
Hacking and Securing Next Generation iPhone and iPad Apps

SANS APPSEC SUMMIT 2011NITESH DHANJANI & SEAN PENNLINE

10 BILLION APPS DOWNLOADED

100 MILLION iPhones + 15 MILLION iPads SOLD

Focus

‣Focus on the App layer

‣Net-new attacks targeting iOS Apps

‣URLScheme handling attacks

‣UIWebView and UI Spoofing

‣Apple Push Notifications: Use and Abuse

‣A word on file system encryption and data protection

‣Clear-text network pranks, privacy leakage, and DeCloaking attacks

‣The implications of location-aware Apps

‣Take home bonus check-list :-)

Protocol Handlers: Quick Recap

Asking the
user for

permission is
a good idea

<iframe id=”lulz” src=”gtalk://justin_bieber”></iframe>

Asking for
permission before

launching an
executable or

connecting with
Justin Bieber is also

a good idea

Protocol Handlers: Quick Recap

Safari on OSX #FAIL Does not
ask user for
permission
before
launching
executables

Lots of low
hanging fruit
here :-)

Malicious
websites can
DoS
desktops
(video)http://dhanjani.com/blog/2010/05/2-years-later-droppin-malware-on-your-osx-

carpet-bomb-style-and-then-some.html

OSX Lion
N D

 A

tel: on Safari (iOS) Gets Special Treatment

<iframe src=”tel:1-408-555-5555”></iframe>

Asking the user
for permission

prior to
launching a

phone-call is a
good idea

Other URLSchemes on iOS Yank Straight into the App!

kindle://

Locating Exposed URLSchemes

‣Goto ~/Music/iTunes/Mobile Applications. Copy
the.ipa file, rename to .zip and unzip.

‣Locate Info.plist file. Open with “Property List Editor” or
convert to XML: plutil -convert xml1 Info.plist

Malicious Websites Can Force Arbitrary skype: Calls

<ifram
e src=”skype://14085555555?call”>

<iframe src=”skype://justin_bieber?call”>

IMPLICATIONS:
‣ Malicious websites can invoke arbitrary Skype calls
‣ Identity de-cloak
‣ Can happen much too quickly
‣ A forced call to Justin Bieber can be especially devastating

skype: Now Incorporated Into BeEF [video]

http://www.youtube.com/watch?v=5SVu6VdLWgs

http://www.youtube.com/watch?v=5SVu6VdLWgs
http://www.youtube.com/watch?v=5SVu6VdLWgs

Chronology

‣October 9, 2010: Reported issue to Apple

‣October 12, 2010: Response from Apple: Onus on receiving App

‣October 12, 2010: Proposed another side effect to Apple

‣October 12, 2010: Apple to research proposed side effect

‣October 13, 2010: Contacted Skype Security team to report issue.

Never heard back

‣December 20, 2010: Skype pushed out fix in Skype 3.0 for iOS

‣February 8, 2011: Apple indicates next update of iOS will have some

additional controls (no firm details available)

Open Questions

‣Should Safari interface with Apps and ask for authorization before
yanking the user into the App?

‣Should Apple be expected to kick out existing Apps when
vulnerabilities are reported?

‣What exactly is Apple’s methodology to vet if an App is secure
before?

‣Should a list of exposed URLSchemes be available to the advanced
user / enterprise administrator?

Implications Beyond skype: URLScheme App

mailto: Mail

itms-books[s]: iBooks

comgooglearth
:

Google Earth

itranslate: iTranslate

maps: Google Maps

tweetie: Tweetie

twinkle: Twinkle

twitterific: Twitterific

itms-apps: App Store

sms: SMS

boxcar: Boxcar

fb: Facebook

portscan: PortScan

twitter: Twitter

yelp: Yelp
Also See:

http://wiki.akosma.com/
IPhone_URL_Schemes

+
http://handleopenurl.com/scheme

‣Custom-developed Apps in the field:
utility_dashboard://shutdown/
device_id=34

health_record://close_case/
patient_id=993423

‣URLSchemes often used to communicate
between a suite of Apps

‣Possible venue of back-door functionality

‣Undocumented URLSchemes in many Apps

‣There is a lot of low hanging fruit in this area

Undocumented URLSchemes in Facebook.App
‣Apps in the App Store are encrypted

‣See http://dvlabs.tippingpoint.com/blog/2009/03/06/reverse-engineering-
iphone-appstore-binaries for details

