
David “dwizzzle” Weston

Hardening with Hardware
How Windows is using hardware to improve

security

Microsoft, Windows and Devices

Device Security Group Manager

“_____ is not a security

boundary”

Security boundaries are changing

Russinovich - Windows and Malware: Which Features Are Security and Which Aren't

https://channel9.msdn.com/Events/TechEd/Europe/2009/SIA301

Law #1: If a bad guy can persuade you to run his program on your computer, it's not solely your computer

anymore.

Law #2: If a bad guy can alter the operating system on your computer, it's not your computer anymore.

Law #3: If a bad guy has unrestricted physical access to your computer, it's not your computer anymore.

Law #4: If you allow a bad guy to run active content in your website, it's not your website any more.

Law #5: Weak passwords trump strong security.

Law #6: A computer is only as secure as the administrator is trustworthy.

Law #7: Encrypted data is only as secure as its decryption key.

Law #8: An out-of-date antimalware scanner is only marginally better than no scanner at all.

Law #9: Absolute anonymity isn't practically achievable, online or offline.

Law #10: Technology is not a panacea.

Ten Immutable Laws Of Security

https://technet.microsoft.com/en-us/library/hh278941.aspx

Law #3: If a bad guy has

unrestricted physical access

to your computer, it's not

your computer anymore.

We aspire to do more

XBOX One X features glitch
protection for physical
hardware attacks

1
Custom SoC provides high
performance streaming
crypto support

2

Hardware supported
Hypervisor supports
isolation of multiple security
domains

3 Hardware supported
Memory
encryption/decryption and
integrity check capability

4

Segmentation

Performance

Smaller attack surface

Can we use hardware

capabilities to redefine

Windows security

guarantees?

Malicious code
cannot persist on a
device.

Violations of
promises are
observable.

All apps and
system
components have
only the privilege
they need.

All code executes
with integrity.

User identities
cannot be
compromised,
spoofed, or stolen.

Attacker with
casual physical
access cannot
modify data or
code on the device.

All code executes with
integrity.

Technologies for mitigating code execution

Control Flow Guard

Enforce control flow integrity

on indirect function calls

???

Enforce control flow integrity on

function returns

Arbitrary Code Guard

Prevent dynamic code generation,

modification, and execution

Code Integrity Guard

Images must be signed and loaded

from valid places

Only valid, signed code pages can be
mapped by the app

Code pages are immutable and
cannot be modified by the app

Code execution stays “on the rails”
per the control-flow integrity policy

Prevent arbitrary

code generation

Prevent control-

flow hijacking

Kernel Pool

User

mode

Kernel

mode

Kernel Pool Page

Secure Mode (VTL1)Normal Mode (VTL0)

Hypervisor Enforced Code Integrity

NT Kernel NT Kernel

NT Kernel Secure Kernel

Mode-Based Execute (MBE) Control

Extended-Extended Page Tables (EPT)

• XU for user pages

• XS for supervisor pages

• KMX and UMX hardware bits.

Improves HVCI performance

Available on Skylake+

SLAT is used to gate enforce RX only

HVCI running in SK validates code pages

If valid set GPA bits to

R=1 W=0 KMX=UMX=1

Kernel Control Flow Integrity

Compile time Kernel Runtime

Metadata is automatically added to the image which identifies functions that may be

called indirectly

void Foo(...) {
// SomeFunc is address-taken
// and may be called indirectly
Object->FuncPtr = SomeFunc;

}

A lightweight check is inserted prior to indirect calls which will verify that the call target is

valid at runtime

void Bar(...) {
// Compiler-inserted check to
// verify call target is valid
_guard_check_icall(Object->FuncPtr);
Object->FuncPtr(xyz);

}

• Update valid call target data with

metadata from Driver image

Image

Load

• HVCI validates and maps pages

• CFG bitmap is protected by HVHVCI

• Perform O(1) validity check

• Terminate process if invalid target

Indirect

Call

Kernel Control Flow Guard improves protection against control flow hijacking for kernel code

Paired with HVCI to ensure both code integrity and control flow integrity

OSR REDTEAM targeted kCFG bitmap data corruption, now protected by Hypervisor (props to davec!!!)

