
Breaking Through Another Side
Bypassing Firmware Security Boundaries

from Embedded Controller

Alex Matrosov Alexandre Gazet

Disclaimer

All the details given about BIOS Guard technology is based
on our own analysis and reverse-engineering1. Even with our
best intents it may be inaccurate or contains errors.

1Actually ~5 months of passionate reverse-engineering nights in Portland and Toulouse 😈
2

Actually 5 months of passionate reverse-engineering nights

What are the Security Boundaries in HW world?
✓ Limitations of current Threat Model

✓ Security boundaries for firmware update process

Dissecting an Embedded Controller
✓ EC internals and previous attacks

✓ Why is EC not a security boundary?

✓ Breaking Lenovo EC update process

Deep dive into Bios Guard
✓ BIOS Guard internals (include BG script)

✓ EC and BIOS Guard relations

✓ Attack scenarios from BIOS and EC

3

What are Security
Boundaries in HW world?

How many 3rd-party chips in your laptop?

❑ TPM module

❑ USB controller

❑ Embedded Controller (EC)

❑ Fingerprint Reader

❑ Touchpad

❑ and many others

5

UEFI Firmware

Image

CPU Microcode

Management

Engine

AMT

BMC

SMC

Network

Graphics

Sensors

Embedded

Controller (EC)

PMU

ACM

Boot Guard BIOS Guard TXT

Hardware Security Boundaries

Most of those chips are:

❑ Not under direct control from laptop vendors

❑ Involved in security features implementation

❑ Connected to UEFI firmware (BIOS)

❑ Considered to generate trusted I/O

❑ Mostly out of the supervision scope of the main CPU

How can we trust anything that is not
under our system control?

6

HW/FW Security != sum of all Boundaries

UEFI System
Firmware

Embedded
Controller

TPM GPU

NetworkSSD/RAID

BMCPMU

7

https://github.com/nccgroup/TPMGenie

@qrs@uffeu

x

In current threat model HW is trusted 😈

8

https://github.com/nccgroup/TPMGenie

https://edk2-docs.gitbooks.io/security-advisory/content/bootguard-toctou-vulnerability.html

@qrs @peterbjornx

Intel Boot Guard TOCTOU from SPI flash

Authenticated once != trusted forever

9

https://edk2-docs.gitbooks.io/security-advisory/content/bootguard-toctou-vulnerability.html

https://airbus-seclab.github.io/ilo/ZERONIGHTS2018-Slides-EN-Turning_your_BMC_into_a_revolving_door-perigaud-gazet-czarny.pdf

BMC is inside trusted boundaries

UEFI firmware blindly trust all hardware

But hardware can attack UEFI firmware 😈

10

https://airbus-seclab.github.io/ilo/ZERONIGHTS2018-Slides-EN-Turning_your_BMC_into_a_revolving_door-perigaud-gazet-czarny.pdf

Why EC got our attention?
We were researching BIOS Guard implementation on P50. Surprisingly
to us, we found some relations between EC and BIOS Guard (will be
discussed later in details).

11

Dissecting Embedded
Controller

Our target platforms: Lenovo P50 and T540p

What is an Embedded Controller (EC)?

❑ Small 32-bit microcontroller, power every laptop

❑ Responsible for multiple things

❑ Power management and battery life control

❑ Thermal control sensors

❑ Keyboard controller and dispatcher

❑ Also involved in security features implementation

❑ Manufacturing mode locks

❑ Keeping secrets outside of BIOS and NVRAM

❑ Intel BIOS Guard implementation

13

Lenovo ThinkPad EC

❑ Microchip MEC16xx family

❑ MEC1653 for Lenovo P50

❑ MEC1633 for Lenovo P540p

❑ ROM size 280k

❑ ARC-625D processor core

❑ Multi-device advanced I/O controller

❑ Collection of logical devices:
❑ Keyboard Controller (8042)

❑ ACPI EC Channels (4 of them)

❑ Embedded Flash Interface

❑ etc.
14

CPU

PCH

Embedded
Controller

EC Flash

SPI
Flash

SPI

SPI

LPC/SMBUS

15

Modern EC SoC

http://ww1.microchip.com/downloads/en/DeviceDoc/00002338A.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/00002338A.pdf

Mapping Embedded
Controller Endpoints

"Logical devices [...] are peripherals that are located on

the MEC16xx and are accessible to the Host over the LPC bus."