‣Or use “Crackulous”
$ strings Facebook.app/Facebook|grep 'fb:'|more
...
fb://online#offline
fb://birthdays/(initWithMonth:)/(year:)
fb://place/(initWithPageId:)
fb://places/(initWithCheckinAtPlace:)/(byUser:)
fb://places/legalese/tagged/(initWithTaggedAtPlace:)/(byUser:)
fb://publish/profile/(initWithUID:)
fb://publish/post/(initWithPostId:)
fb://publish/photo/(initWithUID:)/(aid:)/(pid:)
fb://publish/mailbox/(initWithFolder:)/(tid:)
fb://upload/checkin/(showUploadMenuWithCheckinID:)
fb://upload/album/(showUploadMenuWithUID:)/(aid:)
fb://upload/actions/resume
...

Securely Implementing URLSchemes
‣Handle the event:
(BOOL)application:(UIApplication *)application
handleOpenURL:(NSURL *)url

{

// Parse url <-- Careful, do thorough input
validation

// Ask for authorization

// Perform transaction

}

‣application:handleOpenURL is deprecated as of iOS 4.2.

‣Use application:openURL:sourceApplication:annotation:
which is more secure because you get the invoker’s BundleID
(SourceApplication) and a .plist (annotation).

‣You can use this information to ascertain who is invoking you

Securely Implementing URLSchemes

‣Still, be careful of a Ricochet Attack where an external website can
abuse an intermediary app, i.e.

<iframe src=”some_other_app://you://boom”>

‣Do not allow URLScheme transactions to edit/delete user data or
change state

‣Assume that your handler as well as the associated transaction
strings are public

‣Audit 3rd party Apps before allowing them into the enterprise

UI Spoofing on the iPhone

UI Spoofing on the iPhone: Video

The real website URL,
i.e. http://dhanjani.com
scrolls out of view

In this attack, we
display a fake URL bar
to trick the user

This can easily be
deployed into phishing
kits that check for
iOS user-agent

Self-Pwnage: Twitter App for iPad. URL?
Can you spot the URL?

URL shorteners abound!

Malicious sites can check the User
Agent and spoof UI

Custom Apps using UIWebView
should display URL

Should Apple allocate screen real-
estate (example: near the clock) to
display URLs when UIWebView is

invoked?

Push Notifications

Badge

Alert

Sound

+

+

1. Create an App ID on iOS Provisioning Portal
The APN trusts the
“Bundle Identifier” in the
cert to figure out the
target App

An attempt use
com.facebook.facebook
is promptly rejected as a
duplicate :-)

If you can get a cert from
Apple with a duplicate
Bundle Identifier, you could
possibly send push
notifications to another
app (but will also need the
device tokens)

2. Create an CSR to have Apple generate an APN
The private key stays on the desktop. The public key is in the CSR.
The APN cert that Apple provides back is specific to the app and tied
to the App ID

3. Create a Provisioning Profile to deploy your App
into a test iOS device with push notifications
enabled for the App ID you selected

4. Export the APN certificate to the server side
You can choose to export the certificate to .pem format. This
certificate can then be used on the server side of your app
infrastructure to connect to the APN and send push notifications to
targeted devices

5. Code iOS applications to register for and
respond to notifications
Register the Device with APN:

[[UIApplication sharedApplication]
registerForRemoteNotificationTypes:(UIRemoteNotificationTypeBadge)];

Implement the delegate:

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)devToken
{
 const void *devTokenBytes = [devToken bytes];
 self.registered = YES;
 [self sendProviderDeviceToken:devTokenBytes]; // custom method
}

NOT the same as UDID (specific to hardware).
Device Token is specific to the OS instance.

