
INTEL AMT.
STEALTH BREAKTHROUGH

2

Table of contents
Table of contents 2

Introduction 3

Intel ME/AMT architecture 6

Intel ME RE problems 8

Intel AMT architecture 9

Intel ME firmware components 9

Getting down to Intel AMT architecture 9

Access to Intel AMT 10

Intel AMT manageability ports 11

Unauthorized remote access to Intel AMT system 11

CVE-2017-5689 17

Possible attack scenarios 23

Spreading out coverage. Part I 23

Mitigations 27

Limitations of AMTactivator 27

Spreading out coverage. Part II 27

Takeaways 28

FW downgrade scenarios 29

Contacts 30

3

Introduction

Every modern computer system based on Intel architecture has Intel Management Engine
(ME) - a built-in subsystem with a wide array of powerful capabilities (such as full access to
operating memory, out-of-band access to a network interface, running independently of CPU
even when it is in a shutdown state, etc.). On the one hand, these capabilities allow Intel to
implement many features and technologies based on Intel ME. On the other hand, it makes
Intel ME a tempting target for an attacker. Especially, if an attack can be conducted remotely.
Here, Intel Active Management Technology (AMT) fits perfectly – it is based on Intel ME and
intended for remote administration of a computer system.

As you surely know, although Intel CPU equipped with various integrated controllers and
graphics controller (Fig. 1) is a major execution environment, it’s not the only one. There is also
a chipset with integrated controllers and subsystems supporting peripheral devices and some
system functions. One of such subsystems is the Intel Management Engine (Intel ME). Intel ME
is an isolated, stealth and highly powerful (meaning its capabilities) execution environment.
UEFI BIOS, Intel ME firmware, and a few other binaries are system firmware, which is stored on
common SPI flash memory.

Fig. 1.
Typical Intel system architecture

4

Fig. 2.
SPI flash regions

The common SPI flash contents are divided into regions (Fig. 2)

5

Any program code that is running on a system is executed in one of the CPU protection rings
(Fig.3):

Fig.3
System execution privileges

Ring 1 (the user mode) is the highest level with minimal access privileges, needed for user
applications.

Ring 0 (the kernel mode) is the lowest level an OS may have.

Ring -1 (the hypervisor mode) controls the workspace of multiple guest OSs running in parallel
(e.g. to share hardware resources and memory between them).

Ring -2 (the System Management Mode) is the lowest and most privileged execution mode for
the CPU. Its code is located in hidden SMRAM, not visible from any of the above levels.

But it occurs to be that the CPU in the SMM is not the most powerful execution environment
on a system. Intel ME subsystem (Ring -3) has even more available access capabilities and
memory isolation techniques.

Ring 0

Ring 3

Ring -1

Ring -3

Ring -2

User applications User applications (optional)

OS kernel & drivers OS kernel & drivers (optional)

Hypervisor (optional)

System Management Mode

Intel Management Engine

6

1. Intel chipset’s own NIC MAC level controller;
2. MEI (HECI) – an interface for software to communicate with Intel ME;
3. ME UMA – a memory block inside DRAM isolated from the main CPU.
4. ME FW – Intel ME firmware, stored on the SPI flash along with BIOS.

Intel ME/AMT architecture
Intel ME is based on the MCU with ROM and SRAM. The subsystem consists of the following
components (Fig.4):

Fig. 4
Intel ME architecture

7

This subsystem is generally thought of as the most privileged and hidden execution
environment, which is reasonable enough while it:

has the ME UMA;

has full access to the whole DRAM (by using its own DMA engine);

continues its work as long as a system is plugged in;

has out-of-band access to the network interface.

Moreover, the only way for communication between software and Intel ME is the Management
Engine Interface (the Host Embedded Controller Interface), but the protocol is undocumented.

Intel ME was integrated into Q-type chipsets (960-series and higher) in 2006. Back then it was
used in Intel ME 2.x. – 5.x. chipsets. Since 2010 any Intel-based system (series 6.x and higher)
is equipped with Intel ME:

Intel ME 6.x – 11.x

Intel TXE 1.x – 3.x

Intel SPS 1.x – 4.x
The table with more details is presented below (see Table 1.)

Table 1. Intel ME/AMT versions in chipsets

PCH: ME/AMT vershion:
5 series chipset ME 6.x (AMT 6.x)
6 series chipset: ME 7.x (AMT 7.x)
7 series chipset ME 8.x (AMT 8.x)
8 series chipset ME 9.x (AMT 9.x)
9 series chipset ME 9.5.x/10.x (AMT 9.5.x/10.x)
100 series chipset
200 series chipset

ME 11.x
(AMT 11.x)

8

However, the name and firmware implementation are specific to a platform type.