Low Pin Count (LPC) interface from EC point of view:

❑ Is itself a Logical Device (LD)

❑ Logical Device Number 0xC (LDN)

❑ Used to expose other LDs on the LPC bus

❑ Configuration registers (BAR) in the range FF_3360h - FF_3384h

17

Methodology

From EC:
❑ Identify LPC BAR configuration code
❑ Recover logical device IO ports mapping
❑ EC’s endpoints exposed to host

From host:
❑ Find UEFI/BIOS EC communications
❑ EDK2 EFI_CPU_IO2_PROTOCOL
❑ Lenovo’s EcIoDxe and EcIoSmm modules

18

Recovered mapping
❑ LDN00 (MAILBOX_INTERFACE) 0x1610
❑ LDN01 (KEYBOARD_CONTROLLER_8042) 0x0060-0x0064
❑ LDN02 (ACPI_EC_0) 0x0062-0x0066
❑ LDN03 (ACPI_EC_1) 0x1600-0x1604
❑ LDN04 (ACPI_EC_2) 0x1630-0x1634
❑ LDN05 (ACPI_EC_3) 0x1618
❑ LDN07 (UART) 0x03F8
❑ LDN0E (EMBEDDED_FLASH_INTERFACE) 0x1612-0x1616
❑ LDN11 (EM_INTERFACE_0) 0x1640
❑ LDN20 (BIOS_DEBUG_PORT_0) 0x1608
❑ LDN21 (BIOS_DEBUG_PORT_1) 0x160A
❑ LDN30 (unknown) 0x15E0

19

Attacking EC
Update Process

Previous very cool works

Alexandre Gazet
«Sticky finger & KBC Custom Shop», Recon 2011
❑ http://esec-lab.sogeti.com/static/publications/11-recon-stickyfingers_slides.pdf

Matthew Chapman
Unlocking my Lenovo laptop
❑ http://zmatt.net/unlocking-my-lenovo-laptop-part-1/

Hamish Coleman
Infrastructure for examining and patching Thinkpad embedded controller firmware
❑ https://github.com/hamishcoleman/thinkpad-ec

21

http://esec-lab.sogeti.com/static/publications/11-recon-stickyfingers_slides.pdf
http://zmatt.net/unlocking-my-lenovo-laptop-part-1/
https://github.com/hamishcoleman/thinkpad-ec

EC firmware update process

On many platforms EC firmware not
authenticated just flashed "as is"

https://github.com/system76/ecflash

https://github.com/hughsie/fwupd/tree/master/plugins/superio

❑ Typical EC programming is just read/write
to HW port

❑ Verification is about integrity of flashed bytes

❑ Authentication mostly implemented outside of EC

22

https://github.com/system76/ecflash
https://github.com/hughsie/fwupd/tree/master/plugins/superio

The ways to gain persistence on EC

❑ Physical access (most of the cases JTAG on EC chip not disabled)

❑ EC Update Tool from OS (usually the same tool as BIOS update)

❑ BIOS EC update DXE driver can be called from SMM or DXE shellcode

❑ All EC image authentication is happening in BIOS, architectural
problem with TOCTOU by design hard to avoid

23

Impact of EC update auth bypass

24

Lenovo Thinkpad EC update process

❑ Target system: Lenovo Thinkpad T540p and P50
❑ P50 EC chip: MEC1653
❑ Update tools from OS initiate EC update process
❑ BIOS responsible for flashing and authenticating the update image

EcFwUpdateDxe (0C396FCA-6BDA-4A15-B6A3-A6FA4544BDB7) 😈

25

Lenovo Thinkpad EC update header

26

Lenovo Thinkpad EC update process

Lenovo TDK update tool

map EC update
image to memory

set NVRAM var
 LenovoEcfwUpdate

Lenovo EcFwUpdateDxe (not SMM)

OS

BIOS 27

Lenovo Thinkpad EC update process

Lenovo TDK update tool

map EC update
image to memory

set NVRAM var
 LenovoEcfwUpdate

Lenovo EcFwUpdateDxe (not SMM)

OS

BIOS 28

T540p EC can be exploited from OS by
simple EC command sequence replay

29

Host flash access not locked 😈

Boot Guard saves the day?
❑ 4th Intel Core generation

❑ Measure/verified boot

❑ “Hardware root of trust”

❑ Boot Guard coverage in the hand of
OEMs

30

https://medium.com/@matrosov/bypass-intel-boot-guard-cc05edfca3a9

Locked in BIOS

Locked in Hardware

CPU

Microcode

CPU

Reset

Boot Guard

ACM

Reset

Vector

IBB

(SEC + PEI)

Secure Boot

(DXE + BDS)
OS Loader

https://medium.com/@matrosov/bypass-intel-boot-guard-cc05edfca3a9

So can we just patch the
EcFwUpdateModule again on P50?