6. Implement provider communication

What Could Possibly Go Wrong?
‣Do NOT send company confidential data through the APN
‣Yes, it is TLS encrypted
‣But Apple can see it
‣And even if you trust Apple, there might be legal ramifications

‣Push delivery is not guaranteed so don’t
depend on it for critical notifications.

‣Do not allow the push notification handler to modify
user data. The application should not delete data as a result of
the application launching in response to a new notification

‣Validate outgoing connections to the APN. The root
Certificate Authority for Apple’s certificate is Entrust

‣Be careful with unsafe API. Be careful with memory
management and perform strict bounds checking (example:
memcpy)

What Could Possibly Go Wrong?

‣Do not store your SSL certificate and list of deviceTokens in your
web-root.

What Could Possibly Go Wrong?

APNS.host='gateway.push.apple.com'
APNS.pem ='/path/to/pwn3d/pem/file'
APNS.pass=''
APNS.port=2195

stolen_dtokens.each do |dtoken|
 APNS.send_notification
(dtoken,‘pwn3d’)
end

What Could Possibly Go Wrong?

A Word About File Encryption / Data Protection

‣Every file is individually protected

‣You can also tie the user’s passcode to the encryption mechanism

‣Filesystem: Use NSDataWritingFileProtectionComplete

‣KeyChain: Use kSecAttrAccessibleWhenUnlocked or
kSecAttrAccessibleAfterFirstUnlock

‣iOS takes a screenshots of the App when the user presses the
home button to animate transition

‣It is recommended that the App set window.hidden to YES in
the DidEnterBackground delegate

You don’t want your private data exposed in screenshots;
Specifically the fact that you watch Justin Bieber music videos

A Word About File Encryption / Data Protection

“Upside Down Ternet” Treatment

‣Take your Linux box to a Starbucks and
broadcast a “FREE WIFI” SSID with the
“Upside Down Ternet” NAT setup
[http://www.ex-parrot.com/pete/upside-
down-ternet.html]

‣iPhone and iPad users will see images
“upside down” as they browse or even use
Apps

‣Watch them hilariously try to rotate their
iPhones and iPads as you sip your latte like a
boss

Intercepting HTTP(S) Traffic

Using an HTTP proxy such as Burp will cause Safari on iOS to warn
you of the (Common Name) mis-match in the SSL cert used by Burp

Apps such as Twitter will out-right fail. This is a good thing.

Intercepting HTTP(S) Traffic

Just install the self-signed Burp/PortSwigger CA.

Intercepting HTTP(S) Traffic

Code to Bypass Certificate Mismatch Check
- (BOOL)connection:(NSURLConnection *)connection
canAuthenticateAgainstProtectionSpace:(NSURLProtectionSpace *)
protectionSpace

{
 return [protectionSpace.authenticationMethod
isEqualToString:NSURLAuthenticationMethodServerTrust];
}

- (void)connection:(NSURLConnection *)connection
didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge
*)challenge

{
[challenge.sender useCredential:[NSURLCredential
credentialForTrust:challenge.protectionSpace.serverTrust]
forAuthenticationChallenge:challenge];
}

Obviously a bad idea. So, yeah, don’t do this.

[Can also call Private API setAllowsAnyHTTPSCertificate:forHost: to bypass this check]

Your Age is Showing. Thank Pandora

Your UDID is Showing. Thank OpenTable

Unique Device ID

3rd party analytics
companies are sent
your age, zip,
location, UDID,
etc. This can be
easily pieced
together

A lot of these
connections are in
clear-text

Make sure to test custom apps in your enterprise for such
leakages

MiTM Forced De-cloaking
‣Take your Linux box to a Starbucks, again

‣Get folks to associate to your AP

‣MiTM their traffic and inject the following
 <iframe src=”fb://profile/”></iframe>

‣The user will be yanked into the Facebook App onto his or her own profile

‣You have now de-cloaked their identity and scraped their Facebook wall.
Congratulations!