Desktop/laptop – the Intel Management Engine (ME)

Server – the Intel Server Platform Services (SPS)

Mobile – the Intel Trusted Execution Engine (TXE)

Intel ME RE problems

Year by year, the interest in researching Intel ME and its firmware is increasing. Nevertheless, it
proves to be not an easy task due to the following reasons:

Intel ME firmware code modules use syslib functions implemented in the bootcode inside the
ME ROM. Therefore, it is quite difficult to understand the function behavior without knowing
what syslib functions are called from it. Fortunately, ROM images can be found in debug
versions of ME firmware (used for the ROM bypass debug capability).
A certain part of Intel ME firmware code modules is compressed using the Huffman
algorithm. But the decompression dictionary is unknown, so the decoding is not a trivial task.
Although, still possible: the dictionaries for 6x - 10.x versions were reconstructed.
One of the best-known problems is the undocumented MEI (HECI) communication protocol.
However, the details of this protocol can be reverse-engineered.
The ME UMA memory in DRAM is inaccessible for the main CPU.
Open-source society created a heading to disable Intel ME subsystem. This is quite a difficult
thing to do, but there is a method to restrict the functionality of the subsystem by cutting
unnecessary (for system boot up) firmware components.

To reverse engineer the firmware one needs a disassembler and the following scripts:
me_unpack.py to parse Intel ME firmware images and extract all partitions/modules;
me_util.py to send commands to Intel ME through HECI;
Intelmetool to check Intel ME status through HECI;
unhuffme to unpack Huffman-compressed modules from Intel ME firmware image;
MEAnalyzer - a tool to analyze Intel ME firmware images;
unME11 to unpack some Huffman-compressed modules from Intel ME firmware 11.x.

9

Intel AMT architecture

Intel ME firmware components

Intel AMT architecture is a broad and quite a challenging topic to comprehend, moreover it
is tightly related to Intel ME firmware. Here, you can find essentials on the latter required to
understand the following part of the research.

The code is divided into modules. A precise list varies, depending on a system. Every firmware
version contains basic code modules (e.g. bringup module, kernel, etc.) and application
modules that implement various Intel technologies (e.g. PTT, AMT, etc.).

The applied technologies define what firmware type is used. There are 3 types of firmware:
1. ignition firmware (ME 6.x only) which has minimal size and contents;

2. 1.5MB firmware which has incomplete contents of modules;

3. 5MB firmware with full firmware contents.

Getting down to Intel AMT architecture
Putting it in a nutshell, Intel AMT is an application implemented as a module inside Intel
ME firmware. The very technology is intended to remotely control and administer computer
systems.

With Intel AMT features, it is possible to:
power up/off, reset a system, access BIOS setup through Serial-Over-LAN (SOL);
get the information about a system hardware through the web-interface;
boot a system from the custom boot image/file in recovering purposes;
acquire the full control of the monitor/keyboard and mouse used in a system.

Any of the above listed features requires a target system to be plugged in and to have the
official AMT support (the “vPro” brand). These capabilities do not depend on an OS of a target
system at all. Moreover, they can be used to delete or reinstall it.

Applications running locally on the platform communicate with Intel AMT Release 2.0 and later
releases the same way network applications do: WS-Management over SOAP over HTTP. When
a local application sends a message addressed to the local Intel AMT host name, the Local
Manageability Service (LMS), which listens to traffic directed to the host name, intercepts the
message and routes it to the Intel Management Engine Interface.

10

Access to Intel AMT
Intel AMT has 2 types of interfaces which can be used to access it.

The first type is network interfaces (Intel AMT Releases 2.5, 2.6, 4.0, and 6.0 and later releases
support a wireless, along with a wired, network interface). TCP/UDP messages addressed
to certain registered ports are routed to Intel AMT when those ports are enabled. Messages
received on a wired LAN interface go directly to Intel AMT.

The second one is a local interface. Various local applications are able to access Intel AMT
features the same way network applications do – WS-Management over SOAP over HTTP.
When a local application sends a message addressed to the local Intel AMT host name, the
Local Manageability Service (LMS), which listens to traffic directed to the host name, intercepts
the message and routes it to the Intel Management Engine Interface (see Fig. 5.)

