
iOS Applications

Different Developers Same Mistakes

Paul Craig – Security-Assessment.com

Syscan 2012

 Hello!

 My name is Paul Craig

 Team Lead @ Security-Assessment.com Asia

 Based here in Humid Singapore

 I am a Penetration Tester with a Passion for Hacking.

 Me and my team live to hack the Singaporean Financial Services

Industry.

 We find bugs, exploit said bugs, and steal your cash..

 “Increase the security bar of Singapore”

 “So what do you do here ?”

 “Oh, I mostly hack into banks and steal money... You?”

 Singapore's Love Affair With Mobile Technology.

 I moved to Singapore a year ago from New Zealand

 New Zealand is a bit different when it comes to technology….

Yep, I'm that creepy guy who takes photos of you on the MRT

When I first came here, I could believe just how connected everyone is!

“It’s called a camera-phone Brett”

Sadly this is not far from the truth.

 Your all hooked on Hand Phones

 90% of all hand phones sold in Singapore are considered smart-phones.

 Almost 10% of the population in Singapore is using an iOS device.

 No surprise considering the cheap mobile plans, unlimited data rates.

 What else do you do on the train?

 Singapore has more iPhones than Spain (377,346)

 Switzerland (399,364)

 more iPads than Australia (1,400)

 APPS! APPS! APPS!

 Singaporean companies are rapidly pushing out iOS Apps

 Banking, Entertainment, Government, Finance.

 Singaporean Government alone has (or has participated in) 58!

In New Zealand mobile applications made up 5-10% of SA.com’s work.

In Singapore its 60%+..

Singapore is becoming a hive of mobile application development.

 SG companies are now deploying more iOS applications than web

 Applications developed here are complex, large, and feature rich.

 My first iOS Application Review in Singapore.

 I was nervous - my first week in Singapore.

 My client was a multi-billion $ multi-national FSI in Singapore.

 “This is Singapore.. These guys are pro when it comes to iPhones.

 This will be tough, I need to bring my top game..”

 Good nights sleep, extra shot latte, good breakfast..

 Arrived at client - rubbed my hands together - “Yeah bring it on.”

 1 hour later:,

I'm Stealing money

Controlling the system

The app was a mess.

Completely broken.
So I get to keep what I steal right?

 Clearly we have a problem here…

 I found a meeting room and sat down with the developers.

 Local Chinese Singaporean dev’s, good guys.

 Graduated from NTU.

 100% iOS developers!

 Zero clue about security, nothing. 沒有!
 The application was missing state / session management

 Direct object reference bugs everywhere

 What security controls existed were in the presentation layer.

“Its not that your security is bad, its more like you don’t HAVE security”

I was shocked: “Really, I was nervous about this?”

 Contents of this talk:

 iOS Applications 101

 How I test iPhone/iOS Applications

 Security Model

 Mistakes Developers in Singapore Are Making:

 The vulnerabilities I find in the largest Singaporean FSI’s

“Your banks, your insurance providers, your wealth managers, your

Telco's, your utility providers.. Your Singapore, my vulnearbilities.”

 Moving forwards

 What to do if your deploying an iOS Application.

 iOS Applications 101:

 Most of the iOS API & iOS App Development is Objective-C.

 Some of the iOS API involves traditional C rather than Objective-C.

 iOS Applications are typically client / server based.

 Similar to a thin client or Ajax based web application.

 iOS Application & Remote Web Server

 Pull / Push content from a remote server

 View / manipulate the content

 Communications are performed using light-weight HTTP protocols

 JSON / REST / XML / HTTP POST

 Requests are commonly grouped to reduce network overhead

 Use one request to retrieve all information.

 How a typical application looks:

Web Service

iOS

Application

Web Client

GET /signin

/view/customer

/edit/customer

/signin

/logout

Internet

User Clicks

Sign-On

Processed by

Web Service

User Authenticates

Session Token Returned

Cookie: SESSIONID=…

 Testing iOS Applications:

 iOS applications are thicker than an traditional AJAX application

 Content stored on the phone

 Resources (Images/Scripts/Music/Video)

 Content repositories (Databases, XML files)

 Scripts / other binaries

 Thinner than a traditional desktop application.

 Majority of content is stored on a remote server.

 Think of iOS applications as ‘Skinny-Fat’ applications:

Urban Dictionary: “When someone is thin and looks great in clothes, but is all flabby

underneath”

This unique design model provides a mixture of attack surfaces.

 Remote Testing

 All communication between the phone and the remote server can be

intercepted and modified.

 SSL included.

 Create ad-hoc Wi-Fi network on a testing laptop

 Bridge Wi-Fi network to the Ethernet

 Burp Proxy set to use Self Signed Cert on the Wi-Fi Interface

 Export Burp CA & Install on iPhone

 Set iPhone to Connect to the ad-hoc Wi-Fi network with HTTP Proxy

 Click iPhone app – Standard Burp Request intercept

 “its just a web application”

 Remote web services are typical web applications.

