
Bypassing Secure Boot using Fault Injection

Niek Timmers
timmers@riscure.com

(@tieknimmers)

Albert Spruyt
spruyt@riscure.com

November 4, 2016

mailto:timmers@riscure.com
mailto:timmers@riscure.com
mailto:spruyt@riscure.com


What are the contents of this talk?

Keywords – fault injection, secure boot, bypasses, mitigations,
practicalities, best practices, demo(s) ...



Who are we?
Albert & Niek

• (Senior) Security Analysts at Riscure
• Security testing of different products and technologies

Riscure
• Services (Security Test Lab)

• Hardware / Software / Crypto
• Embedded systems / Smart cards

• Tools
• Side channel analysis (passive)
• Fault injection (active)

• Offices
• Delft, The Netherlands / San Francisco, USA

Combining services and tools for fun and profit!



Who are we?
Albert & Niek

• (Senior) Security Analysts at Riscure
• Security testing of different products and technologies

Riscure
• Services (Security Test Lab)

• Hardware / Software / Crypto
• Embedded systems / Smart cards

• Tools
• Side channel analysis (passive)
• Fault injection (active)

• Offices
• Delft, The Netherlands / San Francisco, USA

Combining services and tools for fun and profit!



Who are we?
Albert & Niek

• (Senior) Security Analysts at Riscure
• Security testing of different products and technologies

Riscure
• Services (Security Test Lab)

• Hardware / Software / Crypto
• Embedded systems / Smart cards

• Tools
• Side channel analysis (passive)
• Fault injection (active)

• Offices
• Delft, The Netherlands / San Francisco, USA

Combining services and tools for fun and profit!



Fault Injection – A definition...

”Introducing faults in a target to alter its intended behavior.”

...
if( key_is_correct ) <-- Glitch here!
{

open_door();
}
else
{

keep_door_closed();
}
...

How can we introduce these faults?



Fault Injection – A definition...

”Introducing faults in a target to alter its intended behavior.”

...
if( key_is_correct ) <-- Glitch here!
{
open_door();

}
else
{
keep_door_closed();

}
...

How can we introduce these faults?



Fault Injection – A definition...

”Introducing faults in a target to alter its intended behavior.”

...
if( key_is_correct ) <-- Glitch here!
{
open_door();

}
else
{
keep_door_closed();

}
...

How can we introduce these faults?



Fault Injection – A definition...

”Introducing faults in a target to alter its intended behavior.”

...
if( key_is_correct ) <-- Glitch here!
{
open_door();

}
else
{
keep_door_closed();

}
...

How can we introduce these faults?



Fault injection techniques1

clock voltage e-magnetic laser

Remark
• All techniques introduce faults externally

1
The Sorcerers Apprentice Guide to Fault Attacks. – Bar-El et al., 2004



Fault injection techniques1

clock voltage e-magnetic laser

Remark
• All techniques introduce faults externally

1
The Sorcerers Apprentice Guide to Fault Attacks. – Bar-El et al., 2004



Voltage fault injection

• Pull the voltage down at the right moment
• Not ’too soft’ ; Not ’too hard’

Source: http://www.limited-entropy.com/fault-injection-techniques/



Fault models

Faults that affect hardware
• Registers
• Buses

Faults that affect hardware that does software2 3 4

• Instruction corruption
• Data corruption

The true fault model is hard to predict or prove!

2
Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells – Roscian et. al., 2015

3
High Precision Fault Injections on the Instruction Cache of ARMv7-M Architectures – Riviere et al., 2015

4
Formal verification of a software countermeasure against instruction skip attacks – Moro et. al., 2014



Fault models

Faults that affect hardware
• Registers
• Buses

Faults that affect hardware that does software2 3 4

• Instruction corruption
• Data corruption

The true fault model is hard to predict or prove!

2
Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells – Roscian et. al., 2015

3
High Precision Fault Injections on the Instruction Cache of ARMv7-M Architectures – Riviere et al., 2015

4
Formal verification of a software countermeasure against instruction skip attacks – Moro et. al., 2014



Fault models

Faults that affect hardware
• Registers
• Buses

Faults that affect hardware that does software2 3 4

• Instruction corruption
• Data corruption

The true fault model is hard to predict or prove!

