
GOTO: H[a]CK

Practical iOS
Applications Hacking
Mathieu RENARD - @GOTOHACK
mathieu.renard[-at-]gotohack.org
mathieu.renard[-at-]sogeti.com

© Sogeti 2/52

#  Regular devices

#  Let’s Jailbreak our device

#  Reversing iOS Applications

#  Hooking iOS Applications

#  The Truth about Jailbreak detection

#  Security Worst Practices

#  Defensives Measures

Agenda

GOTO: H[a]CK

Hack To Learn…. 3

© Sogeti 4/52

Attack vectors : Regular device

USB: AFC Network

Backups

WiFi
SYSTEM ACCESS!

DENIED!Bluetooth

Applications

Simcard Baseband

© Sogeti 5/52

#  AFC (Apple File Connection)
–  Service running on all iDevices
–  Handled by /usr/libexec/afcd
–  Used by iTunes to exchange files
–  AFC clients can access certain files

only
•  Files located in the Media folder
•  User installed applications folders

–  Implemented in libiMobileDevice

#  What you can do

–  Access to default pref file

–  Access app resources
–  Only if the iDevice unlocked

Abusing AFC protocol

© Sogeti 6/52

#  DEMO

iPown Dock & Evil Maid…

© Sogeti 7/52

Unsecure credential storage

© Sogeti 8/52

#  Backup storage
–  %APPDATA%/Apple Computer/MobileSync/Backup/<udid>
–  Can be password protected
–  Encrypted (AES-256 CBC)
–  Filenames : SHA1 hashes

#  Using iPhoneDataProtection Framework
–  Developed by Jean SIGWALD – Sogeti ESEC Lab
–  Bruteforce backup password [require some scripting skills] [Extremely slow]

•  I do recommend Elcomsoft Phone Password Breaker (35 000 pwd/s on GPU)

–  Extract backup content
–  Extract keychain stored data

Having fun with backups

http://code.google.com/p/iphone-dataprotection

© Sogeti 9/52

Having Fun With backups

© Sogeti 10/52

#  Almost the only place to store critical data:
–  Crypto keys
–  Credentials
–  …

#  Apple defined 6 values to define when a keychain item should be readable
–  kSecAttrAccessibleAfterFirstUnlock
–  kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly
–  kSecAttrAccessibleAlways
–  kSecAttrAccessibleAlwaysThisDeviceOnly
–  kSecAttrAccessibleWhenUnlocked
–  kSecAttrAccessibleWhenUnlockedThisDeviceOnly

iOS Keychain

© Sogeti 11/52

iOS Keychain

#  Protection class for built-in application items

C
an

 b
e

ex
tr

ac
te

d
w

ith
ou

t
ja

ilb
re

ak

Extraction requires the 0x835 hardware key => Jailbreak is mandatory

© Sogeti 12/52

Extracting Keychain data

WIFI KEY

APPLE TOKEN

APPLE CERT (PUSH MSG)

MAIL ACCOUNT

© Sogeti 13/52

#  Remote virtual interface
–  When enabled all network traffic is mirrored to this interface

•  No need to jailbreak the device
•  Does not allow SSL interception

–  Mac OS
•  Connect the device over usb
•  Get the device ID
•  Launch rvictl –s <UID>
•  Launch wireshark on the newly created network device

Analyzing network connexion

© Sogeti 14/52

#  Like other web applications
–  Launch your proxy (Burp, Charles, Paros,…)
–  Setup the proxy on the device
–  If the application check for certificate validity
–  Extract your proxy CA and install it on the device

•  Link-it on a web page
•  Download the CA and install it

HTTPS trafic interception

GOTO: H[a]CK

Hack To Learn…. *BIG UP For the Jailbreak dream team!
15

© Sogeti 16/52

Attack vectors : Jailbroken device

USB: AFC Network

Backups Simcard Baseband

WiFi

SYSTEM ACCESS!
 GRANTED!Bluetooth

Applications

© Sogeti 17/52

#  Jailbreaking allows

–  root access to the operating system
–  downloading & installing new apps

•  Additional applications (ssh, gdb, …)
•  Retrieve application and data stored on the device
•  Retrieve all data stored in the Keychain

–  We can extract the 0x835 hardware key

–  Decrypting and reversing the application

Jailbroken device

© Sogeti 18/52

#  Getting 0x835 key on jailbroken device
–  Kernel_patcher

•  By default accessing to the hardware keys form user land is forbidden)

–  Device_info
•  Extracting hardware keys

Getting the 0x835 Key

GOTO: H[a]CK

Hack To Learn…. 19

© Sogeti 20/52

#  ARM7

iOS Binaries : ARM

#  ARM7 #  ARM7s

#  RISC
#  Load-store architecture
#  32-bit (ARM) & 16-bit (Thumb) instruction sets

#  Registers
–  R0-R3 > Used to pass params
–  R7 > Frame pointer
–  R13 > SP, Stack Pointer
–  R14 > LR, Link register
–  R15 > PC, Program counter

#  CPSR Current Program Status Register
–  N > Negative
–  Z > Zero
–  C > Carry
–  V > Overflow

http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf

© Sogeti 21/52

#  Some executable are fat binaries
–  They contain multiple mach objects within a single file

•  Each one for a different architecture or platform

iOS Binaries : Fat & Thin

No need to reverse both objects
Lipo can convert a universal binary to a

single architecture file, or vice versa.

