GSEC HITB Singapore 2019

<
>

Bypassing a Hardware-Based
Trusted Boot Through x86
CPU Microcode Downgrade

e

Alexander Ermolov
@flothrone

https://twitter.com/flothrone

#WhoAmI

* Formerteam member at Digital Security and Embedi

* |Intel ME

— Intel AMT. Stealth Breakthrough

Intel Boot Guard

— Safequarding rootkits: Intel Boot Guard

— Bypassing Intel Boot Guard

UEFI BIOS

— UEFI BIOS holes: So Much Magic, Don’t Come Inside
- NUClear explotion

https://twitter.com/dsecru
https://twitter.com/_embedi_
https://embedi.org/resources/what-you-need-to-know-about-the-intel-amt-vulnerability/
https://github.com/flothrone/bootguard
https://embedi.org/blog/bypassing-intel-boot-guard/
https://embedi.org/blog/uefi-bios-holes-so-much-magic-dont-come-inside/
https://embedi.org/blog/nuclear-explotion/

#Agenda

CPU microcode basics

Downgrading microcode

Discovering impact

Mitigations & takeaways

CPU microcode basics

_—

Inside Intel CPU

= Processor cores
- BSP (Bootstrap Processor)
— APs (Application Processors)

= Graphics core

* IMC (Integrated Memory
Controller)

* L3 cache
= 1/O logic

Tr[ﬁii‘*i' : Sre \ Memory

'rn 'l.llL - '] = Lal b o — uLullu
i ' : . Heluding
N 3;,.; ‘ b M ok (RS B Dieolaye

Inside Intel CPU

Each core has its own:

Control (execution) unit to
decode instructions

System
memory

ALU to perform arithmetic,
load/store, ... actions

Control
Unit

Control
Store

Register
file

Register file

L1 and L2 cache

L1 data
cache

Microcode

Control Unit has Microcode ROM that contains the CPU microcode - a program
written in a hardware-level instructions to implement a higher-level instructions

For example, MOVS instruction implementation:

ecx, ecx
end

loop:
tmpo, [esi]
[edi], tmpo
loop
end:

ROM

Control
Store

Control
Unit

Microcode update

Microcode can have bugs, so it should
be updatable

A) u Se,.v

~
HasweH, Broadwe|| CgUTsSX

The updated microcode has to be
loaded into Control Store upon each
CPU power on Q o ek Hachma

Senior >
or Editor PCWorid

Size Version Checksum Type

200020 7ah 01080 g FIT Header

OR000200F FD72400h 2001 7C00h 2100h Microcode CPUID: ORQ90GEAh, Revision: ©Q002096h, Date: ©2.05.2018

3 D200D0OF FDEB20ON 22018000h 010ah Microcode CPUID: ©20996EBh, Revision: ©G00RES8Eh, Date: 24.03.2018

O2000200F FDWO2C0h 2201 7500h 9100h Microcode CPUID: 20Q996ECh, Revision: €00020384h, Date: 19.02.2018

5 O2000200F FF18200h S0008200Nh 2102h BIOS ACM LocalOffset: 00020a18h, EntryPoint: &20838D1h, ACM SUN: &200h, Date: ©9.92.2017

6 O0002200F FFCDIS2h 0000000h 010N x2 BootGuard Key Manifest

7 O2000200F FFCCCo0h 22002200h ©10ah o BootGuard Boot Policy

Firmware Interface Table (FIT)

intel inage [=ape
Descriptor region Reglion Descriptor
GhE region Reglon Ghé
ME reglon Reglon ME
8105 reglon Region BIOS
FALSTASC - AF 1D-41 SD-BDCS - DAlDOD 2 ThAIC . Vo lume
FAL9745C-AF 1D-4ESD-BOCS-DACDEOZTBAEC "V W volume
Padding Padding
45105203 -DR24-3D2A-A2F0-ECoX 2305916 X volume
VvAFDD3I9F 11907 - 4581 -A730-CESA27E11548 cunas volume
Pad-file File
BS2282EE-9B66-4489-BICF -TESMBFT7S7C] (File
Pad-flle
Microcode
Pad-file
BiosA

ow BS22R26F-0B66-44B9-BICF-TESOMOF TR7CY

46 49 S4 SF 20 20 20 07 00 00 00 0
o4 D 2 00 00 00 00 00 00 90 90 21
. » F 0O 00 0O D0 D0 00 00 0 0 M
145405FA-1AL2 4875 -B637 - BB3CCETFOFQ7 b Sl 'q - PO MMM

voluse free space

C1CRFS11-A091-4F54-974F-D9AR217XE33 p SEC o < 00 00 00 00 o0 00 0 0 M

MMM M
(LU 00 &0 00 0 &80)