2
Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells – Roscian et. al., 2015

3
High Precision Fault Injections on the Instruction Cache of ARMv7-M Architectures – Riviere et al., 2015

4
Formal verification of a software countermeasure against instruction skip attacks – Moro et. al., 2014



Fault models

Faults that affect hardware
• Registers
• Buses

Faults that affect hardware that does software2 3 4

• Instruction corruption
• Data corruption

The true fault model is hard to predict or prove!

2
Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells – Roscian et. al., 2015

3
High Precision Fault Injections on the Instruction Cache of ARMv7-M Architectures – Riviere et al., 2015

4
Formal verification of a software countermeasure against instruction skip attacks – Moro et. al., 2014



Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered



Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered



Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered



Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered



Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered



Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered



Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered



Why is there Secure Boot?

Remarks
• Integrity and confidentiality of flash contents are not assured!
• A mechanism is required for this assurance: secure boot



Why is there Secure Boot?

Remarks
• Integrity and confidentiality of flash contents are not assured!
• A mechanism is required for this assurance: secure boot



Why is there Secure Boot?

Remarks
• Integrity and confidentiality of flash contents are not assured!
• A mechanism is required for this assurance: secure boot



Why is there Secure Boot?

Remarks
• Integrity and confidentiality of flash contents are not assured!
• A mechanism is required for this assurance: secure boot



Why is there Secure Boot?

Remarks
• Integrity and confidentiality of flash contents are not assured!
• A mechanism is required for this assurance: secure boot



Secure Boot – Generic Design

• Assures integrity (and confidentiality) of flash contents
• The chain of trust is similar to PKI5 found in browsers
• One root of trust composed of immutable code and key
5

Public Key Infrastructure



Secure Boot – Generic Design

• Assures integrity (and confidentiality) of flash contents
• The chain of trust is similar to PKI5 found in browsers
• One root of trust composed of immutable code and key
5

Public Key Infrastructure



Secure Boot – Generic Design

• Assures integrity (and confidentiality) of flash contents
• The chain of trust is similar to PKI5 found in browsers
• One root of trust composed of immutable code and key
5

Public Key Infrastructure



Secure Boot – Generic Design

• Assures integrity (and confidentiality) of flash contents
• The chain of trust is similar to PKI5 found in browsers
• One root of trust composed of immutable code and key
5

Public Key Infrastructure



Secure Boot – In reality ...

Source: http://community.arm.com/docs/DOC-9306



Secure Boot – In reality ...

Source: http://community.arm.com/docs/DOC-9306



Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html


Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html


Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html


Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html


Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html


Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html


Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html


Why (not) fault injection on secure boot?

Cons
• Invasive
• Physical access
• Expensive

Pros
• No logical vulnerability required
• Typical targets not properly protected

Especially relevant when assets are not available after boot!



Why (not) fault injection on secure boot?

Cons
• Invasive
• Physical access
• Expensive

Pros
• No logical vulnerability required
• Typical targets not properly protected

Especially relevant when assets are not available after boot!



Why (not) fault injection on secure boot?

Cons
• Invasive
• Physical access
• Expensive

Pros
• No logical vulnerability required
• Typical targets not properly protected

Especially relevant when assets are not available after boot!



Why (not) fault injection on secure boot?

Cons
• Invasive
• Physical access
• Expensive

Pros
• No logical vulnerability required
• Typical targets not properly protected

Especially relevant when assets are not available after boot!



Typical assets

Secure code
• Boot code (ROM8)

Secrets
• Keys (for boot code decryption)

Secure hardware
• Cryptographic engines

8
Read Only Memory



Typical assets

Secure code
• Boot code (ROM8)

Secrets
• Keys (for boot code decryption)

Secure hardware
• Cryptographic engines

8
Read Only Memory



Typical assets

Secure code
• Boot code (ROM8)

Secrets
• Keys (for boot code decryption)

Secure hardware
• Cryptographic engines

8
Read Only Memory



Typical assets

Secure code
• Boot code (ROM8)

Secrets
• Keys (for boot code decryption)

Secure hardware
• Cryptographic engines

8
Read Only Memory



Fault Injection – Intermezzo



Fault Injection – Tooling

Micah posted a very nice video using the ChipWhisperer-Lite9

By NewAE Technology Inc.10

9
https://www.youtube.com/watch?v=TeCQatNcF20

10
https://wiki.newae.com/CW1173_ChipWhisperer-Lite

https://www.youtube.com/watch?v=TeCQatNcF20
https://wiki.newae.com/CW1173_ChipWhisperer-Lite


