
iOS applications auditing

Julien Bachmann / julien@scrt.ch

AppSec Forum

 Western Switzerland

› Motivations
› Quick review of the environment
› Common flaws
› Information gathering
› Network analysis
› Software reverse engineering

Preamble

› Security engineer @ SCRT

› Teacher @ HEIG-VD
› Areas of interest focused on reverse engineering,

software vulnerabilities, mobile devices security

and OS internals

› Not an Apple fanboy
› But like all the cool kids...

› Goals
› This presentation aims at sharing experience and

knowledge in iOS apps pentesting

› Contact
› @milkmix_

motivations | why ?

› More and more applications
› Most of Fortune-500 are deploying iPads

› Growth in mobile banking

› Mobile eShop

› Internal applications

› Need for security
› Access and storage of sensitive information

› Online payments

environment | devices

› Latest devices
› Apple A5 / A5X / A6 / A6X

› Based on ARMv7 specifications

› Processor
› RISC

› Load-store architecture

› Fixed length 32-bits instructions

environment | simulator

› Beware
› Simulator != emulator

› More like a sandbox
› Code compiled for Intel processors

› 32-bits

› ~/Library/Application Support/iPhone Simulator/<v>/Applications/<id>/

environment | applications

› Localisation
› ~/Music/iTunes/iTunes Music/Mobile Applications/

› /var/mobile/Applications/<guid>/<appname>.app/

› .ipa
› Used to deploy applications

› Zip file

environment | applications

› .plist
› Used to store properties

› XML files, sometimes in a binary format

› Associates keys (CFString, CFNumber, …) with values

› plutil (1)
› Convert binary plist file to its XML representation

flaws | communication snooping

› Secure by default
› Well... at least if the developer is using URLs starting with HTTPS://

› Even if a fake certificate is presented !
› The DidFailWithError method is called

flaws | communication snooping

› Ok, but what about real life ?
› A lot of development environments are using self-signed certificates

› No built-in method to include certificates in the simulator

› Obviously, what did the developers ?
› Let's check what's on stackoverflow.com...

flaws | communication snooping

› How to (potentialy) wreak havoc
› Implement the two following delegates only to bypass certificates validation

› CanAuthenticateAgainstProtectionSpace

› DidReceiveAuthenticationChallenge

flaws | data storage

› Most applications are working connected
› Still some information locally stored

› plist

› SQLite3 databases

› ...

› Could include sensitive data

› Built-in protection
› Data Protection API since iOS 4.0

› http://code.google.com/p/iphone-dataprotection/

› New attributes when working on files, Keychain entries or databases

› Automatically used when calling

NSURLCredentialStorage:setDefaultCredential but could not change

protection type

flaws | data storage

Attribute Definition

kSecAttrAccessibleWhenUnlocked Only if unlocked

kSecAttrAccessibleAfterFirstUnlock Unlocked at least once

kSecAttrAccessibleAlways Do not use Data Protection API

kSecAttrAccessibleWhenUnlockedThisDeviceOnly Only if unlocked, but do not store in backups

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly Unlocked at least once, but do not store in backups

kSecAttrAccessibleAlwaysThisDeviceOnly Do not store in backups

flaws | data storage

› Cryptographic primitives
› Common Crypto Library

› CCCrypt()

› kCCEncrypt

› kCCDecrypt

flaws | information disclosure

› The previous seems obvious, but...
› Logs ?

› Automagically created files ?

flaws | external interactions

› Files handling
› CFBundleDocumentTypes in Info.plist

› IPC-like mechanism
› URIs handlers

› CFBundleURLTypes in Info.plist

› Implementation of handleOpenURL or OpenURL

flaws | external interactions

› Memory management vulnerabilities
› Objective-C classes are well protected

› Still possible to introduce vulnerabilities if developing custom parsing

functions for homegrown protocol

› Beware to the old threats : format strings

› Most likely result : app crash due to software exploitation protections

› HTML / Javascript injection
› UIWebView controller used to render web pages

› More related to server side vulnerabilities

flaws | server side

› Most of the time, included in the scope of the audit
› Lot of applications are communicating with web-services

› Common flaws
› No need to present the Top10

info gathering | apple's tools

› First idea most people will have
› Let's jailbreak it !