Firmware Interface Table (FIT)

A ————— = ——

* Isarequired element for Intel 64 architecture since introduction of
Boot Guard technology

= Can point to microcode update (MCU) binaries

* CPU can load microcode updates from FIT prior to execution of BIOS

10

};

Microcode Update binary main header

S——— = ——

MICROCODE_UPDATE_HEADER {
header_version;
update _revision;
date;
processor_signature;
checksum;
loader_revision;
processor_flags;
data_size;
total size;
reserved[0x0C];

-~
-
3
2
S
:
5 5
~
—

OO)
0 W0 @
o000

mw o C
™~ O G
L Y

D 1) © C

I(\

N w0 O

s PO OO0 000
O
‘l W Wwomo .

'l] 1) ©

»
S 1) O
n 0 M™Mg Lg
)M W M

O v w0

-

11

Microcode Update binary extended header

MICROCODE_UPDATE_EXTENDED_HEADER {
module type;
module subtype;
header_size;
header_version;
update_revision;
unknown[2];
date;
update_size;
svn;
processor_signature;
unknown2 [@x0E] ;
update_hash[0x20];
rsa_mod[0x100];
rsa_exp;
signature[0x100];

W M O «

) L) M
W

D)o 9

)
b
-.

)

R

)
o
\F
-
-
-

12

Microcode Update binary data

A —————

= — ———— =

* The main part in MCU binary is Data (encrypted, the decryption key is
hardcoded into CPU)

» Hash of RSA public key to authenticate the MCU is also hardcoded
into CPU

* So no one knows exactly what Microcode is capable of

13

Known facts about Microcode

e ———— = — = - — ————— s —

* Implements instructions

» Configures the execution logic on the line (that's how side-channels
are fixed)

* Implements some startup behavior (like FIT parsing)
* Loads MCU from FIT

= Loads and executes Intel Authenticated Code Modules (ACMs) (from
FIT or not)

14

Authenticated Code Modules (ACMs)

A —————

» Signed and sometimes encrypted Intel code modules

= Serve as a Root-of-Trust and a core of implementation for
technologies:

— Intel Boot Guard

— Intel BIOS Guard (PFAT)
— Intel Trusted Execution Technology (TXT)

15

Useful links to start digging

S = —— - == =

= Docs:
— Intel 64 Software Developer’s manual

- leaked Intel confidential documentation

= Papers:

— Security Analysis of x86 Processor Microcode by Daming D. Chen and Gail-Joon
Ahn

- Reverse Engineering x86 Processor Microcode by Benjamin Kollenda and Philipp
Koppe, Ruhr

= Tools

— UEFItool by CodeRush
- MCExtractor by platomav

16

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://www.dcddcc.com/docs/2014_paper_microcode.pdf
https://cansecwest.com/slides/2018/Reverse%20Engineering%20x86%20Processor%20Microcode%20-%20Benjamin%20Kollenda%20and%20Philipp%20Koppe,%20Ruhr-University%20Bochum.pdf
https://github.com/LongSoft/UEFITool/
https://github.com/platomav/MCExtractor

Downgrading microcode

_—

Updating Microcode in UEFI BIOS

e ———— = = = = — ————— s —

= Updates are to improve stability, performance and apply security
fixes

= Updates should be loaded each time CPU is powered on, this means
after S3 (Sleep) / S4 (Hibernation) /St (Shutdown) modes

* Far not always updates can be loaded by CPU from FIT

» Updates that requires something special (like initialized DRAM) has
to be loaded by the BIOS as early as possible from the moment
conditions are satisfied