Fault Injection – Tooling

Micah posted a very nice video using the ChipWhisperer-Lite9

By NewAE Technology Inc.10

9
https://www.youtube.com/watch?v=TeCQatNcF20

10
https://wiki.newae.com/CW1173_ChipWhisperer-Lite

https://www.youtube.com/watch?v=TeCQatNcF20
https://wiki.newae.com/CW1173_ChipWhisperer-Lite


Fault Injection – Setup

Target
• Digilent Zybo (Xilinx Zynq-7010 System-on-Chip)
• ARM Cortex-A9 (AArch32)



Fault Injection – Setup

Target
• Digilent Zybo (Xilinx Zynq-7010 System-on-Chip)
• ARM Cortex-A9 (AArch32)



Fault Injection – Setup



Characterization – Test application11

asm volatile

(
...
"add r1, r1, #1;"

"add r1, r1, #1;"

< repeat > <-- glitch here
"add r1, r1, #1;"

"add r1, r1, #1;"

...
);

Remarks
• Full control over the target
• Increasing a counter using ADD instructions
• Send counter back using the serial interface

11
Implemented as an U-Boot command



Characterization – Possible responses

Expected: ’too soft’
counter = 00010000

Mute: ’too hard’
counter =

Success: ’$$$’
counter = 00009999
counter = 00010015
counter = 00008687

Remarks
• Glitching ’too hard’ may damage the target permanently



Characterization – Possible responses

Expected: ’too soft’
counter = 00010000

Mute: ’too hard’
counter =

Success: ’$$$’
counter = 00009999
counter = 00010015
counter = 00008687

Remarks
• Glitching ’too hard’ may damage the target permanently



Characterization – Possible responses

Expected: ’too soft’
counter = 00010000

Mute: ’too hard’
counter =

Success: ’$$$’
counter = 00009999
counter = 00010015
counter = 00008687

Remarks
• Glitching ’too hard’ may damage the target permanently



Characterization – Possible responses

Expected: ’too soft’
counter = 00010000

Mute: ’too hard’
counter =

Success: ’$$$’
counter = 00009999
counter = 00010015
counter = 00008687

Remarks
• Glitching ’too hard’ may damage the target permanently



Characterization – Possible responses

Expected: ’too soft’
counter = 00010000

Mute: ’too hard’
counter =

Success: ’$$$’
counter = 00009999
counter = 00010015
counter = 00008687

Remarks
• Glitching ’too hard’ may damage the target permanently



DEMO 1
PARAMETER SEARCH

Glitch parameters
• Randomize glitch delay within the attack window
• Randomize the glitch voltage
• Randomize the glitch length



DEMO 1
PARAMETER SEARCH

Glitch parameters
• Randomize glitch delay within the attack window
• Randomize the glitch voltage
• Randomize the glitch length



DEMO 1
PARAMETER SEARCH

Glitch parameters
• Randomize glitch delay within the attack window
• Randomize the glitch voltage
• Randomize the glitch length



DEMO 1
PARAMETER SEARCH

Glitch parameters
• Randomize glitch delay within the attack window
• Randomize the glitch voltage
• Randomize the glitch length



That was the introduction ...

... let’s bypass secure boot: The Classics!



That was the introduction ...

... let’s bypass secure boot: The Classics!



Classic Bypass 00: Hash comparison

• Applicable to all secure boot implementations
• Bypass of authentication

if( memcmp( p, hash, hashlen ) != 0 )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

p += hashlen;

if( p != end )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

return( 0 );

Source: https://tls.mbed.org/

https://tls.mbed.org/


Classic Bypass 00: Hash comparison

• Applicable to all secure boot implementations
• Bypass of authentication

if( memcmp( p, hash, hashlen ) != 0 )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

p += hashlen;

if( p != end )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

return( 0 );

Source: https://tls.mbed.org/

https://tls.mbed.org/


Classic Bypass 00: Hash comparison

• Applicable to all secure boot implementations
• Bypass of authentication

if( memcmp( p, hash, hashlen ) != 0 )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

p += hashlen;

if( p != end )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

return( 0 );

Source: https://tls.mbed.org/

https://tls.mbed.org/


Classic Bypass 00: Hash comparison

Multiple locations bypass the check with a single fault!