 OWASP Top #10

 We know this

 Your policy covers this

Most Critical Bugs in Remote Services

In 2011 SA.COM reviewed 35 iOS applications.

19 High severity findings discovered.

13 of these findings in remote web services.

 Flabby Part of iOS Applications

 Oil and Gas commodity trading company:

“What is the biggest risk from the launch of your iOS application?”

“What do I say when our lead trader or senior exec leaves his iPad in a taxi or

bar on a Friday night?”

 Management will ask me

 What information was lost ?

 Can the application still be used ?

 Are we at risk?

 Very likely, very plausible: “Its already happened before”

 Huge Unknown Security Risk

 What information gets logged or stored on the device ?

 Can any of the installed apps be used ?

 Singaporean Companies have Internal Apps

 Hospital / Medical Applications

 Commodity Trading

 Internal logistics

 How secure is a locked iOS Device?

 Do you trust the “Lock”

Still trust it?

I sure don’t.

 I had an epiphany one night in Singapore.

 Zen moment at a coffee shop in Geylang when I realized every

problem with every iOS application developed in Singapore.

 “All my clients are f%^&* it up”

 Everything I'm reviewing is breaking.

 And they all break at the same places..

 Local banks

 Foreign banks

 Common, this is Singapore

 How can so many people all be doing it wrong?

 Developers didn't understand simple concepts.

 Don’t use the presentation layer to implement security controls.

 “How can you click that, its not enabled, cannot!!”

 “Can..”

 Principal of Least Way Too Much Privilege

 Everything has every option enabled, every feature, every privilege.

 “It works when I enable everything.”

 “Why would someone do that?”

 Security? What the hell is that, do I need that?

 New developers, no previous development (security) experience

Bugs, Bugs, Bugs, Bugs

 Welcome to my world

 Real bugs, real .SG clients.

 Names changed to protect the guilty.

 These bugs no longer exist

 (Thank god)

 Why did these bugs exist to begin with?

 Presentation Layer Security

 How many options do you see? Five?

155

 158

Change verb to any customer id

“Really? Really??

I'm not even trying here…

Cant you just play a little hard to get?

 Symmetric vs. Asymmetric Cryptography

 Developers like to use cryptography as a method of keeping secrets

safe.

 However more often than not the cryptography is implemented

incorrectly.

 And it’s the only security implemented.

 This one has me beat using the last trick.

Encryption!

 iOS Supports Asymmetric and Symmetric Cryptography

 When using Symmetric Algorithms, both parties share the same key

for encryption and decryption.

 Asymmetric algorithms use pairs of keys. One is used for encryption

and the other one for decryption.

 `private/public key cryptography‘.

 Developers in this case used symmetric cryptography.

AES128 Encrypted

using

CCCrypt and a

Preshared key.
Thx for the AES Key..

http://developer.apple.com/library/mac/

 Encryption Used Foolishly

/process = Process Payment

 GET /process?=F5D82E4AD10287EF71B27C28D881FEA

 GET /process?s=5191&t=2&a=100

 GET /process?=16A5CDE830F0638E530C8912F6231A

 GET /process?= EF5A98230FE152E6348D671A728C0320F1

s = UserID

t = Transaction Type

a = Amount Transfer

GET /process?s=5190&t=2&a=100.

UserID 5190 just purchased $100

GET /process?s=5191&t=2&a=-100

I just purchased -100 worth..

Double Negative = Positive.. Account credited

I'm in your banks, stealing

your cash...

谢谢

Paul

 Some developers love their phones too much.

 Authentication Usually Works Like This

 Send Username / Password to a remote server

 Returned a session with access rights

 Or told to “Go Away”

 This one developer decided to be different..

 Enter username and password

 GET /users/myinfo

“Hey I know how to implement authentication.

ill just return all of the users to the iPhone!

iOS can authenticate the user locally!”

 Information Stored Insecurely

 Developers love to store information on mobile devices.

 There is a correct and an incorrect way of doing this.

 Private information should not be stored on the phone, unless

protected.

 This includes:

 SQLite Databases

 Logging profilers NSLog/Alog

 At best your information is encrypted with an AES key.

 Credit Card Numbers, Usernames, Passwords, Messages

If your phone gets stolen (or lost), what did you loose?

 .plist files are Preference List Files

 Stored as XML in plaintext as a file on your phone.

 Stored as XML in plaintext as a file on your phone.

 Developers can set preferences for applications

Do you ever click “ON”?

Wanna guess where your credentials are likely kept?

 Key Chains

 “The keychain is where an iPhone application can safely store data

that will be preserved across a re-installation.”

 Keychains are backed up whenever the user backs up the device via

iTunes.

