
JAILBREAK DREAM TEAM
Nikias Bassen, Cyril, Joshua Hill & David Wang

Hack in the Box - Amsterdam 2012

© 2012 Chronic-Dev, LLC

Friday, May 25, 2012



JAILBREAK DREAM TEAM
Nikias Bassen, Cyril, Joshua Hill & David Wang

Hack in the Box - Amsterdam 2012

© 2012 Chronic-Dev, LLC

Friday, May 25, 2012



PART II - A5 CORONA
What are the differences with the A4, and how we 

managed to jailbreak it

Friday, May 25, 2012



Part I summary

• Corona A4 relies on a tethered jailbreak to 
inject the untethering payload to the fs

• Userland ROP code is started at boot time 
with a format string bug in the IPSEC 
racoon service

• ASLR is disabled at bootup for racoon with 
a debugging property of the launchd 
configuration: DisableASLR

Friday, May 25, 2012



Part I summary (2)

• The hfs kernel exploit is done as the root 
user and out of the racoon sandbox (and 
this is required)

• Sandbox is skipped by using a modifed 
version of the racoon binary with the 
seatbelt profile patched in the entitlements 
blob of the Mach-O

Friday, May 25, 2012



Now A5

• There is no tethered jailbreak on A5 
because there is currently no public boot 
level exploits for it

• As a result, we can’t decrypt the kernel 
(AES keys are disabled when iOS is booted)

• This makes it harder to exploit the kernel 
and do the actual jailbreak

Friday, May 25, 2012



Now A5 (2)

• Hopefully, we have found a way to use 
racoon as an injection vector

• But that implies that we need to get out of 
the racoon sandbox to remount the root 
filesystem read / write (which is read only 
on iOS).

Friday, May 25, 2012



INJECTING THE 
EXPLOITS

How we managed to get Corona running on A5

Friday, May 25, 2012



The Problem

• Need a new injection vector to gain initial 
code execution

• Corona files need to be copied onto root 
filesystem to launch on boot

• Root filesystem is read-only

Friday, May 25, 2012



More Problems

• Address Space Layout Randomization (ASLR)

• Application Sandbox Profile

Friday, May 25, 2012



What do we need?

• A way to inject commands into the current 
racoon config

• A way to bypass ASLR to generate our 
ROP payload

Friday, May 25, 2012



The Exploit

• VPN Settings isn’t validated by configd 
before being passed to racoon

• Allows us to inject commands into racoon’s 
configuration file through VPN settings

• VPN settings can be modified through 
MobileBackup2

Friday, May 25, 2012



Profile Injection
/private/var/prefrences/SystemConfiguration/prefrences.plist

Friday, May 25, 2012



Payload Inclusion

• Injection limited to 255 characters

• We inject “include” command to load the 
config from another directory

Friday, May 25, 2012



Sandbox Bypass

• Sandbox profile allows racoon to read from 
com.apple.ipsec.plist in preferences directory

• MobileBackup2 allows restores to preferences 
directories

Friday, May 25, 2012



Payload Injection

Friday, May 25, 2012



Summary
• Command injection into 

racoon config through 
configd

• Racoon allows reading 
from preferences 
directory

• MobileBackup2 allows 
writing to preferences 
directory

Friday, May 25, 2012



Injecting the payload

• Joshua to complete

Friday, May 25, 2012



BREAKING OUT OF 
THE XNU SANDBOX

How Corona defeats Seatbelt to attack the kernel

Friday, May 25, 2012



• What is the sandbox?

• Why do we need to worry about the 
sandbox?

• What vulnerabilities did we use to break 
out of the sandbox?

• Details of the ROP chain we used.

Friday, May 25, 2012



What is the sandbox?

• Code-named Seatbelt.

• Based off the TrustedBSD Mandatory 
Access Control (MAC) framework.

• MAC framework is how Seatbelt enforces 
the sandbox policies.

Friday, May 25, 2012



MAC Framework
• How? By hooking into everything when 

CONFIG_MACF is enabled at compile-time.

Friday, May 25, 2012



MAC Framework

• Make any relevant kernel interface call 
check before performing an action:

• audit, bpfdesc, cred, file, ifnet, inpcb, iokit, 
lctx, mount, pipe, posixsem, proc, socket, 
system, sysvmsq, vnode

• Any action has to be authorized with all 
registered policies. Policy has a function for 
every hook.

Friday, May 25, 2012



Sandbox.kext

• A registered MAC policy.