» Updates should be loaded on each CPU core separately

18

Microcode Update loading process

— = S — - = = e 2 e

update_microcode:

rcx,
rax,
rbx,
rax,
rax,
rdx,

79h ; IA32 BIOS UPDATE TRIGGER in RCX

rax ; clear RAX

rbx ; clear RBX

MicrocodeUpdate ; Linear address of the microcode update
48h ; Offset of Update Data in the Update

rdx ; Zero RDX

trigger the microcode update

oo

check update revision:

rcx,

98bh ; IA32 BIOS SIGN_ID
; read MSR, Update Revision will be in RDX

19

Normal Boot. Step 1. CpuPei

MicrocodeAddr = FindMCUinFIT ();

(MicrocodeAddr !=) {
MicrocodeSize = ((MICROCODE_UPDATE_HEADER *) MicrocodeAddr)->TotalSize;

Status = (*PeiServices)->AllocatePages (.. , EFI_SIZE TO_PAGES (MicrocodeSize), &MicrocodeBuffer);
('EFI_ERROR (Status)) {

(*PeiServices)->CopyMem (MicrocodeBuffer, MicrocodeAddr, MicrocodeSize);

Status = (*PeiServices)->CreateHob (.. , &UcodeHob);
('EFI_ERROR (Status)) {
AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);
memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, (EFI_GUID));

UcodeHob->UcodeAddr = MicrocodeBuffer; 4

Normal Boot. Step 2. PlatformInit

S———

» Later the microcode update loader finds this HOB
» Retrieves the MCU buffer address

» Updates CPU microcode with it

21

Normal Boot. Step 3. CpuSpSmi

UcodeHob = (AMI_UCODE_HOB *) GetEfiConfigurationTable (pSystemTable, &HobListGuid);

(UcodeHob !=) {
Status = FindNextHobByGuid (&gAmiUcodeHobGuid, &UcodeHob);

(Status == EFI_SUCCESS && UcodeHob->UcodeAddr != NULL && UcodeHob->UcodeAddr != OxFFFF) {
gMicrocodeStart = UcodeHob->UcodeAddr;

(gMicrocodeStart != && ((MICROCODE_UPDATE_HEADER *) gMicrocodeStart)->HeaderVersion == 1) {
UcodeSize = ((MICROCODE_UPDATE_HEADER *) gMicrocodeStart)->TotalSize;

Status = pSmst->SmmAllocatePages (.. , EFI_SIZE TO_PAGES (UcodeSize), &SmramUcodeAddr);

('EFI_ERROR (Status)) {
memcpy (SmmUcodeAddr, gMicrocodeStart, UcodeSize);

22

Normal Boot. Step 3. CpuSpSmi

gIntUcodeVarGuid = EFI_GUID (“eda41d22-7729-5b91-b3ee-ba619921cefa”);

IntUcodeVarData.Version = 15
IntUcodeVarData.UcodeAddr = SmmUcodeAddr;
IntUcodeVarData.Unknown = 0;
IntUcodeVarData.Unknown2 = 0;

Status = pRuntimeServices->SetVariable (L"IntUcode", &gIntUcodeVarGuid,
EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE BOOTSERVICE ACCESS |
EFI_VARIABLE_ RUNTIME_ ACCESS,
(IntUcodeVarData), &IntUcodeVarData);

PX

Waking from S3. Step 1. CpuPeil

S— - —— g —=—

Status = ReadOnlyVariable2->GetVariable (.. , “IntUcode”, & gIntUcodeVarGuid, ,
&VarSize, &IntUcodeVarData);

(!EFI_ERROR (Status)) {
MicrocodeAddr = IntUcodeVarData.UcodeAddr;

Status = (*PeiServices)->CreateHob (.. , &UcodeHob);
if(!EFI_ERROR (Status)) {
AmiUcodeHobGuid = EFI_GUID (“94567C6F-F7A9-4229-1330-FE11CCAB3A11”);
memcpy (&UcodeHob->EfiHobGuidType.Name, &AmiUcodeHobGuid, (EFI_GUID));

UcodeHob->uCodeAddr = MicrocodeAddr;

24

Waking from S3. Step 2. PlatformInit

S———

» Later the microcode update loader finds this HOB
» Retrieves the MCU buffer address

» Updates CPU microcode with it

25

Microcode Downgrade

This specific allows an attacker:
— to load an old microcode update capsule into memory
- make the ‘IntUcode’ EFl variable to point to it
— perform Sleep/Wake-up cycle

The system will be booted with the attacker-provided microcode (if it was valid and
passed the integrity check, of course)