Classic Bypass 00: Hash comparison

Multiple locations bypass the check with a single fault!



Classic Bypass 00: Hash comparison

Multiple locations bypass the check with a single fault!



Classic Bypass 00: Hash comparison

Multiple locations bypass the check with a single fault!



Classic Bypass 00: Hash comparison

Multiple locations bypass the check with a single fault!



Classic Bypass 01: Signature check call

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {
/* do not boot up the image */

no_boot();
} else {

/* boot up the image */

boot();
}

Remarks
• Bypasses can happen on all levels
• Inside functions, inside the calling functions, etc.



Classic Bypass 01: Signature check call

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {
/* do not boot up the image */

no_boot();
} else {

/* boot up the image */

boot();
}

Remarks
• Bypasses can happen on all levels
• Inside functions, inside the calling functions, etc.



Classic Bypass 01: Signature check call

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {
/* do not boot up the image */

no_boot();
} else {

/* boot up the image */

boot();
}

Remarks
• Bypasses can happen on all levels
• Inside functions, inside the calling functions, etc.



Classic Bypass 02: Infinite loop

• What to do when the signature verification fails?
• Enter an infinite loop!

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {

/* do not boot up the image */

while(1);

} else {

/* boot up the image */

boot();
}



Classic Bypass 02: Infinite loop

• What to do when the signature verification fails?
• Enter an infinite loop!

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {

/* do not boot up the image */

while(1);

} else {

/* boot up the image */

boot();
}



Classic Bypass 02: Infinite loop

• What to do when the signature verification fails?
• Enter an infinite loop!

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {

/* do not boot up the image */

while(1);

} else {

/* boot up the image */

boot();
}



Classic Bypass 02: Infinite loop

• What to do when the signature verification fails?
• Enter an infinite loop!

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {

/* do not boot up the image */

while(1);

} else {

/* boot up the image */

boot();
}



Classic Bypass 02: Infinite loop

Remarks
• Timing is not an issue!
• Classic smart card attack 12

• Better to reset or wipe keys

12
https://en.wikipedia.org/wiki/Unlooper

https://en.wikipedia.org/wiki/Unlooper


Classic Bypass 02: Infinite loop

Remarks
• Timing is not an issue!
• Classic smart card attack 12

• Better to reset or wipe keys

12
https://en.wikipedia.org/wiki/Unlooper

https://en.wikipedia.org/wiki/Unlooper


Classic Bypass 02: Infinite loop

Remarks
• Timing is not an issue!
• Classic smart card attack 12

• Better to reset or wipe keys

12
https://en.wikipedia.org/wiki/Unlooper

https://en.wikipedia.org/wiki/Unlooper


Classic Bypass 02: Infinite loop

Remarks
• Timing is not an issue!
• Classic smart card attack 12

• Better to reset or wipe keys

12
https://en.wikipedia.org/wiki/Unlooper

https://en.wikipedia.org/wiki/Unlooper


Classic Bypass 02: Infinite loop

Remarks
• Timing is not an issue!
• Classic smart card attack 12

• Better to reset or wipe keys

12
https://en.wikipedia.org/wiki/Unlooper

https://en.wikipedia.org/wiki/Unlooper


Classic Bypass 03: Secure boot enable

• Secure boot often enabled/disabled based on OTP13 bit
• No secure boot during development; secure boot in the field
• Typically just after the CPU comes out of reset

13One-Time-Programmable memory



Fault Injection – Mitigations

Hardware countermeasures 14 15

• Detect the glitch or fault

Software countermeasures 16

• Lower the probability of a successful fault
• Do not address the root cause

You can lower the probability but not rule it out!

14
The Sorcerers Apprentice Guide to Fault Attacks – Bar-El et al., 2004

15
The Fault Attack Jungle - A Classification Model to Guide You – Verbauwhede et al., 2011

16
Secure Application Programming in the Presence of Side Channel Attacks – Witteman



Fault Injection – Mitigations

Hardware countermeasures 14 15

• Detect the glitch or fault

Software countermeasures 16

• Lower the probability of a successful fault
• Do not address the root cause

You can lower the probability but not rule it out!