• Processes can opt-in through sandbox API 
calls, entitlements, or be forced.

• Profiles managed by sandboxd, which the 
kernel communicates with.

• Profiles are like compiled TinyScheme 
programs

Friday, May 25, 2012



Friday, May 25, 2012



Racoon’s Sandbox

• Why do we care? We’re root!

• Then, how did we manage it for the 
untether?

Friday, May 25, 2012



Racoon’s Sandbox

• Why do we care? We’re root!

• Then, how did we manage it for the 
untether?

Friday, May 25, 2012



Done?

• Need a way to get a patched copy of 
racoon onto the device.

• Need a way to convince the iPhone to run 
that copy with our exploit config.

Friday, May 25, 2012



Done?

Friday, May 25, 2012



What can we do?

• We can convince the default version of 
racoon to run with an exploit config that 
we restore using MobileBackup.

• We only need to get out of the sandbox 
while executing as racoon.

Friday, May 25, 2012



The ptrace hole

• Debugging normally requires task_for_pid 
and ptrace; ptrace is actually unrestricted.

• What can we do with ptrace? Possibly 
control an unsandboxed process!

Friday, May 25, 2012



Friday, May 25, 2012



Friday, May 25, 2012



Friday, May 25, 2012



The ptrace hole

• gdb on OS X is heavily dependent on Mach 
calls, not ptrace like BSD. So ptrace is 
unguarded, but very few things actually 
work.

• What can we do?

Friday, May 25, 2012



Friday, May 25, 2012



Limitations?
• We can only control the “first” thread.

• We can only control PC

• We can’t switch between ARM and THUMB.

Friday, May 25, 2012



How to use this for evil

• Racoon is root, so we can manipulate any 
other process, including non-sandboxed 
ones!

• We can control PC, so maybe we can use 
ROP.

• For ROP to work, we need to control 
stack at the point we change PC.

Friday, May 25, 2012



notifyd

• Almost all processes can talk to notifyd to 
use Apple’s notification system notify(3).

• Also have access to shm; we can then load 
an arbitrarily large stack and pivot to it. 

• Can get stuff onto its stack via Mach IPC.

• Can also make it block deterministically 
with our stuff on the stack.

Friday, May 25, 2012



Friday, May 25, 2012



Friday, May 25, 2012



Exploit

• Generated by a ROP generation program 
that writes a stack in the form of format 
strings.

• Has functions which are macros for 
common ROP expressions: call function 
with n args, load register from memory, 
store register to memory, etc.

Friday, May 25, 2012



Exploit

• Create non-sandboxed version of racoon and put 
it in a place we can write/chmod.

• Find notifyd PID.

• Put notifyd’s main thread on the IPC thread.

• Block notifyd with our exploit IPC message.

• Write rest of ROP stack to shm.

• Launch the exploit.

Friday, May 25, 2012



A closer look at the 
notifyd ROP stack

• The painful search for ARM gadgets.

• Wait a minute, isn’t notifyd in THUMB?

• First gadget needed: Jump to a THUMB 
location we can pick.

Friday, May 25, 2012



GADGET_HOLY

• For replies, even if the request is invalid, 
msgh_id is request.msgh_id + 100

• We happen to find a gadget that sets PC to 
precisely where reply’s msgh_id is 
(sbuf.msgh_id) thanks to Jay Freeman.