Fig. 5
Local access to Intel AMT

11

Intel AMT manageability ports

Getting access to Intel AMT manageability ports provides an attacker with an advantage. You
can find the list of widely known ports used by a remote administrator to access the AMT:

5900 – AMT VNC-server without encryption;
16992 – AMT web-server, HTTP protocol;
16993 – AMT web-server, HTTPS protocol;
16994 – AMT redirection for SOL, IDE-R, KVM without encryption;
16995 – AMT redirection for SOL, IDE-R, KVM with TLS.

The access to the Intel AMT Manageability Ports (save the VNC-server at 5900) is protected
with the Intel AMT Access Control List (ACL) managed by the system administrator.

The two supported mechanisms of authentication are Digest and Kerberos. Users added to
the Intel AMT ACL are either digest or Kerberos users respectively. A notable, and the most
interesting, exception from that is the ‘admin’ user which is present by default and uses the
Digest authentication.

Unauthorized remote access to Intel AMT system
When accessed with a regular web-browser Intel AMT redirects a user to a logon page (Fig.
6) and greets him/her with the “Authentication required” request. By using mitmproxy it is
possible to see what is happening right now:

Fig. 6
Intel AMT logon page

12

In the scope of our research we gave it a closer look and used a proxy server. As for RFC 2617
“Digest Authentication”, the first request gets a respond with 401 Unauthorized (see Fig. 7).

Fig. 7
401 Unauthorized

Given a username and password, the client responds with a new request, including the
Authorization header field (Fig. 8) and the server accepts a user as a legitimate one.

Fig. 8
Server response

13

At first glance, nothing extraordinary has happened during the authentication process. A closer
look, however, gives a clue of what to look for in the ME firmware. To be precise the name of
the fields sent in the Authorization Headers. These strings will help us to pinpoint the very code
that is responsible for the digest authentication (Fig. 9).

For the reverse engineering purposes, we use the IDA disassembler and a special loader script
(Fig. 10, Fig. 11)

Fig. 9
Authentication field

Fig. 10
IDA disassembler

Fig. 11
Loader script

14

They proved to be useful enough. After the loader finished its work, we got a nice and clean
look onto the code and data (Fig. 12).

Fig. 12 Obtained code and data

A quick search for the strings like “username”, “qop” and “cnonce” gave us the exact strings
within the NETSTACK module. All these strings are all cross-refed from the one particular
function (Fig. 13)

Fig. 13 Quick search for “cnonce“

15

Our research went on with examining NETSTACK_CODE_20431E74() subroutine (Fig. 14).
This function is responsible for processing Authorization header fields and the overall digest
authentication. After the careful examination of the function’s code we found an interesting
bug. The exact place of that bug is in the final comparison, which is meant to yield whether
the authorization was successful by comparing the provided and the computed response. The
two values were tested against each other to see if they match, but the actual number of bytes
to be tested was taken from the user-provided response, not from the computed one. Thus, in
case one provides an empty response string, strncmp() returns zero (as the number of bytes to
be compared is zero), and zero means a successful authorization (Fig. 15).

Fig. 14
NETSTACK_CODE_20431E74() subroutine

16

Fig. 15
Accepting empty response as a valid one

17

CVE-2017-5689

To exploit the newly found vulnerability it is possible to use the mitmproxy tool with a simple
script that blanks the “response” field in the Authorization head of the outgoing request (Fig.
16).

Fig. 16
MiTM proxy tool

We knew the web-browser was configured to access the network through the local proxy at
8080. The password we typed in was obviously incorrect, because Intel AMT did not allow
passwords shorter than 8 characters. Still, we gave it a try (Fig. 17).

Fig. 17
“Still, we gave it a try.”

18

Just like in the previous case no Authorization header field was sent, so the server responded
with 401 Unauthorized (Fig. 18).

Fig. 18
Server response

Nonetheless, then we got “200 OK” and an empty value for the response field (Fig. 19).

Fig. 19
“200 OK“ & empty value

19

In other words every feature the AMT had became available for an attacker as if the admin
password was known (Fig. 20, Fig. 21).

Fig. 20
AMT’s features are available

Fig. 21
AMT’s features are available

20

Sure thing the bug had been reported and then the vendor offered us to participate in their bug
bounty program (Fig. 21, Fig. 22, Fig. 23).

