
Pentesting iOS Apps
Runtime Analysis and Manipulation

Andreas Kurtz

2

About

• PhD candidate at the Security Research Group,
Department of Computer Science,
University of Erlangen-Nuremberg

– Security of mobile devices & mobile Apps

– Dynamic analysis of iOS Apps

• Co-Founder of NESO Security Labs GmbH

– Software security

– Penetration testing, static code analysis

3

Pentesting iOS Apps

• Status quo: Focus on backend services

– Well-known methodologies and techniques

– Numerous tools available

• So far only little information on
mobile App assessments

• Lack of tools
Backend
Services

Mobile App
(Frontend)

4

What this talk is about

• Introduction to the Objective-C Runtime

– Backgrounds, techniques and tools for
manipulating iOS Apps at runtime

• Use cases and impacts

– Pentesters should be able to explore the attack
surface of iOS Apps more efficiently

– Developers might prefer to avoid client-side logic
and security measures in the future

INTRODUCTION

Objective-C Runtime

6

Objective-C

• Provides a set of extensions to the C
programming language

• Additions are mostly based on Smalltalk

– Object-oriented

– Messaging

– Dynamic typing

– Reflection
These concepts make Objective-C

quite attractive from a hacking
perspective

7

Objective-C

• Sample Code:

HelloWorld *hello = [[HelloWorld alloc] init];
[hello sayHello:@"DeepSec"];

- (void) sayHello: (NSString *) string {
printf("Hello %s!", [string UTF8String]);

}

8

Objective-C Runtime

• Apps are linked to libobjc.A.dylib

otool -L HelloWorld

HelloWorld:
/System/Library/Frameworks/Foundation.framework/Foundation
(compatibility version 300.0.0, current version 890.1.0)
/usr/lib/libobjc.A.dylib (compatibility version 1.0.0,
current version 228.0.0)
[..]

This library provides all runtime
functionalities of the
Objective-C Runtime

9

Objective-C Runtime

• Most important function: objc_msgSend

• Example

Class class = objc_getClass("HelloWorld");
id receiver = [[class alloc] init];
SEL selector = NSSelectorFromString(@"sayHello:");

objc_msgSend(theReceiver,theSelector,@"DeepSec");

Pointer to an instance of the class,
whose method we want to call

10

Objective-C Runtime

• Most important function: objc_msgSend

• Example

Class class = objc_getClass("HelloWorld");
id receiver = [[class alloc] init];
SEL selector = NSSelectorFromString(@"sayHello:");

objc_msgSend(theReceiver,theSelector,@"DeepSec");

The selector of the method that
handles the message

11

Objective-C Runtime

• Most important function: objc_msgSend

• Example

Class class = objc_getClass("HelloWorld");
id receiver = [[class alloc] init];
SEL selector = NSSelectorFromString(@"sayHello:");

objc_msgSend(theReceiver,theSelector,@"DeepSec");

A variable argument list
containing the arguments to the

method

12

Static vs. Dynamic Analysis

• During static analysis, control flow is lost when
objc_msgSend is called

• Characteristics of the Objective-C Runtime
enables comprehensive dynamic analysis
Technique Usage

 Intercept messages  Trace internal control flow

 Send arbitrary messages to
existing objects

 Rewrite implementations of
arbitrary methods

 Manipulate internal state and
processing logic of an iOS
App

RUNTIME MANIPULATION

Backgrounds & Techniques

14

Starting Point

• Goal: Black box analysis of an arbitrary iOS App
– Enterprise or AppStore App
– Binary format (no source code available)

• Approach: Examine the iOS App on a jailbroken
device
– Removes the limitations imposed by Apple
– Provides root access to the operating system
– Enables the installation of additional software
– Enables access to the Objective-C Runtime!