Starting in 1803 all new Windows installs will include HVCI by default (MBEC/Kaby Lake+)

This helps Windows improve resilience to future kernel exploits

VBS has created new attack surfaces

External researchers and OSR REDTEAM highlighted SMM risks for VBS

Arbitrary code execution in SMRAM can be used to defeat Hypervisor

Malicious code running in SMM is difficult to detect

https://www.blackhat.com/docs/us-16/materials/us-16-Wojtczuk-Analysis-Of-The-Attack-Surface-Of-Windows-10-Virtualization-Based-Security.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Bulygin-Fractured-Backbone-Breaking-Modern-OS-Defenses-With-Firmware-Attacks.pdf

New Attack Surface, New Mitigations

Windows is investing heavily in current and future SMM based mitigations

Capsule update mechanisms in WU enables OEMs to service firmware security issues

Intel firmware bounty covers all tianocore components

Windows SMM Security Mitigations Table (1607)
FIXED_COMM_BUFFERS

SMM will validate that input and output

buffers lie entirely within the expected

fixed memory regions.

COMM_BUFFER_NESTED_PTR_P

ROTECTION
SMM will validate that input and output

pointers embedded within the fixed

communication buffer only refer to

address ranges that lie entirely within the

expected fixed memory regions.

SYSTEM_RESOURCE_PROTECTIO

N
Firmware setting this bit is an indication

that it will not allow reconfiguration of

system resources via non-architectural

mechanisms.

Windows System Guard with TXT (future)

SMM reference code + hardware support for

establishing SMM page tables and

protecting them

Using measurements for attestation for

modules in SMM that establish isolation and

attest to the isolation properties using PCR’s

Building out hardware support for isolating

SMM in a direct container

http://download.microsoft.com/download/1/8/A/18A21244-EB67-4538-BAA2-1A54E0E490B6/WSMT.docx.
https://edk2-docs.gitbooks.io/a-tour-beyond-bios-memory-protection-in-uefi-bios/memory-protection-in-SMM.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/windows-uefi-firmware-update-platform
https://security-center.intel.com/BugBountyProgram.aspx

Return address protection with hardware

Initial attempt to implement stack protection in
software failed

REDTEAM designed software shadow stack (RFG) did
not survive internal offensive research

Control-flow Enforcement Technology (CET)

Indirect branch tracking via ENDBRANCH

Return address protection via a shadow stack

Hardware-assists for helping to mitigate control-flow
hijacking & ROP

Robust against our threat model

Call pushes return address on both stacks

Ret/ret_imm
pops return address from both stack
Execption if the return addresses don’t match

No parameters passing on shadow stack

Return EIPn-1

Param 1

Param 2

Return EIPn

Return EIPn-1

Return EIPn

Stack usage on near CALL

ESP

after

call

SSP

after

call

+0

+4

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Malicious Code Cannot Persist
on a Device.

Secure Boot: Static Root of Trust

Secure Boot implementation

includes OEM UEFI in the root-of

trust

UEFI code is complex and servicing

is not mature

Dozens of vulnerabilities

discovered in UEFI in recent years
OS Boot Loader

TPM
1.2/2.0

Boot Manager

ELAM Drivers

OS/kernel Drivers Secure

Boot

Other Drivers

OS

User Mode AppsTCG

hardware

firmware

software

file

Hypervisor

VSM

OPROMs

ChipSet Init

NIC GPU BMC

UEFI

HVCI

http://www.intelsecurity.com/advanced-threat-research/content/AttackingAndDefendingBIOS-RECon2015.pdf

System Guard: Dynamic root of Trust (TXT)

OEM Pre-boot code boots and initializes HW.

UEFI code transitions to boormgr and Winload.

Winload used UEFI service to load HV and SK

into memory

Invokes SINIT instruction to enter trusted launch

code

Completes initialization of hypervisor and secure

kernel

Must not use any UEFI services

Jump back to Winload and supervisor mode when

done

Winload can use UEFI services again to boot rest of

Windows

MS Trusted Launch Code measures and loads

the rest of hypervisor (HV) and secure kernel

(SK)

Enables IOMMU and SMI

Must not use any UEFI services

TPM:

Measurement of

Launch Code/HV/SK is in

PCR17 .. PCR22 of TPM

SINIT Measures

Trusted launch code

into PCR17 & PCR

18

Health Attestation Servers can

confirm CPU is running secure

HV/SK using TPM PCR17 ..