© Sogeti 22/52

#  Contains three parts
–  Header
–  Load commands
–  Data

#  Header

–  Magic
–  Cputype
–  Cpusubtype
–  Filetype
–  Ncmds
–  Sizeofcmds
–  Flags

iOS Binaries : Mach-O

¶  Data

–  Segments sections
–  __PAGEZERO
–  __TEXT
–  __DATA
–  Rw-
–  __OBJC
–  ...

¶  Load commands

–  Indicates memory layout
–  Locates symbols table
–  Main thread context
–  Shared libraries

© Sogeti 23/52

#  Load commands & cryptid

iOS Binaries : Cryptid

© Sogeti 24/52

#  The mandatory way to install applications is through Apple’s App
Store.
–  Application bundle is downloaded and stored in a zip archive
–  Zip file contains

•  The application itself (the binary),
•  Data files, such as images, audio tracks, or databases, and
•  Meta-data related to the purchase.

#  All Apple Store published applications are encrypted
–  When an application is synchronized onto the mobile device,

•  iTunes extracts the application folder and stores it on the device.

Apple Fairplay Encryption

© Sogeti 25/52

#  Manually using GDB
–  Launch GDB
–  Set a breakpoint
–  Run the application
–  Extract the unencrypted executable code
–  Patch the architecture specific binary

Defeating Fairplay Encryption

$CryptSize=1671168
$CryptOff=8192
echo -e "set sharedlibrary load-rules \".*\" \".*\" none\r\n\
set inferior-auto-start-dyld off\r\n\
set sharedlibrary preload-libraries off\r\n\
set sharedlibrary load-dyld-symbols off\r\n\
dump memory dump.bin $(($CryptOff + 4096)) $(($CryptSize + $CryptOff + 4096))\r\n\
kill\r\n\
quit\r\n" > batch.gdb

gdb -q -e demoCryptId -x batch.gdb -batch

© Sogeti 26/52

#  Lamers way : Using Crackulous (Angel)
–  With only one click

•  Decrypt apps & Unset CryptID
•  Provide fully functional cracked ipa
•  Generate credit file.
•  Automatic uploading
•  Automatic submission

–  Bug
•  Does not handle Thin binaries

Defeating Fairplay Encryption

cydia.hackulo.us

© Sogeti 27/52

#  The smart way : Dumpdecrypted (i0n1c)

Defeating Fairplay Encryption

© Sogeti 28/52

#  __OBJC
–  __objc_classlist : list of all classes for which there is an

implementation in the binary.
–  __objc_classref : references to all classes that are used by the

application.

#  By parsing these section it is possible to retrieve classes and
methods prototypes

Analyzing __OBJC Segment

© Sogeti 29/52

Introducing Classdump

© Sogeti 30/52

Introducing IDA Pro

© Sogeti 31/52

#  Calling convention
–  C++

•  ObjectPointer->Method(param1, param2)

–  Objective-C
•  [ObjectPointer Method:param1 param2Name:param2

–  objc_msgSend(ObjectPointer, @selector(Method))

–  ARM calling convention
•  Arg1: ObjectPointer → r0
•  Arg2: @selector(Method) → r1

–  Backtracing calls to objc_msgSend
•  By hand
•  Using Zynamics IDAPython script or IDA Pro > 6.1

Objective-C

© Sogeti 32/52

#  Where to start ?
–  Locate the main class

•  UIApplicationDelegate
–  ApplicationDidFinishLaunching
–  ApplicationDidFinishLaunchingWithOptions

•  Locate views inititialisation
–  UI*ViewController

»  ViewDidLoad

#  Where to look ?
–  URL > NSURL*
–  Socket > CFSocket*
–  Keychain > ksecAttr*, SecKeychain*
–  Files Handling > NSFileManager*
–  Crypto > CCCrypt*

Where to start ?

GOTO: H[a]CK

Hack To Learn…. 33

© Sogeti 34/52

#  MobileSubstrate
–  Allows developers to provide run-time patches

•  MobileLoader will first load itself into the run application using
DYLD_INSERT_LIBRARIES

•  Looks for all dynamic libraries in the directory /Library/MobileSubstrate/
DynamicLibraries/ and load them.

–  MobileHooker is used to replace system functions
•  MSHookMessageEx()

–  Replace the implementation of the Objective-C message
[class selector] by replacement, and return the original implementation..

•  MSHookFunction()
–  like MSHookMessageEx() but is for C/C++ functions.

#  http://iphonedevwiki.net/index.php/MobileSubstrate

Hooking made easy: MobileSubstrate

© Sogeti 35/52

#  Hooking the CCCrypt(3cc) API

DEMO: Stealing Crypto keys

CCCrypt(CCOperation op, CCAlgorithm alg, CCOptions options, const void *key,
 size_t keyLength, const void *iv, const void *dataIn, size_t dataInLength,
 void *dataOut, size_t dataOutAvailable,size_t *dataOutMoved);

GOTO: H[a]CK

The Truth about Jailbreak detection
[The Good, The Bad, The Fail!]