Recommendations: Network Channel

‣Use SSL! Seriously. It’s 2011

‣Audit your apps and 3rd party apps you buy

‣Check to see if the Apps you most depend upon are not bypassing
SSL exceptions

‣Try not to leak data to 3rd party analytics services

‣Check to see if any of the apps you use in the enterprise be abused
to de-cloak identities

Location Services

‣Primarily an experience
among friends
‣Loopt: ~3million users
‣Foursquare: 6million users
‣Gowalla: ~1million users
‣Facebook Places:
~30-50million

‣Originally not much
incentive to “game” the
system (a good thing)

Gaming the System

Metasploit module to implement
foursquare spoofing (only need valid
venueid)

FakeLocation available on
jailbroken phones through Cydia

Manually set your location and pick
apps to fake

Globetrotting

3.9 miles in
1 minute
Not bad

~3974 miles in
7 minutes

Probably not!

What Could Go Wrong?

‣Businesses and enterprises are moving to use them for advertising,
promotions, and productivity

‣Business-focused component:

‣Where is this going:

‣Mobile coupons/discounts

‣Personnel Tracking

‣Mileage accrual

‣Enterprise security teams must be aware that certain applications
are aware of the employee locations

Recommendations: Location Services
‣Many iOS apps currently check this on the device itself:
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation

 NSDate* newEventDate = newLocation.timestamp;
 NSDate* oldEventDate = oldLocation.timestamp;

‣You’re still trusting the client!

‣Your sever-side application must be responsible for validating the check-in

‣Two factor check-ins for sensitive operations (e.g., discounts for physical
check-ins)

‣Cell tower triangulation

‣Any apps in use within the enterprise could be exposing location data to external
parties; consider whitelisting apps that are able to access Location data

Take Aways
‣The iOS platform introduces new ways of approaching mobile app development

‣Follow precautions and best practices before accepting 3rd party Apps into the
enterprise or coding your own

‣Don’t forget the traditional lessons

‣Apply some of the thought processes presented in this discussion into your assessment
methodology:

‣URLSchemes

‣(clear-text) Network channels

‣UI Spoofing

‣Push messaging

‣Data protection

‣Location awareness

‣Leveraging individuals with talent in the field of iOS to test your enterprise applications
and hook into the SDLC

?

Appendix: iOS Application Assessment Checklist
 Input and Output validate every dynamic input (user input, external HTML or database feed, URLs)

 Audit traditional unsafe methods that deal with memory (memcpy, strcpy, etc)

 Watch out for format string vulnerabilities

 grep for password strings and hard coded credentials / secrets

 grep for NSURL, CFStream, NSStream to locate network connections

 grep for SQL strings and SQLLite queries

 Look for setAllowsAnyHTTPSCertificate and
didReceiveAuthenticationChallenge to see if certificate exceptions are being bypassed

 Locate calls to NSLog to see what data is being logged

 Check implementation of URLSchemes in handleOpenURL

 Ensure information is being secured in the Keychain (kSecAttrAccessibleWhenUnlocked
or kSecAttrAccessibleAfterFirstUnlock attributes when calling SecItemAdd or
SecItemUpdate) and the file system (NSDataWritingFileProtectionComplete).

 Make sure NSUserDefaults is not being used to store critical data

 Take a look at the server side code and web-root, including implementations and payloads sent to the
APN. Make sure APN certs are protected by a pass-phrase

Pay attention to UIWebView implementations: Where is the HTLM being rendered from? Is the
URL always visible?

 Make sure Copy-Paste functionality is disabled in sensitive fields (PHI, PII)

 Make sure UI fields that display critical data hide themselves in applicationWillTerminate
and applicationWillEnterBackground to prevent screenshot caching

 Run the App and monitor data (Jailbreak/SSH or a tool such as PhoneView)

 Decrypt the binary and run ‘strings’

 Install Burp CA and monitor + fuzz HTTP/HTTPS traffic

 Watch out for leakage of UDID and/or PII/PHI to 3rd party analytics services or in clear-text

 Make sure the server side architecture does not rely upon the iOS device to truthfully state its
location (since this data can be intercepted and modified)

Appendix: iOS Application Assessment Checklist

