
	InputFile		Flex I/O		 Hash Key Configuration for Bootguard / ISH 		
Power			Internal PCH Buses		- Hush Key configurati	on for bootguard / 15h	
Integrated Sensor Hub	 ISH Data 		GPIO		Parameter	Value	
Debug				_	OEM Public Key Hash	00 00 00 00 00 00 00 00 00 00	Tł
CPU Straps Parameter			Power				_
	PDT Binary File			Pat		~	

Conclusion

* - not official version number, this is how I order it's versions

www.zeronights.org

Conclusion

- Description of Intel BootGuard implementation
- There are so many proprietary Intel blobs executing before RESETvector
- The number of execution environments is increasing (CPU x86_64, ME x86, ISH x86, ...)
- A scenario to make any past BIOS modification permanent and updatable only from BG Root Key owner

Mitigation

- Vendors that intentionally left the closemnf fuse unset in servicing purposes should find another way
- Vendors that left the closmnf fuse by mistake should roll out a fix (Lenovo have already done this)
- Users can disable the Intel BG technology manually: Just run the MEinfo to make sure the Intel BG in not configured on the platform and run the FPT with –closemnf argument

Mitigation

OEM Public Key Hash FPF	Not set			
OEM Public Key Hash ME				
000000000000000000000000000000000000000	000000000000000000000000000000000000000			
ACM SVN FPF	0×0			
KM SVN FPF	0×0			
BSMM SVN FPF	0×0			
GuC Encryption Key FPF	Not set			
GuC Encryption Key ME				
000000000000000000000000000000000000000				

	FPF	ME
Force Boot Guard ACM	Not set	Disabled
Protect BIOS Environment	Not set	Disabled
CPU Debugging	Not set	Enabled
BSP Initialization	Not set	Enabled
Measured Boot	Not set	Disabled
Verified Boot	Not set	Disabled
Key Manifest ID	Not set	0x0
Enforcement Policy	Not set	0x0
PTT	Not set	Enabled
EK Revoke State	Not Revoked	
PTT RTC Clear Detection FPF	Not set	

Mitigation

OEM Public Key Hash FPF	
000000000000000000000000000000000000000	000000000000000000000000000000000000000
OEM Public Key Hash ME	
000000000000000000000000000000000000000	000000000000000000000000000000000000000
ACM SVN FPF	0×0
KM SVN FPF	0×0
BSMM SVN FPF	0×0
GuC Encryption Key FPF	
000000000000000000000000000000000000000	000000000000000000000000000000000000000
GuC Encryption Key ME	
000000000000000000000000000000000000000	000000000000000000000000000000000000000

	FPF	ME
Force Boot Guard ACM	Disabled	Disabled
Protect BIOS Environment	Disabled	Disabled
CPU Debugging	Enabled	Enabled
BSP Initialization	Enabled	Enabled
Measured Boot	Disabled	Disabled
Verified Boot	Disabled	Disabled
Key Manifest ID	0x0	0x0
Enforcement Policy	0x0	0x0
PTT	Enabled	Enabled
PTT Lockout Override Counter	0x0	
EK Revoke State	Not Revoked	

Thank you

www.zeronights.org