Lenovo Thinkpad EC signature check

❑ EC update image mapped from OS update tool (TDK)

❑ Validate CRC16 checksum of EC image is correct

❑ Copy SecureFlash public key to EC related HOB

❑ Calculate RSA_verify(ECFW_signature, HOB_pulickey)

❑ IF signature correct: global sign_correct = TRUE;

❑ IF sign_correct == TRUE update EC firmware

32

Lenovo Thinkpad EC signature check

❑ EC update image mapped from OS update tool (TDK)

❑ Validate CRC16 checksum of EC image is correct

❑ Copy SecureFlash public key to EC related HOB

❑ Calculate RSA_verify(ECFW_signature, HOB_pulickey)

❑ IF signature correct: global sign_correct = TRUE;

❑ IF sign_correct == TRUE update EC firmware

33

Lenovo P50 EC signature check flow

34

EcFwUpdateDxe

check
signature

if correct
continue

flash EC
update

Now, can we do the same
attack with newer P50?

P50 try-harder

On Thinkpad P50 and newer:

❑ Stronger coupling of security
boundaries

❑ Boot Guard IBB hash coverage is
better

❑ And…

36

P50 try-harder

Host flash access needs to be enabled by
additional command to unlock 😈

❑ On the EC mem_conf_is_bg_auth check a
status bit

❑ Set when the EC receives a magic value

❑ Shared secret between the BIOS and the EC

37

P50 try-harder

❑ Shared secret sent from the BIOS

Can we simply replay it? 😈
38

P50 try-harder

Nope, reduced window of opportunity
with sanity check:

❑ EcFwUpdateModule sends a new
command: 0xDF

❑ Lock the EC update in early BIOS

❑ Authentication no more
possible on EC without reset

39

Lenovo disclosure timeline

❑ 05/30 - Submit issue to Lenovo PSIRT

❑ 06/03 – Joint call with Lenovo PSIRT, answered questions and
submit additional information

❑ 07/11 – CVE assigned for T540p report -> CVE-2019-6171

❑ 08/08 - Today is happy Disclosure day!

Lenovo Security Advisory:

https://support.lenovo.com/solutions/LEN-27764

Special thanks to Beverly Miller Alvarez from Lenovo PSIRT for her help in disclosure process!
40

https://support.lenovo.com/solutions/LEN-27764

EC take-aways

❑ Were looking for BIOS Guard ephemeral value auth

❑ Found static shared secret between BIOS and EC

❑ Can be abused in some scenario up to EC rootkit

❑ => No EC BIOS Guard ephemeral value support for
these laptop lines (yet)

❑ Boot Guard does not fully protect from rogue
update at runtime

❑ What does BIOS Guard would have change?

41

Deep dive into BIOS Guard

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/security-technologies-4th-gen-core-retail-paper.pdf

Intel BIOS Guard in a nutshell
❑ Rationale: BIOS security boundary is insufficient to protect critical code

responsible for BIOS or EC firmware update

❑ Proposal: deport code to a safer environment:
Authenticated Code Module RAM (ACM-RAM)

43

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/security-technologies-4th-gen-core-retail-paper.pdf

What is Intel BIOS Guard?

❑ Platform Flash Armoring Technology (PFAT)
❑ Armoring SPI Flash access

✓ Access controlled by BIOS Guard ACM
✓ Partially implemented in Microcode, PCH, BIOS and EC
✓ PCH locked SPI flash access without PFAT

❑ BIOS update authentication
✓ Authenticated by BIOS Guard ACM

❑ Game over for malicious updates?
✓ Physical access + direct programming SPI flash still possible
✓ POST update verification only relies on Intel Boot Guard integrity

44

https://wenku.baidu.com/view/f1d955c46bd97f192379e9aa
45

https://wenku.baidu.com/view/f1d955c46bd97f192379e9aa

https://wenku.baidu.com/view/f1d955c46bd97f192379e9aa
46

https://wenku.baidu.com/view/f1d955c46bd97f192379e9aa

47

Lenovo Thinkpad PFAT update process

❑ Lenovo TDK update framework maps new
BIOS image into memory

❑ Triggers BIOS Guard tool SMI over
ACPI

❑ Sends BGUP memory address, BGUP size,
IO Trap address

❑ BIOS Guard SMI sets BG directory,
trigger MSR to load ACM

❑ ACM triggers Microcode flow to verify
and apply BIOS Guard update and
reboot machine

Resources

❑ Platform Firmware Armoring Technology (PFAT) patents
US 2013/0219191 A1 & US 2012/0072734 A1