26

Microcode Downgrade

e ———— = = = = — ————— s —

= 2019 version of MCU of CPU ID ox806EA

CPUID N/A O00S06EA

PATCH ID N/A 00000036

* Downgraded to 2018 version

CPU ID N/A O00S06EA,

PATCH ID N/A 00000084

27

Discovering impact

_—

Side channel attacks

et - — - — =

= Get rid of fixes (side channel attacks)
* Most of them — extremely hard to apply in the wild

» Have never been spotted, however there’s not much of detection
tools:

— SCADET by Majid Sabbagh

* |ntroduction to software-based microarchitectural side-channel
attacks by Alexander Rumyantsev

29

https://github.com/sabbaghm/SCADET
https://gitlab.com/saruman9/micro_arch_side_channel_attacks_pres

Debug capabilities

* Unlock debug capabilities
* Getridof INTEL-SA-00073 fix (CVE-2017-5684)

= |ntel DCl Secrets by Maxim Goryachy and Mark Ermolov

30

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00073.html
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T4%20-%20Maxim%20Goryachy%20and%20Mark%20Ermalov%20-%20Intel%20DCI%20Secrets.pdf

Downgrading ACMs

* The ACM authentication is
performed by a Microcode

= QOlder Microcode versions load
older ACM (with reduced SVN)

* Downgraded ACM has exploitable
1days which makes vulnerable the
technology they support

https://twitter.com/matrosov/status/1129491430110584832

e Alex Matrosov

Intel microcode downgrade is a huge supply-
chain problem. Even after the patch problem
still exists in many platforms. Btw ACM's
downgrade is also possible (a bit more tricky
but downgrade both Microcode + ACM is a
key to success).

Great job @flothrone and the team!

Alexander Ermolov @flothrone

Our team (@ttbr0 , @undermarble and me) walks through UEFI BIOS again, as a result:
- 6 Escalation of Privileges to SMM

- microcode downgrade vulnerability, allowing to bypass hardware root-of-trusts.
Details coming soon!

31

https://twitter.com/matrosov/status/1139491430110584832

Downgrading ACMs. Intel Boot Guard

—— = = = - — ————— . —

= Not encrypted, binary diffing is applicable to find 1 days

= Executed only on startup (prior to BIOS) upon CPU is powered on and
released from the RESET state

* ACM does not verify BIOS when waking from S3 (performance
optimizations) except each 12 boot

The implementation of vendor provided trusted boot is a target here.
Plenty of techniques are already in public

32

Downgrading ACMs. Intel BIOS Guard

S S——

» Encrypted, extremely hard to find a fixed issue

* Triggered to run SPI flash operations via CPU MSRs from BIOS / OS

* Downgrade is possible if SPI flash write access is gained (at which
point further attack is unnecessary)

First bypass is already in public:

Breaking Through Another Side: Bypassing Firmware Security
Boundaries from Embedded Controller by Alex Matrsov

33

https://www.blackhat.com/us-19/briefings/schedule/index.html

Downgrading ACMs. Intel TXT

A ————— = ——

= Not encrypted, binary diffing is applicable to find a 1 days

SINIT ACM is a target

Triggered via GETSEC instruction from BIOS / OS to measure boot
chain components

Address of this ACM is specified in EBX register

Address doesn’t change from boot to boot, so downgrade is possible
just by replacing this ACM in memory!

INTEL-SA-00035

34

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00035.html

#Report and Reaction

Reported to Intel on 37 July 2018

Confirmed as a valid issue on 28 August 2018

INTEL-SA-00264 on 11 June 2019

AMI-based UEFI BIOS for Intel hardware (since ~2014)

Would like to thank Intel PSIRT and AMI for resolving this issue

35

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00264.html

#Mitigations

= Intel SGX
— does not check MCU SVN when leaving S3

* Protect'IntUcode’ EFI variable (mark as read-only and close from
runtime access)

— Could be bypassed if an attacker manages to run arbitrary code in SMM

= Make an OS to update the Microcode to the latest version

— Process could be already compromised at the moment of validating the update
version

= Supply only the updates which could be loaded from FIT

36

#Takeaways

= Supply chain problem

* The problem in a basic component compromises all technologies it
serves as a Root-of-Trust

* The full impact is yet to discover

37

Thank you