• POP can do an ARM/THUMB switch

Friday, May 25, 2012



SP Function Label Value
SP + 0x00 mach_msg_trap saved_r4 ???
SP + 0x04 mach_msg_trap saved_r5 ???
SP + 0x08 mach_msg_trap saved_r6 ???
SP + 0x0C mach_msg_trap saved_r8 ???
SP + 0x10 mach_msg ??? ???
SP + 0x14 mach_msg ??? ???
SP + 0x18 mach_msg ??? ???
SP + 0x1C mach_msg ??? ???
SP + 0x20 mach_msg ??? ???
SP + 0x24 mach_msg saved_r8 ???
SP + 0x28 mach_msg saved_r10 ???
SP + 0x2C mach_msg saved_r11 ???
SP + 0x30 mach_msg saved_r4 ???
SP + 0x34 mach_msg saved_r5 ???
SP + 0x38 mach_msg saved_r6 ???
SP + 0x3C mach_msg saved_r7 ???
SP + 0x40 mach_msg saved_lr ???
SP + 0x44 service_mach_message ??? ???
SP + 0x48 service_mach_message ??? ???
SP + 0x4C service_mach_message ??? ???
SP + 0x50 service_mach_message sbuf.msgh_bits ???
SP + 0x54 service_mach_message sbuf. msgh_size 0x24
SP + 0x58 service_mach_message sbuf. msgh_remote_port racoon’s port
SP + 0x5C service_mach_message sbuf. msgh_local_port notifyd’s port
SP + 0x60 service_mach_message sbuf. msgh_reserved 0
SP + 0x64 service_mach_message sbuf. msgh_id ADD_SP_120_POP8_10_4567
SP + 0x68 service_mach_message sbuf. NDR_record_t ???
SP + 0x6C service_mach_message sbuf. NDR_record_t ???
SP + 0x70 service_mach_message sbuf. data_0 MIG_BAD_ID
SP + 0x74 service_mach_message sbuf. data_4 ???
SP + 0x78 service_mach_message sbuf. data_8 ???
SP + 0x7C service_mach_message sbuf. data_c ???
SP + 0x80 service_mach_message sbuf. data_10 ???

Friday, May 25, 2012



SP Function Label Value
SP - 0x68 mach_msg_trap saved_r4 ???
SP - 0x64 mach_msg_trap saved_r5 ???
SP - 0x60 mach_msg_trap d8 ???
SP - 0x5C mach_msg_trap d8 ???
SP - 0x58 mach_msg d9 ???
SP - 0x54 mach_msg d9 ???
SP - 0x50 mach_msg d10 ???
SP - 0x4C mach_msg d10 ???
SP - 0x48 mach_msg d11 ???
SP - 0x44 mach_msg d11 ???
SP - 0x40 mach_msg d12 ???
SP - 0x3C mach_msg d12 ???
SP - 0x38 mach_msg d13 ???
SP - 0x34 mach_msg d13 ???
SP - 0x30 mach_msg d14 ???
SP - 0x2C mach_msg d14 ???
SP - 0x28 mach_msg d15 ???
SP - 0x24 service_mach_message d15 ???
SP - 0x20 service_mach_message r8 ???
SP - 0x1C service_mach_message sl ???
SP - 0x18 service_mach_message fp ???
SP - 0x14 service_mach_message r4 0x24
SP - 0x10 service_mach_message r5 racoon’s port
SP - 0x0C service_mach_message r6 notifyd’s port
SP - 0x08 service_mach_message r7 0
SP - 0x04 service_mach_message pc ADD_SP_120_POP8_10_4567
SP + 0x00 service_mach_message sbuf. NDR_record_t ???
SP + 0x04 service_mach_message sbuf. NDR_record_t ???
SP + 0x08 service_mach_message sbuf. data_0 MIG_BAD_ID
SP + 0x0C service_mach_message sbuf. data_4 ???
SP + 0x10 service_mach_message sbuf. data_8 ???
SP + 0x14 service_mach_message sbuf. data_c ???
SP + 0x18 service_mach_message sbuf. data_10 ???

Friday, May 25, 2012



GADGET_ADD_SP_120_POP8_10_4567

• The next gadget needs to jump across a 
significant portion of the stack from sbuf to 
rbuf, to get to more data we directly 
control

• From libicucore.A.dylib / 
uloc_toLanguageTag+0x24B2

Friday, May 25, 2012



SP Function Label Value
SP + 0x00 service_mach_message sbuf. NDR_record_t ???
SP + 0x04 service_mach_message sbuf. NDR_record_t ???
SP + 0x08 service_mach_message sbuf. data_0 MIG_BAD_ID
SP + 0x0C service_mach_message sbuf. data_4 ???
SP + 0x10 service_mach_message sbuf. data_8 ???
SP + 0x14 service_mach_message sbuf. data_c ???
SP + 0x18 service_mach_message sbuf. data_14 ???
SP + 0x1C service_mach_message sbuf. data_18 ???
SP + 0x20 service_mach_message sbuf. data_1c ???
SP + 0x24 service_mach_message sbuf. data_20 ???
SP + 0x28 service_mach_message sbuf. data_24 ???
SP + 0x2C service_mach_message sbuf. data_28 ???
SP + 0x30 service_mach_message sbuf. data_2c ???
SP + 0x34 service_mach_message sbuf. data_30 ???
SP + 0x38 service_mach_message sbuf. data_34 ???
SP + 0x3C service_mach_message sbuf. data_38 ???
SP + 0x40 service_mach_message sbuf. data_3c ???
SP + 0x44 service_mach_message sbuf. data_40 ???
SP + 0x48 service_mach_message sbuf. data_44 ???