14
The Sorcerers Apprentice Guide to Fault Attacks – Bar-El et al., 2004

15
The Fault Attack Jungle - A Classification Model to Guide You – Verbauwhede et al., 2011

16
Secure Application Programming in the Presence of Side Channel Attacks – Witteman



Fault Injection – Mitigations

Hardware countermeasures 14 15

• Detect the glitch or fault

Software countermeasures 16

• Lower the probability of a successful fault
• Do not address the root cause

You can lower the probability but not rule it out!

14
The Sorcerers Apprentice Guide to Fault Attacks – Bar-El et al., 2004

15
The Fault Attack Jungle - A Classification Model to Guide You – Verbauwhede et al., 2011

16
Secure Application Programming in the Presence of Side Channel Attacks – Witteman



Fault Injection – Mitigations

Hardware countermeasures 14 15

• Detect the glitch or fault

Software countermeasures 16

• Lower the probability of a successful fault
• Do not address the root cause

You can lower the probability but not rule it out!

14
The Sorcerers Apprentice Guide to Fault Attacks – Bar-El et al., 2004

15
The Fault Attack Jungle - A Classification Model to Guide You – Verbauwhede et al., 2011

16
Secure Application Programming in the Presence of Side Channel Attacks – Witteman



Fault Injection – Mitigations

Hardware countermeasures 14 15

• Detect the glitch or fault

Software countermeasures 16

• Lower the probability of a successful fault
• Do not address the root cause

You can lower the probability but not rule it out!

14
The Sorcerers Apprentice Guide to Fault Attacks – Bar-El et al., 2004

15
The Fault Attack Jungle - A Classification Model to Guide You – Verbauwhede et al., 2011

16
Secure Application Programming in the Presence of Side Channel Attacks – Witteman



Fault Injection – Mitigations

Hardware countermeasures 14 15

• Detect the glitch or fault

Software countermeasures 16

• Lower the probability of a successful fault
• Do not address the root cause

You can lower the probability but not rule it out!

14
The Sorcerers Apprentice Guide to Fault Attacks – Bar-El et al., 2004

15
The Fault Attack Jungle - A Classification Model to Guide You – Verbauwhede et al., 2011

16
Secure Application Programming in the Presence of Side Channel Attacks – Witteman



Compiler optimizations

Why?
• ROM memory size is limited
• Compiler optimizations decrease code size

Compiler optimizes out intended code!



Compiler optimizations

Why?
• ROM memory size is limited
• Compiler optimizations decrease code size

Compiler optimizes out intended code!



Compiler optimizations

Why?
• ROM memory size is limited
• Compiler optimizations decrease code size

Compiler optimizes out intended code!



Compiler ’optimization’ – Double check

Example of a double check

unsigned int compare(char * input, int len)
{

if(memcmp(password, input, len) == 0) <-- 1st
{

if(memcmp(password, input, len) == 0) <-- 2nd
{

return TRUE;
}

}
return FALSE;

}



Compiler ’optimization’ – Double check

Compiled without optimizations



Compiler ’optimization’ – Double check

Compiled with optimizations



Compiler ’optimizations’ – Best practices

• Your compiler is smarter than you

• Use ’volatile’ to prevent compiler problems

• Read the output of the compiler!



Compiler ’optimizations’ – Best practices

• Your compiler is smarter than you

• Use ’volatile’ to prevent compiler problems

• Read the output of the compiler!



Compiler ’optimizations’ – Best practices

• Your compiler is smarter than you

• Use ’volatile’ to prevent compiler problems

• Read the output of the compiler!



Compiler ’optimizations’ – Best practices

• Your compiler is smarter than you

• Use ’volatile’ to prevent compiler problems

• Read the output of the compiler!



Compiler ’optimization’ – Pointer setup

Example of a double check using ’volatile’

int checkSecureBoot( ){
volatile int * otp_secure_boot = OTP_SECURE_BOOT;

if( (*otp_secure_boot >> 7) & 0x1 ){ <-- 1st
return 0;

}else{
if( (*otp_secure_boot >> 7) & 0x1 ){ <-- 2nd

return 0;
}else{

return 1;
}

}
}



Compiler ’optimization’ – Pointer setup

Compiled with optimizations



Compiler ’optimization’ – Pointer setup

Compiled with optimizations



Combined Attacks

Those were the classics and their mitigations ..

... the attack surface is larger!17

17
All attacks have been performed successfully on multiple targets!



Combined Attacks

Those were the classics and their mitigations ..

... the attack surface is larger!17

17
All attacks have been performed successfully on multiple targets!



Combined attack – Copy

• Introducing logical vulnerabilities using fault injection
• Build your own buffer overflow!

