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What are the contents of this talk?

Keywords – fault injection, secure boot, bypasses, mitigations,
practicalities, best practices, demo(s) ...
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• Fault injection (active)
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• Delft, The Netherlands / San Francisco, USA

Combining services and tools for fun and profit!
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Fault Injection – A definition...

”Introducing faults in a target to alter its intended behavior.”

...
if( key_is_correct ) <-- Glitch here!
{

open_door();
}
else
{

keep_door_closed();
}
...

How can we introduce these faults?
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Fault injection techniques1

clock voltage e-magnetic laser

Remark
• All techniques introduce faults externally

1
The Sorcerers Apprentice Guide to Fault Attacks. – Bar-El et al., 2004
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Voltage fault injection

• Pull the voltage down at the right moment
• Not ’too soft’ ; Not ’too hard’

Source: http://www.limited-entropy.com/fault-injection-techniques/



Fault models

Faults that affect hardware
• Registers
• Buses

Faults that affect hardware that does software2 3 4

• Instruction corruption
• Data corruption

The true fault model is hard to predict or prove!

2
Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells – Roscian et. al., 2015

3
High Precision Fault Injections on the Instruction Cache of ARMv7-M Architectures – Riviere et al., 2015

4
Formal verification of a software countermeasure against instruction skip attacks – Moro et. al., 2014
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Fault Models – ”Our” choice ...

When presented with code: instruction corruption.

Simple (MIPS)

addi $t1, $t1, 8 00100001001010010000000000001000
addi $t1, $t1, 0 00100001001010010000000000000000

Complex (ARM)

ldr w1, [sp, #0x8] 10111001010000000000101111100001
str w7, [sp, #0x20] 10111001000000000010001111100111

Remarks
• Limited control over which bit(s) will be corrupted
• May or may not be the true fault model
• Other fault model behavior covered
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• Integrity and confidentiality of flash contents are not assured!
• A mechanism is required for this assurance: secure boot
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Secure Boot – Generic Design

• Assures integrity (and confidentiality) of flash contents
• The chain of trust is similar to PKI5 found in browsers
• One root of trust composed of immutable code and key
5

Public Key Infrastructure
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Secure Boot – In reality ...

Source: http://community.arm.com/docs/DOC-9306
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Why use a hardware attack?

”Logical issues exist in secure boot implementations!!?”

Bootloader vulnerabilities
• S5L8920 (iPhone)6

• Amlogic S9057

However
• Small code base results in a small logical attack surface
• Implementations without vulnerabililties likely exist

Other attack(s) must be used when not logically flawed!

6
https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow

7
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

https://www.theiphonewiki.com/wiki/0x24000_Segment_Overflow
http://www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html
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Why (not) fault injection on secure boot?

Cons
• Invasive
• Physical access
• Expensive

Pros
• No logical vulnerability required
• Typical targets not properly protected

Especially relevant when assets are not available after boot!
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Typical assets

Secure code
• Boot code (ROM8)

Secrets
• Keys (for boot code decryption)

Secure hardware
• Cryptographic engines

8
Read Only Memory
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Fault Injection – Intermezzo



Fault Injection – Tooling

Micah posted a very nice video using the ChipWhisperer-Lite9

By NewAE Technology Inc.10

9
https://www.youtube.com/watch?v=TeCQatNcF20

10
https://wiki.newae.com/CW1173_ChipWhisperer-Lite
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Fault Injection – Setup

Target
• Digilent Zybo (Xilinx Zynq-7010 System-on-Chip)
• ARM Cortex-A9 (AArch32)
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Characterization – Test application11

asm volatile

(
...
"add r1, r1, #1;"

"add r1, r1, #1;"

< repeat > <-- glitch here
"add r1, r1, #1;"

"add r1, r1, #1;"

...
);

Remarks
• Full control over the target
• Increasing a counter using ADD instructions
• Send counter back using the serial interface

11
Implemented as an U-Boot command



Characterization – Possible responses

Expected: ’too soft’
counter = 00010000

Mute: ’too hard’
counter =

Success: ’$$$’
counter = 00009999
counter = 00010015
counter = 00008687

Remarks
• Glitching ’too hard’ may damage the target permanently
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DEMO 1
PARAMETER SEARCH

Glitch parameters
• Randomize glitch delay within the attack window
• Randomize the glitch voltage
• Randomize the glitch length
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Classic Bypass 00: Hash comparison

• Applicable to all secure boot implementations
• Bypass of authentication

if( memcmp( p, hash, hashlen ) != 0 )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

p += hashlen;

if( p != end )
return( MBEDTLS_ERR_RSA_VERIFY_FAILED );

return( 0 );

Source: https://tls.mbed.org/

https://tls.mbed.org/
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Classic Bypass 00: Hash comparison

Multiple locations bypass the check with a single fault!
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Classic Bypass 01: Signature check call

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {
/* do not boot up the image */

no_boot();
} else {

/* boot up the image */

boot();
}

Remarks
• Bypasses can happen on all levels
• Inside functions, inside the calling functions, etc.
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Classic Bypass 02: Infinite loop

• What to do when the signature verification fails?
• Enter an infinite loop!