... ... ... ...
SP + 0x60 service_mach_message sbuf.msgh_bits ???
SP + 0x64 service_mach_message sbuf. msgh_size 0x50
SP + 0x68 service_mach_message sbuf. msgh_remote_port racoon’s port
SP + 0x6C service_mach_message sbuf. msgh_local_port notifyd’s port
SP + 0x70 service_mach_message sbuf. msgh_reserved 0
SP + 0x74 service_mach_message sbuf. msgh_id ADD_SP_120_POP8_10_4567 - 100

SP + 0x78 service_mach_message sbuf. NDR_record_t ???
SP + 0x7C service_mach_message sbuf. NDR_record_t ???
SP + 0x80 service_mach_message rbuf. data_0 aShmAddress
SP + 0x84 service_mach_message rbuf. data_4 ???
SP + 0x88 service_mach_message rbuf. data_8 ???
SP + 0x8C service_mach_message rbuf. data_c ???
SP + 0x90 service_mach_message rbuf. data_10 MOV_SP_R4_POP8_10_11_4567

Friday, May 25, 2012



SP Function Label Value
SP - 0x94 service_mach_message sbuf. NDR_record_t ???
SP - 0x90 service_mach_message sbuf. NDR_record_t ???
SP - 0x8C service_mach_message sbuf. data_0 MIG_BAD_ID
SP - 0x88 service_mach_message sbuf. data_4 ???
SP - 0x84 service_mach_message sbuf. data_8 ???
SP - 0x80 service_mach_message sbuf. data_c ???
SP - 0x7C service_mach_message sbuf. data_14 ???
SP - 0x78 service_mach_message sbuf. data_18 ???
SP - 0x74 service_mach_message sbuf. data_1c ???
SP - 0x70 service_mach_message sbuf. data_20 ???
SP - 0x6C service_mach_message sbuf. data_24 ???
SP - 0x68 service_mach_message sbuf. data_28 ???
SP - 0x64 service_mach_message sbuf. data_2c ???
SP - 0x60 service_mach_message sbuf. data_30 ???
SP - 0x5C service_mach_message sbuf. data_34 ???
SP - 0x58 service_mach_message sbuf. data_38 ???
SP - 0x54 service_mach_message sbuf. data_3c ???
SP - 0x50 service_mach_message sbuf. data_40 ???
SP - 0x4C service_mach_message sbuf. data_44 ???

... ... ... ...
SP - 0x34 service_mach_message sbuf.msgh_bits ???
SP - 0x30 service_mach_message sbuf. msgh_size 0x50
SP - 0x2C service_mach_message sbuf. msgh_remote_port racoon’s port
SP - 0x28 service_mach_message sbuf. msgh_local_port notifyd’s port
SP - 0x24 service_mach_message sbuf. msgh_reserved 0
SP - 0x20 service_mach_message sbuf. msgh_id ADD_SP_120_POP8_10_4567 - 100

SP - 0x1C service_mach_message r8 ???
SP - 0x18 service_mach_message sl ???
SP - 0x14 service_mach_message r4 aShmAddress
SP - 0x10 service_mach_message r5 ???
SP - 0x0C service_mach_message r6 ???
SP - 0x08 service_mach_message r7 ???
SP - 0x04 service_mach_message pc MOV_SP_R4_POP8_10_11_4567

Friday, May 25, 2012



GADGET_MOV_SP_R4_POP8_10_11_4567

• The next gadget pivots the stack to the 
notification center shared memory and 
continues execution from there.

• From libsystem_c.dylib / 
pthread_mutex_lock+0x1B6

Friday, May 25, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x00 ???
SP + 0x04 aShmAddress + 0x04 ???
SP + 0x08 aShmAddress + 0x08 ???
SP + 0x0C aShmAddress + 0x0C MOV_LR_R4_MOV_R0_LR_POP47
SP + 0x10 aShmAddress + 0x10 ???
SP + 0x14 aShmAddress + 0x14 ???
SP + 0x18 aShmAddress + 0x18 ???
SP + 0x1C aShmAddress + 0x1C MOV_LR_R4_MOV_R0_LR_POP47
SP + 0x20 aShmAddress + 0x20 exit
SP + 0x24 aShmAddress + 0x24 ???
SP + 0x28 aShmAddress + 0x28 POP_R0123
SP + 0x2C aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x30 aShmAddress + 0x30 0x0
SP + 0x34 aShmAddress + 0x34 0x0
SP + 0x38 aShmAddress + 0x38 ???
SP + 0x3C aShmAddress + 0x3C chown
SP + 0x40 aShmAddress + 0x40 ???
SP + 0x44 aShmAddress + 0x44 ???
SP + 0x48 aShmAddress + 0x48 POP_R0123
SP + 0x4C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x50 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x54 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x58 aShmAddress + 0x58 aShmAddress + 0x74