PCR22 values

Boot Flow

Continue to measure

HV/SK launch code into

PCR18..PCR22

Rest of HV/SK measured

into PCR18..PCR22 as it

boots

OEM Pre-Boot Code Trusted Launch Code Initialize and launch Hypervisor

System Guard with DRTM

Attacker with casual physical
access cannot modify data or code
on the device.

Windows DMA-r Attack Protection

Connect peripheral

New devices are
enumerated and

functioning

OSUser

Peripheral
Drivers opted-

in DMAr?

Yes

Enable DMAr for
the peripherals

No
User logged in

AND Screen
unlocked?

No

Wait for user
to login/
unlock
screen

Yes

All apps and system
components have only the
privilege they need.

Containment with Virtualization
Privileged Access Workstation

Strong kernel isolation for applications running
in the guest

Separate identity and resource infrastructure

Can be extended to arbitrary application
scenarios

Qubes OS

Desktop PAW

Locked down host

V-Switch V-Switch

Strengths

Weaknesses

High resource requirements

Difficult experience for non-technical users

Expensive configuration

Dual Containment Technologies

Windows Containers

• Lightest weight container.

• Application isolated using

file system and registry

virtualization.

• Used for centennial as a

bridge

• No Security guarantees

• Container providing an

isolated the user session

• Shares kernel

• Used to achieve higher

density in cloud and

server deployments.

• No a security boundary

• Container that uses a

lightweight VM

• Hypervisor boundary.

• Used in hostile multi-tenant

hosting.

• Commercially known as a

“Hyper-V container”

• Container that uses a

lightweight VM

• Resistant to kernel

attacks Runs a separate

kernel from the host.

Krypton Container Technology

Resource sharing between

guest and host

VM accesses a file, data is

transferred into physical pages

of the guest

Pages are backed by private

virtual memory on the host.

Direct Map

Physically-backed VMs statically

mapped

VA backed VMs have “hot hint”

indicate set of physical pages

should be mapped into the

guest

Reduces number of memory

intercepts generated by the

guest.

Memory Enlightenment

No scheduler in the hypervisor

Remove extra scheduling layer

Take advantage of the existing

NT scheduler features

Improved CPU resource

tracking/management

Root schedules all VP-backing

threads

Integrated Scheduler

VRAM

IOMMU Based GPU Isolation (1803)

Guest

A

IOMMU

GPU Page Table under direct

Host VidMm Control

VRAM Address

Guest Physical System

Address

RAMGuest

B

Host

VidMm (through IOMMU) Limit GPU

accessible system memory to only pages

the GPU should have access to.

Successful hardware attack result in

VRAM and the portion of system

memory visible to the GPU to be

compromised…

But ntos, pool, process regular

memory, etc… is safe.

Violations of promises are
observable.

Tampering is a risk to Windows

• Protected Process are used

to prevent tampering of key

security components

• LSASS, Defender, and

Defender ATP all use PPL

• Kernel and User mode

code integrity policy are

targeted by memory

corruption issues

• EPROCESS security

properties

• Patch Guard and Hyper Guard

effective effectively monitor

TCB tampering

• Not extensible for consumers

• Key boot properties

measured into PCRs

(DHA)

• No easy way to

consume and extend

Goal: Tamper evident Windows

System Guard Runtime Attestation

ATP Cloud

Octagon
assertions

Enclave Cert

Hosted

Attestation

Attest to report authenticity

(spoofing, replay)

Continuous integrity

System Guard API

ATP Defender
Critical

Services

System Guard Runtime Broker

System Guard Agent

Octagon Enclave

(Assertion Engine)

VTL-0 VTL-1

Notifications

Assertion

Assistant

Communication Assistant

Execution

Report

Hardware backed runtime attestation

Improve transparency: Device Security Features

Windows security promises are increasing

Aspirational security promises are the guiding principles for security investments

10 S is the best expression of Windows security

https://aka.ms/bugbounty

https://aka.ms/cesecurityopenjobs

https://aka.ms/wdgsecurityjobs

https://aka.ms/bugbounty
https://aka.ms/cesecurityopenjobs
https://aka.ms/wdgsecurityjobs