Fig. 21
Intel’s bug bounty program

Fig. 22
Intel’s bug bounty program

21

Fig. 23
Vulnerability details

Exploitation of CVE-2017-5689

There is a vulnerability that allows attackers to log as “admin” user in the AMT.
The only thing needed is open 16992 port
No dependence on hardware or OS
Attackers can use all the Intel AMT capabilities for their own good
Turned off devices may be attacked as well
Some systems are accessible through the Internet

Just like in the previous case there are 2 attack methods:
Local (by using the LSM service)
Remote (via the open port)

The reasonable question here is, “What an impact can CVE-2017-5689 have?” According to
Shodan, on May 2 there were 6,378 available IPs with Intel AMT. However, it should be taken
into consideration that Shodan’s data covers only the Internet, while a good deal of Intel AMTs
is used in corporate networks. These corporate AMTs can be easily used by an attacker who
has connected to a network (Fig. 24, Fig. 25).

22

Fig. 24, Fig. 25
Shodan’s statistics

It turned out that this vulnerability affected ICS. For instance, Siemens industrial computers
based on Intel chipset were susceptible to it. In other words, not only enterprises and public
organizations but also critical facilities may be affected by the vulnerability exploitation.

After the information about the vulnerability had become available to the public, various tools,
from scanners and public exploits to automated AMT and honeypots disablers, emerged at
once.

23

Possible attack scenarios
One should get used to the idea that attackers’ possibilities and Intel AMT capabilities are
the same thing. Specifically, they can use Intel AMT legitimate functionality to achieve their
malicious purposes.

To exploit the vulnerability, an attacker may stick to the FW downgrade scenarios:

1. just swap current firmware blob with the older one
the experiment: swap the FW 11.0.25.3001 with the FW 11.0.24.1000
the result: doesn’t work if the SVN of the firmware was incremented

2. change just one code module from the FW blob
the experiment: replace the FW 11.0.25.3001 -> nfc code module with the FW 11.0.24.1000
-> nfc code module

Spreading out coverage. Part I

It begs the question, “Is it possible for attackers to spread out the coverage of this vulnerability
and Intel AMT to achieve their own goals?” How exactly the vPro-system differed from the
non-vPro one? We checked that non-vPro and vPro system might have absolutely similar Intel
ME firmware images, so Intel AMT implementation was often present on a non-vPro system.
Maybe there were hardware restrictions?

The only difference is the MEBx module that used HECI to configure Intel AMT. The HECI
interface is a registers set in PCI CFG and MMIO. The messages should be sent through the
circular buffer in MMIO.

The messages should contain a command. After the message is sent to Intel Me, the
acknowledge message (with the completion status) is to be responded.

The message protocol itself is based on DCMI-HI protocol. There are clients (code modules)
that use HECI inside Intel ME firmware. To connect them you need to know the GUID of the
client. Here are known GUIDS:

ICC 42b3ce2f-bd9f-485a-96ae-26406230b1ff

MKHI 8e6a6715-9abc-4043-88ef-9e39c6f63e0

LMS 3d98d9b7-1ce8-4252-b337-2eff106ef29f

AMTHI 12f80028-b4b7-4b2d-aca8-46e0ff65814c

24

To send the message through the HECI an attacker connects to the client using the GUID.
The format of the messages (with commands) varies depending on the HECI client you are
communicating with. So, for the AMTHI client the following format is used:

struct
{

unsigned int groupID; // the AMTHI client code, 0x12
unsigned int command; // command code
unsigned int isResponse;
unsigned int reserved;
unsigned int result;

};

The messages have the groupID field, meaning the command group identifier (each group have
a specific set of commands). To configure the AMT the 0x12 groupID should be used.

The following commands must be sent one-by-one (after the sending the message, an attacker
receives the acknowledge) to configure the AMT:

AMT_INIT groupID 0x12 command 0x05 ack 0x85

AMT_SET_PWD groupID 0x12 command 0x09 ack 0x89

AMT_SET_IVP4 groupID 0x12 command 0x0C ack 0x8C

Intel MEI can also be used to retrieve some data or check the state of Intel ME subsystem
(Fig. 26):

FWSTATUS registers;
Status request to MKHI;
Intel PT

25

Fig. 26
Intel ME subsystem state check

As a PoC we have created a tool to activate the AMT on vPro and non-vPro systems. To do this:
Run the “AMTactivator” on OS
Configure the KVM feature of Intel AMT (with a random generated password)
Remote pwn (password is unknown for anybody, but we don’t need one)

The activator consists of the following program components:

AMTactivator:
1. mei.sys - 32-bit kernel driver to work with MEI;
2. mei64.sys - 64-bit kernel driver to work with MEI;
3. AMTactivator.exe - the application.