SP + 0x5C aShmAddress + 0x5C execl
SP + 0x60 aShmAddress + 0x60 0x0
SP + 0x64 aShmAddress + 0x64 /bin/launchctl
SP + 0x6F aShmAddress + 0x6F load
SP + 0x74 aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

Friday, May 25, 2012



SP Address Label Value
SP - 0x20 aShmAddress + 0x00 r8 ???
SP - 0x1C aShmAddress + 0x04 sl ???
SP - 0x18 aShmAddress + 0x08 fp ???
SP - 0x14 aShmAddress + 0x0C r4 MOV_LR_R4_MOV_R0_LR_POP47
SP - 0x10 aShmAddress + 0x10 r5 ???
SP - 0x0C aShmAddress + 0x14 r6 ???
SP - 0x08 aShmAddress + 0x18 r7 ???
SP - 0x04 aShmAddress + 0x1C pc MOV_LR_R4_MOV_R0_LR_POP47
SP + 0x00 aShmAddress + 0x20 exit
SP + 0x04 aShmAddress + 0x24 ???
SP + 0x08 aShmAddress + 0x28 POP_R0123
SP + 0x0C aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x10 aShmAddress + 0x30 0x0
SP + 0x14 aShmAddress + 0x34 0x0
SP + 0x18 aShmAddress + 0x38 ???
SP + 0x1C aShmAddress + 0x3C chown
SP + 0x20 aShmAddress + 0x40 ???
SP + 0x24 aShmAddress + 0x44 ???
SP + 0x28 aShmAddress + 0x48 POP_R0123
SP + 0x2C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x30 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x34 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x38 aShmAddress + 0x58 aShmAddress + 0x74

SP + 0x3C aShmAddress + 0x5C execl
SP + 0x40 aShmAddress + 0x60 0x0
SP + 0x44 aShmAddress + 0x64 /bin/launchctl
SP + 0x48 aShmAddress + 0x6F load
SP + 0x4C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

Friday, May 25, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x20 exit
SP + 0x04 aShmAddress + 0x24 ???
SP + 0x08 aShmAddress + 0x28 POP_R0123
SP + 0x0C aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x10 aShmAddress + 0x30 0x0
SP + 0x14 aShmAddress + 0x34 0x0
SP + 0x18 aShmAddress + 0x38 ???
SP + 0x1C aShmAddress + 0x3C chown
SP + 0x20 aShmAddress + 0x40 ???
SP + 0x24 aShmAddress + 0x44 ???
SP + 0x28 aShmAddress + 0x48 POP_R0123
SP + 0x2C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x30 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x34 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x38 aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x3C aShmAddress + 0x5C execl
SP + 0x40 aShmAddress + 0x60 0x0
SP + 0x44 aShmAddress + 0x64 /bin/launchctl
SP + 0x48 aShmAddress + 0x6F load
SP + 0x4C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 ???
R1 ???
R2 ???
R3 ???
R4 MOV_LR_R4_MOV_R0_LR_POP47

LR ???
PC MOV_LR_R4_MOV_R0_LR_POP47

Friday, May 25, 2012



SP Address Label Value
SP - 0x0C aShmAddress + 0x20 r4 exit
SP - 0x08 aShmAddress + 0x24 r7 ???
SP - 0x04 aShmAddress + 0x28 pc POP_R0123
SP + 0x00 aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x04 aShmAddress + 0x30 0x0
SP + 0x08 aShmAddress + 0x34 0x0
SP + 0x0C aShmAddress + 0x38 ???
SP + 0x10 aShmAddress + 0x3C chown
SP + 0x14 aShmAddress + 0x40 ???
SP + 0x18 aShmAddress + 0x44 ???
SP + 0x1C aShmAddress + 0x48 POP_R0123
SP + 0x20 aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x24 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x28 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x2C aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x30 aShmAddress + 0x5C execl
SP + 0x34 aShmAddress + 0x60 0x0
SP + 0x38 aShmAddress + 0x64 /bin/launchctl
SP + 0x3C aShmAddress + 0x6F load
SP + 0x40 aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 MOV_LR_R4_MOV_R0_LR_POP47

