
Rootkit	
 for	
 iPhone
&

Way	
 to	
 Launch	
 Real	
 Attack
Xu Hao & Chen Xiaobo

Outline

iOS Security Overview

iOS Rootkit

Attack via Saffron

Work Todo

General	
 Protection

Sandboxing (Seatbelt)

iOS xnu sandbox is kext and based on the
TrustBSD policy framework

Managed each process with sandbox profiles

Sandbox profiles are compiled and store in
KernelCache (iOS)

Need decompile to the human readable text format

General	
 Protection

None-execute page protection

XN (execute never) bit has been added in ARMv6

Stack and heap are not executable

General	
 Protection

ASLR

First introduce by Antid0te project for JB iPhone

Apple officially support ASLR on iOS 4.3

Prevent user-land ROP exploitation like JBM 2.0
(Star)

Also increase difficultly for the Jailbreaking

Kernel	
 Level	
 Protection

Kernel memory not allow to RW by userland
process

No /dev/mem & /dev/kmem

No ASLR in iOS kernel (yet)

Code sign are implement in kernel level

Kernel	
 Level	
 Protection

Code Signing

All the binaries/libraries need to be signed in
order to run on the iOS

Kernel will check a valid
LC_CODE_SIGNATURE segment before calling
execve()

Kernel	
 Level	
 Protection

Code Signing

pmapping unsigned page with X or validated
page has writeable mapping will be rejected.

See vm_fault_enter() implement in XNU source
code.

cs_enforcement_disable variable

Kernel	
 Level	
 Protection

AMFI (Apple Mobile File Integrity) kext

vnode_check_signature() calling
AMFIIsCodeDirectoryInTrustCache() to check a
program whether has valid code directory.

In older iOS you can disable it by sysctl
command. But not allowed since iOS 4.2

Same does it with mac_proc_enforce.

Kernel	
 level	
 protection

vnode_check_signature() details in AMFI

Outline

iOS Security Overview

iOS Rootkit

Attack via Saffron

Work Todo

iOS	
 Kernel	
 Module

Implement iOS kernel module

Coding problem

Most basic code - IOLog

Define a lot of stuff yourself - sysent[], ...

Reference XNU source - some definitions maybe different

Link the mach-o file yourself

Need kernel_cache file of target device

Analyze it to get symbol address for your kernel module

iOS	
 Kernel	
 Module

Inject kernel module

Introduce data & white by comex

https://github.com/comex

Runtime load/unload iOS kernel module

https://github.com/comex
https://github.com/comex

iOS	
 Kernel	
 Module

Inject kernel module

We must have access to kernel memory

/dev/(k)mem have been removed

task_for_pid() could be used to manipulating
kernel memory in OSX

See nemo uninformed paper

iOS	
 Kernel	
 Module

Inject kernel module

task_for_pid() trick are not working on iOS since
it checks caller pid

Kernel mach_port_t port are closed if pid = 0!

iOS	
 Kernel	
 Module

Inject kernel module

Have to patch kernel memory to re-enable
task_for_pid function.

Calling patched task_for_pid() with pid=0 to get
kernel_task port

Calling vm_write/vm_read/vm_allocate to
manipulate iOS kernel memory

iOS	
 Kernel	
 Module

Loading kernel module

Mach-o loader - allocate kernel memory and copy module data

Overwrite syscall handler - make it point to our module’s
initialization function

Trigger the syscall to execute it

iOS	
 Kernel	
 Module

Unloading kernel module

Make syscall handler points to module’s
destructor function (if defined)

Trigger it by same way

Remove it from kernel section list

Deallocate kernel memory

iOS	
 Kernel	
 Module

Inject kernel module

Condition to run the loader

We need to patch kernel to disable code signing/
sandboxing

iOS	
 Kernel	
 Module

Kernel patch details

cs_enforcement_disable to be true

Force AMFIIsCodeDirectoryInTrustCache() return
true

path vm_map_enter(protect) allow create RWX
pages

hook/patch sb_evaluate to replace sandbox profile

Debug	
 iOS	
 Kernel

Kernel Debugging is hard

KDP via UART

SerialKDPProxy to perform proxy between serial and UDP

Need serial communicate between USB and Dock connector

Make a cable by your own

Using redsn0w to set special boot-args

-a “-v debug=0x09”