• Easy approach: change memcpy the size argument

Before corruption

memcpy(dst, src, 0x1000);

After corruption

memcpy(dst, src, 0xCEE5);

Remark
• Works when dedicated hardware is used

(e.g. DMA18 engines)

18
Direct Memory Access



Combined attack – Copy

• Introducing logical vulnerabilities using fault injection
• Build your own buffer overflow!

• Easy approach: change memcpy the size argument

Before corruption

memcpy(dst, src, 0x1000);

After corruption

memcpy(dst, src, 0xCEE5);

Remark
• Works when dedicated hardware is used

(e.g. DMA18 engines)

18
Direct Memory Access



Combined attack – Copy

• Introducing logical vulnerabilities using fault injection
• Build your own buffer overflow!

• Easy approach: change memcpy the size argument

Before corruption

memcpy(dst, src, 0x1000);

After corruption

memcpy(dst, src, 0xCEE5);

Remark
• Works when dedicated hardware is used

(e.g. DMA18 engines)

18
Direct Memory Access



Combined attack – Copy

• Introducing logical vulnerabilities using fault injection
• Build your own buffer overflow!

• Easy approach: change memcpy the size argument

Before corruption

memcpy(dst, src, 0x1000);

After corruption

memcpy(dst, src, 0xCEE5);

Remark
• Works when dedicated hardware is used

(e.g. DMA18 engines)

18
Direct Memory Access



Combined attack – Copy

• Introducing logical vulnerabilities using fault injection
• Build your own buffer overflow!

• Easy approach: change memcpy the size argument

Before corruption

memcpy(dst, src, 0x1000);

After corruption

memcpy(dst, src, 0xCEE5);

Remark
• Works when dedicated hardware is used

(e.g. DMA18 engines)

18
Direct Memory Access



Combined attack – Copy

Remark
• Targetting the copy function arguments



Combined attack – Copy

Remark
• Targetting the copy function arguments



Combined attack – Copy

Remark
• Targetting the copy function arguments



Combined attack – Copy

Remark
• Targetting the copy function arguments



Combined attack – Copy

Remark
• Targetting the copy function arguments



Combined attack – Copy

Remark
• Targetting the copy function arguments



Combined attack - Controlling PC on ARM20

• Exploits an ARM32 characteristic
• PC19 register is directly accessible by most instructions

Multi-word copy

LDMIA r1!, {r3 - r10}
STMIA r0!, {r3 - r10}

Controlling PC using LDMIA

LDMIA r1!,{r3-r10} 11101000101100010000011111111000
LDMIA r1!,{r3-r10,PC} 11101000101100011000011111111000

• Variations possible on other architectures; code dependent

19
Program Counter

20
Controlling PC on ARM using Fault Injection – Timmers et al., 2016



Combined attack - Controlling PC on ARM20

• Exploits an ARM32 characteristic
• PC19 register is directly accessible by most instructions

Multi-word copy

LDMIA r1!, {r3 - r10}
STMIA r0!, {r3 - r10}

Controlling PC using LDMIA

LDMIA r1!,{r3-r10} 11101000101100010000011111111000
LDMIA r1!,{r3-r10,PC} 11101000101100011000011111111000

• Variations possible on other architectures; code dependent

19
Program Counter

20
Controlling PC on ARM using Fault Injection – Timmers et al., 2016



Combined attack - Controlling PC on ARM20

• Exploits an ARM32 characteristic
• PC19 register is directly accessible by most instructions

Multi-word copy

LDMIA r1!, {r3 - r10}
STMIA r0!, {r3 - r10}

Controlling PC using LDMIA

LDMIA r1!,{r3-r10} 11101000101100010000011111111000
LDMIA r1!,{r3-r10,PC} 11101000101100011000011111111000

• Variations possible on other architectures; code dependent

19
Program Counter

20
Controlling PC on ARM using Fault Injection – Timmers et al., 2016



Combined attack - Controlling PC on ARM20

• Exploits an ARM32 characteristic
• PC19 register is directly accessible by most instructions

Multi-word copy

LDMIA r1!, {r3 - r10}
STMIA r0!, {r3 - r10}

Controlling PC using LDMIA

LDMIA r1!,{r3-r10} 11101000101100010000011111111000
LDMIA r1!,{r3-r10,PC} 11101000101100011000011111111000