❑ Dell Firmware Security, 2018, Justin Johnson
https://www.platformsecuritysummit.com/2018/speaker/johnson/PSEC2018-Dell-Firmware-Security-Justin-Johnson.pdf

❑ Betraying the BIOS: Going Deeper into BIOS Guard Implementations,
2018, Alex Matrosov

https://github.com/REhints/Publications/blob/master/Conferences/Betraying%20the%20BIOS/Offensivecon_18%5Bv2.0%5D.pdf

❑ Cross-analysis of BIOS implementations:
❑ Phoenix-based: Lenovo Thinkpad P50, T540
❑ AMI-base: Gigabyte C246, Lenovo IdeaPad, Dell Inspiron 48

https://www.platformsecuritysummit.com/2018/speaker/johnson/PSEC2018-Dell-Firmware-Security-Justin-Johnson.pdf
https://github.com/REhints/Publications/blob/master/Conferences/Betraying%20the%20BIOS/Offensivecon_18%5bv2.0%5d.pdf

BIOS Guard at
hardware (Intel) level

From now on, we focus on Lenovo P50 BIOS implementation:
❑ Phoenix-based
❑ Intel Skylake 6th generation processor

BIOS Guard hardware support

Interactions through a set of MSRs

❑ PLATFORM_INFO MSR (0CEh)

❑ PLATFORM_FIRMWARE_PROTECTION_CONTROL (110h)

50

BIOS Guard hardware support

❑ PLATFORM_FIRMWARE_PROTECTION_EPHEMERAL (117h)

❑ Early provisioning (PEI phase)
❑ Module SiInit (Silicon Init)

❑ Generate ephemeral value (RDRAND)

❑ Send it to the EC but never used

❑ Buried in hardware (MSR 117h)

❑ Most probably Write-Only register

❑ Discard value

❑ Run-time: only BIOS Guard can
unlock controllers (PCH/EC)
using the ephemeral value

51

BIOS Guard hardware support

❑ BIOS Guard Platform Data Table (BGPDT)
❑ Platform specific, static, BIOS Guard configuration

❑ PLATFORM_FIRMWARE_PROTECTION_HASHx MSRs (111h-114h)
❑ Early provisioning (PEI phase)

❑ Set up BGPDT, compute its digest

❑ Possibly write-once MSRs or
locked depending on BG status

❑ Immutable BGPDT then

52

At this point (PEI phase, early
boot) BIOS Guard configuration is

set up and locked-down

BIOS Guard ACM execution flow

❑ PLATFORM_FIRMWARE_PROTECTION_TRIGGER_PARAM (115h)
❑ Set up with a pointer on BIOS Guard Directory

❑ Parameters for operations

❑ Placeholder for the return value as well

❑ PLATFORM_FIRMWARE_PROTECTION_TRIGGER (116h)
❑ BG "syscall" or trigger

54

BIOS Guard ACM

❑ File format close to Intel Boot Guard ACM

❑ Size 29-32k

❑ Signed and encrypted (most likely AES-CBC)

❑ Black box, expected to implement:
❑ BGPTD hash verification

❑ Update package signature check (optional)

❑ Script interpreter

❑ Flash SPI access and communications with the EC

❑ Provided by Intel to OEM as binary blob

55

BIOS Guard at
software (OEM) level

BIOS Guard Directory

❑ Top-level structure

❑ Array of pointers (6)

❑ Address passed in MSR 115h

❑ ACM module and BGPDT, first
exposed by PlaformInit HOB

❑ Ored entries:
❑ With 0xFE << 56 if not set

❑ With index << 56 otherwise

57

BIOS Guard Platform Data Table

❑ Static configuration of the protection
❑ EC IO ports, commands

❑ Public keys digests

❑ SFAM array: protected flash memory ranges

❑ Sealed at PEI phase

58

BIOS Guard Platform Data Table

❑ SFAM ranges

❑ Protected range of flash regions
=> only accept signed operations

❑ Regions can be found in the
_FLASH_MAP structure

59

BIOS Guard Update Package

❑ Operation parameters for the BIOS Guard ACM
❑ Header (platform, versions, signature requirement, etc.)
❑ Script: dynamic or templated
❑ Buffer to be written in flash
❑ Cryptographic material (signature)

❑ Templated scripts for signed/protected operations
❑ $IPACK structure in Lenovo’s image

❑ Dynamically generated scripts
❑ BiosGuardService API (wrapped into BIOS_GUARD_PROTOCOL)

60

$IPACK structure

61

$IPACK files

❑ _IMG_.ORG: main UEFI image (0x88E350 bytes)