Seeing “Targeting iOS kernel” for more details

Debug	
 iOS	
 Kernel

Patching _debug_enabled to be true

Allow non-ldid'd binaries

Also it will be used in some KDP feature

Rootkit	
 Function

Implement function in kernel level

Advantage

No user process

Highest privilege, fully access to hardware

No plist file in LaunchDaemon ^^

Disadvantage

Cost you huge time to reverse and debug iOS kernel

Lack of Symbols

Rootkit	
 Function

Try out what we could do in kernel level

I. Location information ?

II. Key logger ?

III. Audio sniffer ?

In this topic we will introduce I. and part of II.
(since research of II. is not totally finished)

Location	
 Information

How iOS get your location

Combine 3 methods to determine your location

Wi-Fi - fast, need database, also need Wi-Fi nearby

GPS - slow, may cost long time to find satellites

Cellular - fast, need database

This works at most time

Our goal - get this info in our rootkit

Location	
 Information

For Apps to get location info

CoreLocation.framework

Set delegate to get latitude & longitude

Location	
 Information

How CoreLocation works

Send/Receive event from com.apple.locationd service

 /usr/libexec/locationd

Location service for iOS

Combine all three methods to determine location

Important directory - /var/root/Library/Caches/locationd

Some sqlite databases located in it

cache.db - download from apple which contains location datas of cell
tower and wifi

Location	
 Information

How locationd determines location via cellular

Get all visible cell towers information

Search the locations of those towers in cache.db

Perform some algorithm according to signal strength

Location	
 Information

How to get cell info

locationd call CoreTelephony to retrieve cell
information

Easy to implement in user level

Get MCC/MNC/LAC/CI value

Location	
 Information

Code Sample

Location	
 Information

Go deeper

_CT* functions <-- ipc msg --> com.apple.commcenter

CommCenter is responsible for communicating with
baseband

Depend on libATCommandStudioDynamic.dylib

ATCSFileDescriptorIPCDriverPrivate::readWorkerMainLoop

File handle is opened by ASMInterfacePrivate::open

name: /dev/mux.spi-baseband

Location	
 Information
Finally, go inside kernel

Need to locate read handler of “/dev/mux.spi-baseband”

Try to find struct cdevsw

Not so hard with key strings like “mux.” and references of cdevsw_add

Location	
 Information

Steps to get cell info in kernel

Search in global cdevsw(exported) array to find device for
mux.spi-baseband

Overwrite d_read function handler with our own handler

Sniffer all stream data

copyin() result data from struct uio

Care about data begin with “CELLINFO” and end with “\r\n”

Example - “CELLINFO: 2,472, 0,8028,08ee,056”

472 - MCC / 0x8028 - LAC / 0x08ee - CI

Location	
 Information

After getting cell tower info

Searching the latitude and longitude in cache.db
by MCC/LAC/CI value

We could only get cell tower location around the
iPhone

Disadvantage of implement this in kernel :(

Key	
 Logger

iPhone use multitouch screen

The input method framework translate user touch event
to key strike

Idea to implement kernel level key logger

Get user touch event in kernel

Position and state

Get screen snapshot in kernel

This topic only include touch event discussion

Touch	
 Event

Apps could handle touch type UIEvents

UIEventTypeTouches

down -> moved -> up

Low level - IOHIDEvent

Defines all HID (human interface device) event

Keyboard / Button / Compass / Accelerometer /
Digitizer (for touch) / ...