15

Runtime Manipulation

• Objective-C Runtime [1] offers a wide
range of opportunities to manipulate existing
iOS Apps

• Two different approaches

– Injecting a static library with new functionalities

– Injecting an interpreter for on-the-fly
manipulations

16

Dynamic Library Injection

• Advise the dynamic linker to load a dynamic
shared library (DYLD_INSERT_LIBRARIES) [2]

File System iOS App Address Space

Dynamic Linker

..

Foundation

CoreFoundation

libobjc.A.dylib

debug.dylib

..
Foundation

CoreFoundation

libobjc.A.dylib

debug.dylib

17

Runtime Patching

• Replace existing methods and reroute
program control during library initialization

App API Method
Replacement

call API method

redirect to

call original code

return

return

18

Hooking in Practice

• MobileSubstrate [3]
– MobileLoader loads 3rd-party patching code into the

running application

– MobileHooker is used to hook and replace
system methods and functions

IMP MSHookMessage(Class class, SEL selector, IMP replacement, const
char* prefix);

void MSHookFunction(void* function, void* replacement, void**
p_original);

• Recommendation: Theos suite eases the development
of MobileSubstrate extensions (Tweaks) [4]

19

Example: Fake Device Information

#include "substrate.h"

#import <Foundation/Foundation.h>

NSString *replaced_UIDevice_uniqueIdentifier() {

return @"DeepSec";

}

__attribute__((constructor))

static void initialize() {

MSHookMessage(objc_getClass("UIDevice"),

@selector(uniqueIdentifier),

(IMP)replaced_UIDevice_uniqueIdentifier,
NULL);

}

20

Runtime Manipulation

• Objective-C Runtime [1] offers a wide
range of opportunities to manipulate existing
iOS Apps

• Two different approaches

– Injecting a static library with new functionalities

– Injecting an interpreter for on-the-fly
manipulations



21

Cycript: Objective-JavaScript [5]

• Injects a JavaScript interpreter into a running App
– Based on MobileSubstrate

• Enables runtime manipulations in a flexible way
[6], [7]

“A programming language designed to blend
the barrier between Objective-C and JavaScript.”“

22

Example: Fake Device Information

• Step 1: Attach to the App process

cycript -p <PID>

• Step 2: Determine the current UDID

cy# [[UIDevice currentDevice] uniqueIdentifier];
@"768f0c93a69276d190b6…"

23

Example: Fake Device Information

• Step 3: Replace the implementation of the
API method

cy# UIDevice.messages['uniqueIdentifier'] =
function() { return @"DeepSec"; }

• Step 4: Query the UDID again

cy# [[UIDevice currentDevice] uniqueIdentifier];
@"DeepSec"

24

Example: Fake Device Information

25

Example: Fake Device Information

• Example demonstrates the diverse possibilities of
iOS runtime injection

• This might be useful in different scenarios
– Apps that rely on hardware identifier for

authentication

– Apps that use binary or any proprietary protocols

• Easier to manipulate the App endpoint,
compared to modifications at protocol-level

USE CASES

27

Advantages of Runtime Manipulation

• By using these techniques, running Apps can
be extended with additional debugging and
runtime tracing capabilities

• This assists security assessments of iOS Apps

– Eases the discovery of vulnerabilities

– Simplifies bypassing client-side limitations and
restrictions

28

Evaluate Encryption Schemes

• Typical question: Which App methods are
called after the “Login” button is pressed?

• Idea: Make use of dynamic analysis to
reconstruct the control flow of an App

– Use the results to navigate through static code

• Solution: Log all messages to objc_msgSend

29

The gdb way

(gdb) exec-file /var/mobile/Applications/<APP-EXECUTABLE>

Reading symbols for shared libraries . done

(gdb) attach <PID>

Attaching to program: `/private/var/mobile/Applications/...', process PID.

Reading symbols for shared libraries . done

Reading symbols for shared libraries done

Reading symbols for shared libraries + done

0x364d7004 in mach_msg_trap ()

(gdb) break objc_msgSend

Breakpoint 1 at 0x32ce2f68

(gdb) commands

Type commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".