/* glitch here */

if(mbedtls_pk_verify(&k, SHA256, h, hs, s, ss)) {

/* do not boot up the image */

while(1);

} else {

/* boot up the image */

boot();
}
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Classic Bypass 02: Infinite loop

Remarks
• Timing is not an issue!
• Classic smart card attack 12

• Better to reset or wipe keys

12
https://en.wikipedia.org/wiki/Unlooper

https://en.wikipedia.org/wiki/Unlooper
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Classic Bypass 03: Secure boot enable

• Secure boot often enabled/disabled based on OTP13 bit
• No secure boot during development; secure boot in the field
• Typically just after the CPU comes out of reset

13One-Time-Programmable memory



Fault Injection – Mitigations

Hardware countermeasures 14 15

• Detect the glitch or fault

Software countermeasures 16

• Lower the probability of a successful fault
• Do not address the root cause

You can lower the probability but not rule it out!

14
The Sorcerers Apprentice Guide to Fault Attacks – Bar-El et al., 2004

15
The Fault Attack Jungle - A Classification Model to Guide You – Verbauwhede et al., 2011

16
Secure Application Programming in the Presence of Side Channel Attacks – Witteman
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Compiler ’optimization’ – Double check

Example of a double check

unsigned int compare(char * input, int len)
{

if(memcmp(password, input, len) == 0) <-- 1st
{

if(memcmp(password, input, len) == 0) <-- 2nd
{

return TRUE;
}

}
return FALSE;

}
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Compiler ’optimization’ – Pointer setup

Example of a double check using ’volatile’

int checkSecureBoot( ){
volatile int * otp_secure_boot = OTP_SECURE_BOOT;

if( (*otp_secure_boot >> 7) & 0x1 ){ <-- 1st
return 0;

}else{
if( (*otp_secure_boot >> 7) & 0x1 ){ <-- 2nd

return 0;
}else{

return 1;
}

}
}
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Those were the classics and their mitigations ..

... the attack surface is larger!17
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Combined attack – Copy

• Introducing logical vulnerabilities using fault injection
• Build your own buffer overflow!

• Easy approach: change memcpy the size argument

Before corruption

memcpy(dst, src, 0x1000);

After corruption

memcpy(dst, src, 0xCEE5);

Remark
• Works when dedicated hardware is used

(e.g. DMA18 engines)

18
Direct Memory Access
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Combined attack - Controlling PC on ARM20

• Exploits an ARM32 characteristic
• PC19 register is directly accessible by most instructions

Multi-word copy

LDMIA r1!, {r3 - r10}
STMIA r0!, {r3 - r10}

Controlling PC using LDMIA

LDMIA r1!,{r3-r10} 11101000101100010000011111111000
LDMIA r1!,{r3-r10,PC} 11101000101100011000011111111000

• Variations possible on other architectures; code dependent

19
Program Counter

20
Controlling PC on ARM using Fault Injection – Timmers et al., 2016
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Combined attacks - Wild jungle jump21

• Start glitching while/after loading
the image but before decryption

• Lots of ’magic’ pointers around,
which point close to the code

• Get them from: stack, register,
memory

• The more magic pointers, the
higher the probability

21
Proving the wild jungle jump – Gratchoff, 2015
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Secure Boot – Demo Design

Remark
• Stage 2 is invalided by changing the printed string
• Stage 1 enters an infinite loop when the signature is invalid
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• Not possible to use a signal originating from target
• Only reference point is power-on reset moment
• Use side-channels to obtain more information
• Compare behavior between valid image and an invalid image
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Valid image
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• No difference between a valid and invalid image
• Attack window spreads across the entire trace (˜400 ms)
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Boot profiling – Power consumption

Remark
• Measuring electromagnetic emissions using a probe22

22
https://www.langer-emv.de/en/product/rf-passive-30-mhz-3-ghz/35/

rf1-set-near-field-probes-30-mhz-up-to-3-ghz/270
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• Power-on reset is too early
• Use a signal close to the ’glitch moment’

Remark
• Using flash activity 2 as a trigger to minimize jitter
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Secure Boot – Manufacturer Best practices

Minimize attack surface
• Authenticate all code and data
• Limit functionality in ROM code
• Disable memory when not required

Lower the probability
• Implement fault injection countermeasures
• Implement software exploitation mitigations

Robustness can only be determined using testing!
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• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Conclusion / Sound Bytes

• Today’s standard technology not resistant to fault attacks

• Implementers of secure boot should address fault risks

• Hardware fault injection countermeasures are needed

• Fault injection testing provides assurance on product security



Niek Timmers
Senior Security Analyst

timmers@riscure.com (@tieknimmers)

Albert Spruyt
Senior Security Analyst

spruyt@riscure.com

www.riscure.com/careers
inforequest@riscure.com

www.riscure.com/careers

	Who are we?
	Fault injection
	Secure boot
	Fault injection intermezzo
	Bypassing secure boot
	Practicalities
	Conclusion