• Variations possible on other architectures; code dependent

19
Program Counter

20
Controlling PC on ARM using Fault Injection – Timmers et al., 2016



Combined attack - Controlling PC on ARM

Remark
• Targetting the copy function arguments



Combined attack - Controlling PC on ARM

Remark
• Targetting the copy function arguments



Combined attack - Controlling PC on ARM

Remark
• Targetting the copy function arguments



Combined attacks - Wild jungle jump21

• Start glitching while/after loading
the image but before decryption

• Lots of ’magic’ pointers around,
which point close to the code

• Get them from: stack, register,
memory

• The more magic pointers, the
higher the probability

21
Proving the wild jungle jump – Gratchoff, 2015



Combined attacks - Wild jungle jump21

• Start glitching while/after loading
the image but before decryption

• Lots of ’magic’ pointers around,
which point close to the code

• Get them from: stack, register,
memory

• The more magic pointers, the
higher the probability

21
Proving the wild jungle jump – Gratchoff, 2015



Combined attacks - Wild jungle jump21

• Start glitching while/after loading
the image but before decryption

• Lots of ’magic’ pointers around,
which point close to the code

• Get them from: stack, register,
memory

• The more magic pointers, the
higher the probability

21
Proving the wild jungle jump – Gratchoff, 2015



Combined attacks - Wild jungle jump21

• Start glitching while/after loading
the image but before decryption

• Lots of ’magic’ pointers around,
which point close to the code

• Get them from: stack, register,
memory

• The more magic pointers, the
higher the probability

21
Proving the wild jungle jump – Gratchoff, 2015



Combined attacks - Wild jungle jump21

• Start glitching while/after loading
the image but before decryption

• Lots of ’magic’ pointers around,
which point close to the code

• Get them from: stack, register,
memory

• The more magic pointers, the
higher the probability

21
Proving the wild jungle jump – Gratchoff, 2015



Combined attack(s) – Summary

• Bypass of both authentication and decryption

• Typically little software exploitation mitigation during boot

• Fault injection mitigations in software may not be effective



Combined attack(s) – Summary

• Bypass of both authentication and decryption

• Typically little software exploitation mitigation during boot

• Fault injection mitigations in software may not be effective



Combined attack(s) – Summary

• Bypass of both authentication and decryption

• Typically little software exploitation mitigation during boot

• Fault injection mitigations in software may not be effective



Combined attack(s) – Summary

• Bypass of both authentication and decryption

• Typically little software exploitation mitigation during boot

• Fault injection mitigations in software may not be effective



There are some practicalities ...

... which we must overcome!



There are some practicalities ...

... which we must overcome!



Secure Boot – Demo Design

Remark
• Stage 2 is invalided by changing the printed string
• Stage 1 enters an infinite loop when the signature is invalid



Secure Boot – Demo Design

Remark
• Stage 2 is invalided by changing the printed string
• Stage 1 enters an infinite loop when the signature is invalid



Secure Boot – Demo Design

Remark
• Stage 2 is invalided by changing the printed string
• Stage 1 enters an infinite loop when the signature is invalid



When to glitch?

• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image



When to glitch?

• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image



When to glitch?

• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image



When to glitch?

• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image



When to glitch?

• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image



When to glitch?

• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image



When to glitch?

• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image



Boot profiling – Reset
Valid image

Invalid image

Remark
• No difference between a valid and invalid image
• Attack window spreads across the entire trace (˜400 ms)



Boot profiling – Reset
Valid image

Invalid image

Remark
• No difference between a valid and invalid image
• Attack window spreads across the entire trace (˜400 ms)



Boot profiling – Reset
Valid image

Invalid image

Remark
• No difference between a valid and invalid image
• Attack window spreads across the entire trace (˜400 ms)



Boot profiling – Flash activity
Valid image

Invalid image

Remarks
• Flash activity 3 not present for the invalid image
• Attack window between flash activity 2 and 3 (˜10 ms)



Boot profiling – Flash activity
Valid image

Invalid image

Remarks
• Flash activity 3 not present for the invalid image
• Attack window between flash activity 2 and 3 (˜10 ms)



Boot profiling – Flash activity
Valid image

Invalid image

Remarks
• Flash activity 3 not present for the invalid image
• Attack window between flash activity 2 and 3 (˜10 ms)