The workflow:
1. Find the MEI device in the PCI CFG and get the base address if the MEI MMIO;
2. Use the MEI MMIO to send activation/configuration commands to Intel ME.

26

Intel ME version System and chipset CPU

7 Intel DQ67SW (vPro), Intel Q67 Intel Core i7-2600 (vPro)

8 Gigabyte GA-H77-D3H (non-vPro), Intel H77 Intel Core i7-3770 (vPro)

9 Gigabyte GA-Q87N (vPro), Intel Q87 Intel Core i3-4300 (without Intel vPro);
Intel Core i5-4590 (with Intel vPro)

Gigabyte GA-H97-D3H (non-vPro), Intel H97 Intel Core i5-4590 (with Intel vPro)

As for a malicious code using Intel AMT, it is worth to be mentioned that:

 First, LegbaCore researchers have already come up with this idea in their research.

Second, quite recently PLATINUM, a malicious program, has been detected in the ITW.
PLATINUM uses Intel AMT SoL to secretly communicate with the CNC.

In both cases, the malware does not use a vulnerability in Intel AMT. Contrary to it, the
malware uses only common Intel AMT SoL capabilities to keep communication stealthy and
evade security applications.

As Microsoft stated: “ This channel works independently of the operating system (OS),
rendering any communication over it invisible to firewall and network monitoring applications
running on the host device”

So, the combination of the kind is no fiction, but fact. So, it is conceivable enough that it
would occur more frequently.

The AMT activator was tested on the following systems:

27

Mitigations
To protect from malware that is remotely using Intel AMT of your system, you should:

- periodically check that Intel AMT is disabled;

- use a firewall to block any external requests to Intel AMT known network ports.

Limitations of AMTactivator

In the scope of our research we have experimentally found out what are the limitations
AMTactivator:

1. Only 6 - 9 Intel desktop chipset series can be activated by AMTactivator (on 100/200 series
chipsets it is not yet achieved).

2. Intel AMT configures to Standard Manageability mode (without the KVM feature) if your
CPU is non-vPro.

3. Intel AMT activation is possible on the systems with Intel ME 5MB firmware (1,5MB
firmwares do not have such functionality)

Spreading out coverage. Part II
Is it possible to swap the 1.5MB FW to 5MB FW to add the absent Intel AMT implementation to
a system? An obvious limitation here is the fact the new FW should fit the SPI flash size.

Systems with 6 - 9 series chipsets: system won’t boot (resets during the early phases of boot
process).

Systems with 100 series chipsets: system boots (but currently we haven’t achieved the
activation to check if added functionality is working.

One of the greatest challenges for an attacker trying to hide the usage of a remote connection
to AMT-enabled is a blinking color frame on the screen. To delete it an attacker uses the
VCP DDC/CI commands to change the visible space on the screen: ???forcedly change the
resolution of the screen: 1920x1080 -> 1930->1090???

By using Intel AMT an attacker can perform the following actions:

1. Exploit CVE-2017-5689 if a system uses an outdated Intel AMT.

2. Downgrade a system even if an up-to-date Intel AMT is used.

3. Use ActivatorAMT a system does not use Intel AMT.

4. Add Intel AMT if there is no Intel AMT in a system

28

Takeaways

1. An attacker can do everything a system can.

2. Ring-3 firmware (Intel ME/AMT) has security issues.

3. Ring-3 hardware (Intel ME/AMT) has undocumented features.

4. New stealth infecting technique of computer system.

5. Legit functionality for non-legit actions.

29

FW downgrade scenarios:

just swap current firmware blob with the older one
the experiment: swap the FW 11.0.25.3001 with the FW 11.0.24.1000
the result: doesn’t work if the SVN of the firmware was incremented

change just one code module from the FW blob
the experiment: replace the FW 11.0.25.3001 -> nfc code module with the FW 11.0.24.1000 ->
nfc code module
the result: the verification scheme doesn’t allow to do so

www.facebook.com/Embedi
twitter.com/_embedi_

linkedin.com/company/embedi
website: embedi.com

Telephone: +1 5103232636
Email: info@embedi.com

Address: 2001 Addison Street
Berkeley, California 94704

Contacts

	Table of contents
	Introduction
	Intel ME/AMT architecture
	Intel ME RE problems
	Intel ME firmware components

	Takeaways
	Spreading out coverage. Part II
	Limitations of AMTactivator
	Spreading out coverage. Part I
	Possible attack scenarios
	Access to Intel AMT
	Mitigations