Touch	
 Event

Sniffer IOHIDEvent in user level

Call IOHIDEventSystemOpen to open event system
and set handle function

Be able to sniffer all HID events

IOHID	
 System

IOHID System

IOHIDFamily.kext

Provides an abstract interface of human interface device

Device driver call dispatch event to enqueue an IOHIDEvent

User-land app access the queue (IODataQueue) to get event

Open source for OS X version

http://opensource.apple.com/source/IOHIDFamily/

http://opensource.apple.com/source/IOHIDFamily/
http://opensource.apple.com/source/IOHIDFamily/

IOHID	
 System

Look inside kernel

HID driver should inherit from IOHIDEventService

Some examples

com.apple.driver.AppleM68Buttons

Device handle button interrupt - volume up/down, home

com.apple.driver.AppleEmbeddedCompass

Device handle compass interrupt

IOHID	
 Event	
 Hook

Hook all kernel IOHIDEvent

Need to locate functions

IOHIDEventService::dispatchEvent or

IOHIDEventServiceQueue::enqueueEvent

R1 is pointer of IOHIDEvent

struct IOHIDEventData *pdata=*(void**)((uint8_t*)r1+8);

The definition of IOHIDEventData could be found in
IOHIDFamily open source

Be able to get compass/button/... events

IOHID	
 Event	
 Hook

Tips for finding IOHID functions by comparing
with OS X version source

kernel_debug - debug ID

Touch	
 Event

After testing

Weird that no touch event is enqueued

iPhone multitouch device driver

com.apple.driver.AppleMultitouchSPI

Not inherit from IOHIDEventService

Guess it has its own data queue

Touch	
 Event

Reverse work - log is a good habit ^^

From kernel view

Handle interrupt occurred (touched) -> read frame data
from device -> enqueue the frame data into its own
IODataQueue

From user-land view

Register notification port and map the IODataQueue into
user space -> wait for notify and IODataQueueDequeue to
get the frame data -> convert raw frame data to IOHIDEvent

Touch	
 Event

Snapshots from IDA

Touch	
 Event

More user-land stuff

MultitouchSupport.framework

Responsible for getting raw frame data from kernel
driver

AppleMultitouchSPI.kext/PlugIns/
MultitouchHID.plugin/MultitouchHID

HID Manager to convert raw frame data to touch
IOHIDEvent and deliver it

Touch	
 Event

Call Stack

Touch	
 Event

So in kernel level we could only get raw frame
data of touch device

It’s not hard to get those data by performing
inline hook of “readOneFrameData” function

Raw frame data example

Touch	
 Event

Find raw frame data struct definition
https://github.com/planetbeing/iphonelinux/blob/master/openiboot/includes/multitouch.h

Be able to get touch information

https://github.com/planetbeing/iphonelinux/blob/master/openiboot/includes/multitouch.h
https://github.com/planetbeing/iphonelinux/blob/master/openiboot/includes/multitouch.h

Key	
 Logger

Get position on screen when finger up

FingerData *finger = (FingerData *)((uint8_t*)header + header-
>headerlen);

When finger->velx == 0 && finger->vely == 0

Position x = finger->x/sensorWidth

Position y = finger->y/sensorHeight

Sensor for iPhone 4

Sensor surface height -> 7500

Sensor surface width -> 5000

Key	
 Logger

Now we could get position of screen when
user finger left

If we could get the image of screen, we are able
to get key strike info

Still lot of work to do to implement a workable
kernel level key logger

Outline

iOS Security Overview

iOS Rootkit

Attack via Saffron

Work Todo

Attack	
 via	
 Saffron

User-land Exploit - CVE-2011-0226

Integer signedness error in psaux/t1decode.c in
FreeType before 2.4.6

Attackers are able to execute arbitrary code via a
crafted Type 1 font in a PDF document

Bug exists in CoreGraphics.framework/
libCGFreetype.dylib

Attack	
 via	
 Saffron

CVE-2011-0226 Detail

t1_decoder_parse_charstrings function

When decode op_callothersubr

arg_cnt is declared as FT_Int and is read from “top”

When arg_cnt is a minus number

Bypass the check

Increase “top” to stack address outside of its bounds - enable
attacker to read/write stack