R1 ???
R2 ???
R3 ???
R4 exit
LR MOV_LR_R4_MOV_R0_LR_POP47

PC POP_R0123

Friday, May 25, 2012



SP Address Label Value
SP - 0x14 aShmAddress + 0x2C r0 aNotifydStringArg2Address
SP - 0x10 aShmAddress + 0x30 r1 0x0
SP - 0x0C aShmAddress + 0x34 r2 0x0
SP - 0x08 aShmAddress + 0x38 r3 ???
SP - 0x04 aShmAddress + 0x3C pc chown
SP + 0x00 aShmAddress + 0x40 ???
SP + 0x04 aShmAddress + 0x44 ???
SP + 0x08 aShmAddress + 0x48 POP_R0123
SP + 0x0C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x10 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x14 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x18 aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x1C aShmAddress + 0x5C execl
SP + 0x20 aShmAddress + 0x60 0x0
SP + 0x24 aShmAddress + 0x64 /bin/launchctl
SP + 0x28 aShmAddress + 0x6F load
SP + 0x2C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 aNotifydStringArg2Address
R1 0
R2 0
R3 ???
R4 exit
LR MOV_LR_R4_MOV_R0_LR_POP47

PC chown

Friday, May 25, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x40 ???
SP + 0x04 aShmAddress + 0x44 ???
SP + 0x08 aShmAddress + 0x48 POP_R0123
SP + 0x0C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x10 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x14 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x18 aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x1C aShmAddress + 0x5C execl
SP + 0x20 aShmAddress + 0x60 0x0
SP + 0x24 aShmAddress + 0x64 /bin/launchctl
SP + 0x28 aShmAddress + 0x6F load
SP + 0x2C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 0
R1 ???
R2 ???
R3 ???
R4 exit
LR ???
PC MOV_LR_R4_MOV_R0_LR_POP47

Friday, May 25, 2012



SP Address Label Value
SP - 0x0C aShmAddress + 0x40 r4 ???
SP - 0x08 aShmAddress + 0x44 r7 ???
SP - 0x04 aShmAddress + 0x48 pc POP_R0123
SP + 0x00 aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x04 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x08 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x0C aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x10 aShmAddress + 0x5C execl
SP + 0x14 aShmAddress + 0x60 0x0
SP + 0x18 aShmAddress + 0x64 /bin/launchctl
SP + 0x1C aShmAddress + 0x6F load
SP + 0x20 aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 exit
R1 ???
R2 ???
R3 ???
R4 ???
LR exit
PC POP_R0123

Friday, May 25, 2012



SP Address Label Value
SP - 0x14 aShmAddress + 0x4C r0 aShmAddress + 0x64
SP - 0x10 aShmAddress + 0x50 r1 aShmAddress + 0x64
SP - 0x0C aShmAddress + 0x54 r2 aShmAddress + 0x6F
SP - 0x08 aShmAddress + 0x58 r3 aShmAddress + 0x74
SP - 0x04 aShmAddress + 0x5C pc execl
SP + 0x00 aShmAddress + 0x60 0x0
SP + 0x04 aShmAddress + 0x64 /bin/launchctl
SP + 0x08 aShmAddress + 0x6F load
SP + 0x0C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 aShmAddress + 0x64
R1 aShmAddress + 0x64
R2 aShmAddress + 0x6F
R3 aShmAddress + 0x74
R4 ???
LR exit
PC execl

Friday, May 25, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x60 0x0
SP + 0x04 aShmAddress + 0x64 /bin/launchctl
SP + 0x08 aShmAddress + 0x6F load
SP + 0x0C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 -1
R1 ???
R2 ???
R3 ???
R4 ???
LR ???
PC exit

Hopefully will never get here

Friday, May 25, 2012



Questions?

• More sandbox info can be found in 
Dionysus Blazakis’s presentation:

• http://www.semantiscope.com/research/
BHDC2011/BHDC2011-Slides.pdf

• https://github.com/dionthegod/
XNUSandbox

Friday, May 25, 2012

http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
https://github.com/dionthegod/XNUSandbox
https://github.com/dionthegod/XNUSandbox
https://github.com/dionthegod/XNUSandbox
https://github.com/dionthegod/XNUSandbox