36

© Sogeti 37/52

#  Checking for shell

#  Bypassing the check

Jailbreak detection classic
checking for shell [The good]

+ (BOOL)doShell {
 if (system(0)) {
 return YES;
 }
 return NO;
}

static int (*old_system)(char *) = NULL;
int st_system(char * cmd){

 if (!cmd){
 return nil;
 }
 return old_system(cmd);

}
 __attribute__((constructor)) static void initialize() {

 NSLog(@"StealthJBInitialize!");
 MSHookFunction(system, st_system, &old_system);

}

© Sogeti 38/52

#  Checking for jailbreak files (Cydia, SSH, MobileSubstrate, Apt, …)

	

#  Bypassing the check (hooking NFSFileManager)

	

Jailbreak detection Classics
Jailbreak files detection [The bad]

+ (BOOL)doCydia {
 if ([[NSFileManager defaultManager]
 fileExistsAtPath: @"/Applications/Cydia.app"]){
 return YES;
 }
 return NO;
}

void* (*old_fileExistsAtPath)(void* self, SEL _cmd,NSString* path) = NULL;
void* st_fileExistsAtPath(void* self, SEL _cmd, NSString* path){
 if ([path isEqualToString:@"/Applications/Cydia.app"){
 NSLog(@"=>hiding %@", path);
 return 0;
 }
 return old_fileExistsAtPath(self,_cmd,path);
}

__attribute__((constructor)) static void initialize() {
 NSLog(@"StealthJBInitialize!");
 MSHookMessageEx([NSFileManager class], @selector(fileExistsAtPath:),
 (IMP)st_fileExistsAtPath, (IMP *)&old_fileExistsAtPath);
}

© Sogeti 39/52

DEMO: Bypassing jailbreak detection

© Sogeti 40/52

#  Sandbox check using fork
#  Documented in some books and blog posts

–  If the process can fork, the device is jailbroken.

Jailbreak detection classics [The fail!]

+(BOOL) doFork () {
 int res = fork();
 if (!res) {
 exit(0);
 }

 if (res >= 0) {

 #if TARGET_IPHONE_SIMULATOR
 NSLog("fork_check -> Running on the simulator!");
 return 0;
 #else
 return 1;
 #endif

 }
 return 0;
}

© Sogeti 41/52

Jailbreak detection classics [The fail!]

#  From the iphonewiki:

© Sogeti 42/52

#  Sandbox check using fork
#  Not working!

–  The sandbox patch does’nt affect this part of the sandbox!

Jailbreak detection classics [The fail!]

+(BOOL) doFork () {
 int res = fork();
 if (!res) {
 exit(0);
 }

 if (res >= 0) {

 #if TARGET_IPHONE_SIMULATOR
 NSLog("fork_check -> Running on the simulator!");
 return 0;
 #else
 return 1;
 #endif

 }
 return 0;
}

GOTO: H[a]CK

Hack To Learn…. 43

© Sogeti 44/52

Having fun with Apple media player DRM

44

© Sogeti 45/52

Hardcoded crypto key…

© Sogeti 46/52

Secure browser… Really ?

© Sogeti 47/52

DEMO: Authentication Bypass

GOTO: H[a]CK

Defensives Measures

Hack To Learn…. 48

© Sogeti 49/52

#  Antidebug technics
–  Old School GDB Killer : PTRACE_DENY_ATTACH
–  Checking the P_TRACED flag

#  Anti Hooking technics
–  Validating address space : Using dladdr() & Dl_info structure
–  Inlining

#  Obfuscation
–  No public tools for Objective C code obfuscation.
–  Objective C is a dynamic language,

•  Based on message passing paradigm,
•  Most of bindings are resolved run time
•  It is always possible for attacker to track, intercept and reroute calls, even with

obfuscated names.
–  Manually implementing obfuscation can slow down attackers analysis

•  Renaming classes and methods
•  Dynamic string generation

Defensives Measures

GOTO: H[a]CK

Conclusion

Hack To Learn…. 50

© Sogeti 51/52

#  Regarding security most of iOS applications are not mature!

#  Developers should follow the following recommendation in order to
mitigate the risks.

•  Do not rely only on iOS security
•  Do not store credential using standardUserDefaults method.
•  Encrypt your data even when stored in the keychain
•  Do not store crypto keys on the device
•  Check your code, classes, functions, methods integrity
•  Detect the jailbreak
•  Properly implement cryptography in applications

–  simple implementation are the most secure
•  Remove all debug information from the final release
•  Minimize use of Objective-C for critical functions & security features.

Conclusion

GOTO: H[a]CK

Thank	
 you	
 for	
 Listening	
 	

Ques3ons	
 ?	

Hack To Learn….

mathieu.ranard[-­‐at-­‐]soge3.com	
 -­‐	
 h<p://esec-­‐pentest.soge3.com	
 	

mathieu.renard[-­‐at-­‐]gotohack.org	
 -­‐	
 h<p://www.gotohack.org	

	

52