Attack	
 via	
 Saffron

Bug Code Snapshot

Attack	
 via	
 Saffron

Analyze JBM3 Sample PDF

Extract the font file

The sample contains only one stream

Type 1 Font Format - Chapter 6 CharStrings Dictionary

Explain charstring command

callothersubr/pop/return

ROP code is built by charstring opcode at runtime

T1_DecoderRec structure is used to decode charstring

Attack	
 via	
 Saffron

T1_DecoderRec structure

This structure is stored in stack

Definition could be found at psaux.h

decoder->stack

Used to store operand or result of charstring command

decoder->buildchar

Defined by /BuildCharArray command in font file

Attack	
 via	
 Saffron

How JBM3 Construct ROP Payload

Use charstring command to write data to
decoder->buildchar

<val> <idx> 2 24 callothersubr

decoder->buildchar[idx] = top[0];

op_callsubr

Contains several subroutines

Attack	
 via	
 Saffron

How JBM3 Bypass ASLR

This bug allow attacker to read/write stack

Remember decoder is stored in stack

decoder->parse_callback points to T1_Parse_Glyph
function address

Get this callback function address -> get shift offset
of libCGFreetype module

Attack	
 via	
 Saffron

Bypass ASLR Detail

Make arg_cnt = (0xfea50000 >> 16)

top = top + 0x15b

op_setcurrentpoint

y = top[1]; // y = T1_Parse_Glyph address

Load top[0] = original T1_Parse_Glyph address (with no ASLR
shift)

<arg1> <arg2> 2 21 callothersubr pop

top[0] -= top[1]; // get shift offset

Attack	
 via	
 Saffron

Finally Exploit It

After finish constructing ROP payload

Overwrite decoder->parse_callback

op_seac

t1_decoder_parse_glyph

decoder->parse_callback

ROP start

Attack	
 via	
 Saffron

JBM3 ROP Payload

Then drop file and execute it

buffer = malloc(0x8670)

uncompress(buffer, &size, subroutine 0 data, 0x2d49)

A zlib compressed mach-o binary

open(“/tmp/locutus”)

write(file, buffer, 0x8670)

close

posix_spawn - execute locutus

Attack	
 via	
 Saffron

IOMobileFrameBuffer Kernel exploit

IOMobileFrameBuffer kext can be invoked by
MobileSafari via IOMobileFramebufferUserClient

IOConnectCallScalarMethod

HotPluginNotify 0x15

IOConnectCallStructMethod

SwapEnd 0x05

Attack	
 via	
 Saffron

IOMobileFramebufferUserClient Kernel exploit

Result the transaction pointer inside of
IOMobileFrameBuffer::swap_submit changed

Kernel ROP!

install syscall 0 which change the calling process
creds to r00t!

/tmp/locutus

Attack	
 via	
 Saffron

Modify JBM3

JBM3 is also dangerous, attackers may modify it
to spread iOS malware

Replace locutus seems to be a good choice

Locutus size is fixed

0x2d49 (compressed size)

We can only replace it with a smaller binary

Attack	
 via	
 Saffron
Replace Locutus

Locutus binary is located in subroutine 0 of the font file

Extract font file -> replace subroutine 0 data -> compress again (make
sure the size is the same) -> replace font stream in PDF

We also need to modify one value - 0x2d49

This value is used when calling uncompress

Search “ff 10 00 2d 49”

replace with new mach-o file compressed size

In new locutus

syscall(0) is a backdoor to get root privilege

Attack	
 via	
 Saffron

Put everything together

Replace locutus to our rootkit injector

Rootkit injector calling syscall(0) to get root

Invoke white_loader function to load our rootkit
module into kernel memory

Attack	
 via	
 Saffron

Demo

iOS	
 4.3.4(5)

Fixed JBM 3.0 vulns

Fixed ft_var_readpacketpoints() BOF

another FreeType issue which fixed last year

Fixed ndrv_setspec() untether kernel vulns

Fixed the Incomplete codesign exploit
technique

Deploy	
 for	
 iOS	
 5

You can also deploy rootkit via limra1n vulns on
iOS 5 for A4 device

Need physical access to the iOS device

Exploiting low-level bootrom vulns to patch
signature checks

Sending pwned iBSS/iBEC and waiting deivce
enter to recovery mode

Sending pwned kernel (with rootkit)

Outline

iOS Security Overview

iOS Rootkit

Attack via Saffron

Work Todo

Work	
 Todo

Finish rootkit key logger function

Research on audio stream sniffer in kernel

Target iPhone 4S & iOS 5

Kernel vulnerability is also attractive

Thank	
 you	
 Steve	
 for	
 bringing	
 us	
 iPhone