 Individual application key chains are secured with attributes.

 CFTypeRef kSecAttrAccessibleWhenUnlocked;

CFTypeRef kSecAttrAccessibleAfterFirstUnlock;

CFTypeRef kSecAttrAccessibleAlways;

CFTypeRef kSecAttrAccessibleWhenUnlockedThisDeviceOnly;

CFTypeRef kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly;

CFTypeRef kSecAttrAccessibleAlwaysThisDeviceOnly;

Most permissive option

The option most

developers pick.

 Key Chains

 iOS Keychain Weakness - Jens Heider, Matthias Boll, Fraunhofer

Institute for Secure Information Technology (SIT) – Feb 2012

 “Part of what makes the attack relatively trivial is that the cryptographic

key used for the keychain is stored on the iPhone. Once a device is

jailbroken, hackers can use iOS's built-in APIs to access and decrypt

certain passwords—including those for network access and e-mail

accounts—stored in the keychain.”

 1: Steal iPhone

 2: jailbreak iPhone using bootrom jailbreak, install SSH Server

 3: Run SIT’s Decryption Script

 4: Gain access to any KeyChain values not secured with

kSecAttrAccessibleWhenUnlocked or

kSecAttrAccessibleAfterFirstUnlock.

 “Shit, the developers should have turned that off/on”

 SSL settings are usually disabled when an application is in

development.

 These settings are usually turned back on before an app is launched.

“Usually…”

I do love that word.

“Did you turn SSL validation back on?

Because I sure as fuck didn’t.”

 Disassemble your way to victory.

 Recent PT of a banking iOS app.

 Production was strong – zero findings. 

 Strings / references to UAT were present in the production application

 UAT environment was internet accessible!

 Different code base (and insecure as hell!!)

 What about SQL Injection ?

 SQL Injection has been the bane of developers for years..

 iOS Supports SQLite

 “SQLite uses a procedural, SQL-focused API to manipulate the data

tables directly.”

 You can also just call sqlite3_exec directly and provide ad-hoc SQL.

 What can we do with SQL Injection on iOS?

Correct way

Incorrect way

 DataDetectorTypes

 You can use this property to specify the types of data (phone

numbers, http links, and so on) that should be automatically

converted to clickable URLs in the text view.

 Pragmatic Errors – Oh, so many ways to get it wrong..

 System Timers

 The default iOS timer group (currentrunloop) will pause if you click

on a menu or slider bar (something in the main OS).

 Client side sessions wont time out, and application timers won’t

work right.

 Yeah you guessed it,

everyone uses this

one...

 URI Handlers

 “One of the coolest features of the iPhone SDK is an application’s

ability to “bind” itself to a custom URL scheme and for that scheme to

be used to launch itself from either a browser or from another

application on the iPhone. Creating this kind of binding is so simple, its

almost criminal not to use it in your application!”

 Most of the time developers use this feature sparingly

 Call me now

 And some what not sparingly.

 app://transfer/9999/032-01233311/022-0479890

Clickable on any page which has a Detector set to parse links (or Everything)

 NULL Bytes

 iOS is affected by NULL byte attacks “Poison NULL Byte”

 User supplied values passed to POSIX-C functions by objective-c

libraries.

 Objective-C does not NULL terminate

 POSIX C does

String\x00string

 becomes

String

 String termination bugs.

Click

 Help, Help, Help

 Everyone seems to need help when deploying an iOS application.

 Clients simply ask me “What should I be doing?.”

“iOS Security is a hybrid of traditional desktop application security and web security.”

 My advice..

 Treat iOS applications with importance now, because they are only

going to grow in functionality and demand.

 If your outsourcing your application development provide Security

Guidelines to the external developers.

 Avoid using multiple outsourcing partners for iOS + Backend

development.

 Involve security testing/advice early in the project – 20% 80% 100%.

 How to make it easier for me (and you)

 Strangely enough clients never know what to do when I come to

review an iOS application.

 Things you should do

 Get it tested.

 Provide source code to the testers.

 If you cant provide source code - provide documentation.

 Provide the binary before it goes to the App Store.

 Make sure the test is performed using a Jail Broken device.

 Conclusion:

 Singapore is the iPhone hub of the world

 iOS is however still considered ‘bleeding-edge’

 Hobbyist come commercial developers

 Apple have tried to make a secure SDK

 Developers still manage screw it up.

 This is only going to get worse as both the iPhone and iOS Apps

increase in complexity and functionality.

 iOS development should be part of your standard Application

Development Life Cycle.

 Questions ? Comments

 Paul Craig

 Paul.Craig@security-assessment.com

黑客?
Think you can hack? Got talent?

We are hiring!

mailto:Paul.Craig@security-assessment.com
mailto:Paul.Craig@security-assessment.com
mailto:Paul.Craig@security-assessment.com