Boot profiling – Power consumption

Remark
• Measuring electromagnetic emissions using a probe22

22
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/

rf1-set-near-field-probes-30-mhz-up-to-3-ghz/270

https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf1-set-near-field-probes-30-mhz-up-to-3-ghz/270
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf1-set-near-field-probes-30-mhz-up-to-3-ghz/270


Boot profiling – Power consumption

Remark
• Measuring electromagnetic emissions using a probe22

22
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/

rf1-set-near-field-probes-30-mhz-up-to-3-ghz/270

https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf1-set-near-field-probes-30-mhz-up-to-3-ghz/270
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/rf1-set-near-field-probes-30-mhz-up-to-3-ghz/270


Boot profiling – Power consumption
Valid image

Invalid image

Remarks
• Significant difference in the electromagnetic emissions
• Attack window reduced significantly (< 1 ms)
• Power profile at black arrow is flat: infinite loop



Boot profiling – Power consumption
Valid image

Invalid image

Remarks
• Significant difference in the electromagnetic emissions
• Attack window reduced significantly (< 1 ms)
• Power profile at black arrow is flat: infinite loop



Boot profiling – Power consumption
Valid image

Invalid image

Remarks
• Significant difference in the electromagnetic emissions
• Attack window reduced significantly (< 1 ms)
• Power profile at black arrow is flat: infinite loop



Boot profiling – Power consumption
Valid image

Invalid image

Remarks
• Significant difference in the electromagnetic emissions
• Attack window reduced significantly (< 1 ms)
• Power profile at black arrow is flat: infinite loop



Boot profiling – Power consumption
Valid image

Invalid image

Remarks
• Significant difference in the electromagnetic emissions
• Attack window reduced significantly (< 1 ms)
• Power profile at black arrow is flat: infinite loop



Jitter

Remark
• Jitter during boot prevents effective timing (˜150 µs)



Jitter

Remark
• Jitter during boot prevents effective timing (˜150 µs)



Jitter

Remark
• Jitter during boot prevents effective timing (˜150 µs)



How to minimize jitter during boot?

• Power-on reset is too early
• Use a signal close to the ’glitch moment’

Remark
• Using flash activity 2 as a trigger to minimize jitter



How to minimize jitter during boot?

• Power-on reset is too early
• Use a signal close to the ’glitch moment’

Remark
• Using flash activity 2 as a trigger to minimize jitter



How to minimize jitter during boot?

• Power-on reset is too early
• Use a signal close to the ’glitch moment’

Remark
• Using flash activity 2 as a trigger to minimize jitter



How to minimize jitter during boot?

• Power-on reset is too early
• Use a signal close to the ’glitch moment’

Remark
• Using flash activity 2 as a trigger to minimize jitter



How to minimize jitter during boot?

• Power-on reset is too early
• Use a signal close to the ’glitch moment’

Remark
• Using flash activity 2 as a trigger to minimize jitter



Glitch Timing – Power consumption

Remarks
• Jitter minimized using flash activity as a trigger



Glitch Timing – Power consumption

Remarks
• Jitter minimized using flash activity as a trigger



DEMO 2
BYPASSING SECURE BOOT

Glitch parameter search
• Fixed the glitch delay to 300 ms
• Fixed the glitch voltage to -2 V
• Randomize the glitch length



DEMO 2
BYPASSING SECURE BOOT

Glitch parameter search
• Fixed the glitch delay to 300 ms
• Fixed the glitch voltage to -2 V
• Randomize the glitch length



DEMO 2
BYPASSING SECURE BOOT

Glitch parameter search
• Fixed the glitch delay to 300 ms
• Fixed the glitch voltage to -2 V
• Randomize the glitch length



DEMO 2
BYPASSING SECURE BOOT

Glitch parameter search
• Fixed the glitch delay to 300 ms
• Fixed the glitch voltage to -2 V
• Randomize the glitch length



DEMO 2
BYPASSING SECURE BOOT



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Niek Timmers
Senior Security Analyst

timmers@riscure.com (@tieknimmers)

Albert Spruyt
Senior Security Analyst

spruyt@riscure.com

www.riscure.com/careers
inforequest@riscure.com

www.riscure.com/careers

	Who are we?
	Fault injection
	Secure boot
	Fault injection intermezzo
	Bypassing secure boot
	Practicalities
	Conclusion