› There is another way
› Stealthier to do a first recon

› Still, jailbreaking the auditor's device is mandatory

› Kudos to the jailbreakers teams for their work !

info gathering | apple's tools

› Activate developer mode

info gathering | apple's tools

› Access application's files

› Only works for applications compiled in debug mode

info gathering | apple's tools

› Console / Application's logs

info gathering | getting access to the device

› Now you can do it
› Enough documentation on jailbreaking online

› Personnal choice
› Create a firmware with the smalest footprint as jailbreak detection

mechanisms mostly check for Cydia presence

› Use device that can be pwned using bootloader vulnerability in DFU mode

› Use tcprelay.py relying on usbmux to ssh to the device through the usb

cable

info gathering | keychain items

› Keychain Dumper
› https://github.com/ptoomey3/Keychain-Dumper

network analysis | communication snooping

› Main idea
› Use {burp ;zap ;...} to intercept the trafic and manipulate it

› Problem
› What about if the developers are using SSL and best-practices ?

network analysis | communication snooping

› If you are doing an assignment mixing pentest and code review
› Use the Simulator

› Certificates store
› Based on a SQLite3 database

› ~/Library/Application Support/iPhone

Simulator/<sdk>/Library/Keychains/TrustStore.sqlite3

› GDSSecurity released a script automating the insertion of x509 certificates

in the database

› https://github.com/GDSSecurity/Add-Trusted-Certificate-to-iOS-Simulator

network analysis | communication snooping

› Using a device
› Generate CA and sign certificate

› Upload the CA to the device using Apple Configurator

network analysis | communication snooping

› Won't go further on this subject
› Joins classic web service pentesting

› Except you are using a specific application and not a browser

reverse engineering | why ?

› Pentesting is not code review
› If you want to understand an application behavior you have to reverse it

› Static
› Hexdump

› otool

› IDA Pro

› Hopper

› Dynamic
› GDB

reverse engineering | ida pro

reverse engineering | hopper

reverse engineering | hopper

reverse engineering | need to know

› Architecture
› File format for Objective-C executables

› ARM basics

› Language
› Objective-C basics

› ARM assembly basics

› AppStore
› How to decrypt AppStore binaries

reverse engineering | appstore

› Applications from the AppStore are encrypted
› DRM

› Fair Play like

› Do it manually
› GDB, set, go !

› Automatic
› Crackulous (won't work on executables compiled with PIE)

› Clutch

reverse engineering | obj-c to arm

› Objective-C
› [ObjectPointer Method:42]

› C++ equivalent
› ObjectPointer->Method(42)

› Pseudo C generated by the compiler
› objc_msgSend(ObjectPointer, "Method", 42)

› ARM assembly

›

reverse engineering | obj-c to arm

› Reflective language
› Access to own definition

› Call methods from names

reverse engineering | where to begin ?

› Main class
› Derived from UIApplicationDelegate

› Implements applicationDidFinishLaunching or

applicationDidFinishLaunchingWithOptions

› Views
› Derived from UI*ViewController

› Implement viewDidLoad

reverse engineering | extracting class info

› class-dump

reverse engineering | static analysis

› Goals
› Understand the application's algorithms

› Tools
› IDA Pro

› Hopper

› fixobjc.idc to resolve XREFs and parse Obj-C structures

› Built-in functionality since version 6.2

reverse engineering | dynamic analysis

› Goals
› Understand the application's algorithms

› Allows to tamper data

› But data tampering is not done with Burp ?
› What happens when the protocol is encrypted ?

› Need to find the function encrypting the data

› Set breakpoint

› Modify the data in-memory

reverse engineering | dynamic analysis

› GDB
› Provided by Apple as part of iOS SDK

› Standalone version or gdbserver with gdb version for ARM targets

› Advantage of gdbserver is ability to launch GUI applications

› Highly recommend gdbinit* by @osxreverser

› Entitlement
› Binary will not run out-of-the-box on iDevices

› Need to add entitlements after extracting ARMv7 binary

› ldid to the rescue

* http://reverse.put.as/gdbinit/

reverse engineering | dynamic analysis

reverse engineering | dynamic analysis

› Startup
› # ~/debugserver-armv7 -x spring <app>

› gdb$ set shlib-path-substitutions /

/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platf

orm/Developer/SDKs/iPhoneOS5.1.sdk/

› gdb$ target remote-macosx localhost:1999

› gdb$ source ~/gdbinit8

› gdb$ b [InsomniOneViewController viewDidLoad]

› gdb$ c

› gdb$ regarm

reverse engineering | dynamic analysis

› Warning

reverse engineering | dynamic analysis

› Inspect / modify memory
› gdb$ po $r2

› gdb$ set {int}0xcafebabe = 1337

› For large amount of data
› $ cat data.mod | hexdump -ve '1/4 "set {unsigned char *}(<addr> +

%#2_ax) = %#02x\n"' > data.gdb

reverse engineering | instrumentation

› Automating an attack
› Suppose you found something (SQL injection, …)

› Possible to call methods using gdb's call directive

› Too slow to modify data on the fly by hands

› Solution
› Use code injection to modify the behaviour of the application

› Modify data automagically

reverse engineering | instrumentation

› This is where you start loving Objective-C
› Hooking is a bundled feature

› It's called 'swizzling'

› Principle
› Use the functions provided by Apple, like

› class_replaceMethod

› method_exchangeimplementations

reverse engineering | instrumentation

reverse engineering | instrumentation

reverse engineering | instrumentation

› Injecting into process
› DYLD_PRELOAD for stand-alone launch

› DYLD_INSERT_LIBRARIES and SpringBoard.plist modification to inject in

all graphical applications

Questions ?

	Titre
	Introduction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