❑ PUPHEAD.BIN: update header (0x30 bytes)

❑ PUPDUMMYHEAD.BIN

❑ PUPSCRP.BIN: update script (0xD0 bytes)

❑ PUPDUMMYSCRP.BIN

❑ PUPCERT.BIN: certificate (0x20C bytes)

❑ PUPDUMMYSIGN.BIN

❑ PUPSIGN.BIN: signatures collection (0x6C000 bytes)

62

PUPCERT.bin

63

❑ Cryptographic material
❑ Template file
❑ RSASSA-PKCS1-v1_5, SHA2
❑ For each signed operation, chunk signature

is written over the placeholder

PUPHEAD.bin

64

Operation header:
❑ Flags: a bit is set to require a

signed operation
❑ Platform: should match the one from

BGPDT

BIOS Guard update package

SystemFlashUpdateDriverDxe debug string: "../../Lib/Common/PfatPupRomWrite.c" 65

BIOS Guard operation

66

BIOS Guard scripting

❑ Fixed size instruction set (8 bytes)

❑ Few instructions guessed:
❑ OP_START = 01 00 00 00 00 00 00 00
❑ OP_END = FF 00 00 00 00 00 00 00
❑ OP_SET_FLASH_ADDR = 55 00 00 00 XX XX XX XX
❑ OP_FLASH_ERASE = 14 00 00 00 00 00 00 00
❑ OP_FLASH_WRITE = 11 00 00 00 00 00 00 00

❑ Interpreter expected to be in the ACM module
or Microcode

67

BIOS Guard scripting

❑ Generated dynamically (unsigned operations)
❑ Very basic scripts (4 instructions)
❑ Ex: OP_START | OP_SET_FLASH_ADDR | OP_FLASH_WRITE | OP_END

❑ PUPSCRP.bin used as a template (signed operations)
❑ 26 instructions program
❑ Patch flash address in 2nd instruction operands
❑ Patch chunk size in 3rd instruction operands

❑ Only signed operations can write/erase SFAM ranges
(ERR_SFAM_VIOLATION otherwise)

68

Open questions

❑ SHA2 of public key is expected in BGPDT
❑ Same digest values for P50 and T540

❑ Could not recompute the value

❑ Chunks signature:
❑ RSASSA-PKCS1-v1_5 signature, SHA2 digest

❑ Unsure about the scope of the signature

❑ Whole update package?

❑ Unsigned operations
❑ Interpreter in ACM exposes a rather large attack surface

❑ Fuzzing?

69

Notes for future research

❑ Interesting error codes:

"ERR_UNSUPPORTED_CPU", "ERR_BAD_DIRECTORY",
"ERR_BAD_BGPDT", "ERR_BAD_BGUP",
"ERR_SCRIPT_SYNTAX", "ERR_UNDEFINED_FLASH_OBJECT",
"ERR_UNEXPECTED_OPCODE", "ERR_BAD_BGUPC",
"ERR_UNSIGNED_B0_STORE", "ERR_RANGE_VIOLATION",
"ERR_SFAM_VIOLATION", "ERR_EXEC_LIMIT", etc.

70

Experiments

ACM FUN

❑ Tried debug over Intel DCI to access ACM memory and dump
decrypted BIOS Guard ACM => no success

❑ Replace BIOS Guard ACM module with older one from another
platform => temporarily bricked a laptop (need reflash)

❑ Remove ACM from update image before flash over OS updater =>
start loop of weird reboots on S3, after few recover to previous
version

72

Conclusions

Conclusions

❑ Complex feature:
❑ Hardware support, but…

❑ Many software components (PEI, SMM, DXE)

❑ Specific format for BIOS image

❑ Strong dependency of OEM vendors to Intel (BIOS Guard ACM)

❑ Lenovo’s EC support still limited?

❑ Could possibly support other firmware's as well?

❑ Many implementation details in the hands of OEM
=> room for misconfiguration

74

BIOS Guard implementation checklist

❑ SFAM regions coverage don’t have obvious mistakes

❑ Signed vs unsigned operations with BIOS Guard script

❑ Communications between BIOS and EC implemented correctly (not
static session password)

❑ Recovery process implemented without supply chain backdoors

75

Shout-out

❑ All friends who shared enlightening thoughts with us, you know
who you are ☺

❑ Igor and Ilfak for outstanding IDA’s support

❑ @AirbusSecLab for the review and feedback

❑ Darrell Hut from NVIDIA for disclosure process support and help

❑ Rodrigo Branco (bsdaemon) from Intel for feedback

76

Thank you
Q&A