>printf "-[%s %s]\n", (char *)class_getName($r0),$r1

>c

>end

(gdb) c

Continuing.

30

The gdb way

Breakpoint 1, 0x32ce2f68 in objc_msgSend ()

-[UIStatusBarServer _receivedStatusBarData:actions:]

Breakpoint 1, 0x32ce2f68 in objc_msgSend ()

-[UIStatusBar statusBarServer:didReceiveStatusBarData:withActions:]

Breakpoint 1, 0x32ce2f68 in objc_msgSend ()

-[UIStatusBar _currentComposedData]

Breakpoint 1, 0x32ce2f68 in objc_msgSend ()

-[UIStatusBar _currentComposedDataForStyle:]

Breakpoint 1, 0x32ce2f68 in objc_msgSend ()

-[UIStatusBarComposedData alloc]

[..]

Very noisy! All background
activities of the runtime are

shown as well.

31

App Tracing

• Preferred approach: Intercept messages to
objc_msgSend within the runtime

• Apply filters with different granularity
– Enumerate registered App classes and methods using

the Objective-C Runtime API (objc_getClassList,
class_copyMethodList, etc.)

– Output a trace of only matching items

• Inspired by Aspective-C [8] and Subjective-C [9]

32

App Tracing

• Tricky part is to handle all parameters and to
continue normal execution
– Logging itself modifies CPU registers and the stack

• Current execution state has to be preserved
– Allocate an alternate stack within heap memory

– Backup r0 - r3 and lr registers to alternate stack

– Do the logging and filtering

– Restore r0 - r3 and lr

– Continue execution

33

Sample Output

+ [SyncManager sharedSyncManager]

- [SyncManager init]

- [SyncManager setSynDocumentOpen:], args: 0

+ [DataModel setSynchManager:], args: <0x1102ce30>

+ [DataModel initFromFile]

+ [DataModel securityModelFilePath]

+ [DataModel securityModelFilePath]

+ [PBKDF2 getKeyForPassphrase:], args: <__NSCFConstantString 0x15e2e4: >

+ [CryptoUtils decrypt]

+ [DataModel sharedModel]

+ [CryptoUtils md5:], args: <__NSCFConstantString 0x15dea4: >

+ [DataModel sharedModel]

Encryption scheme is based on a
hardcoded key within the App

34

Sample Output

+ [SyncManager sharedSyncManager]

- [SyncManager init]

- [SyncManager setSynDocumentOpen:], args: 0

+ [DataModel setSynchManager:], args: <0x1102ce30>

+ [DataModel initFromFile]

+ [DataModel securityModelFilePath]

+ [DataModel securityModelFilePath]

+ [PBKDF2 getKeyForPassphrase:], args: <__NSCFConstantString 0x15e2e4: >

+ [CryptoUtils decrypt]

+ [DataModel sharedModel]

+ [CryptoUtils md5:], args: <__NSCFConstantString 0x15dea4: >

+ [DataModel sharedModel]

35

Advantages of Runtime Manipulation

• The ability to manipulate Apps at runtime
strikes out new paths
– Discover weak/missing encryption

– Bypassing client-side restrictions

– Execution of hidden functionality, which was not
supposed to be accessible

– Unlock additional features and premium content

– Dump copyright-protected content

– Etc.

36

Lack of Tools

“Security will not get better until tools for
practical exploration of the attack surface
are made available”
- Josh Wright“

37

Closing the Gap

• Retrofitting existing apps with debugging and
runtime tracing capabilities

App

Library

Debugging

GWT GUI

XML-RPC

Webserver

38

Introducing Snoop-it

• A tool to assist security assessments and
dynamic analysis of iOS Apps

39

Features

Monitoring File system access (print data protection classes)

Keychain access

HTTP(S) connections

Access to sensitive API (address book, photos etc.)

Debug outputs

Tracing App internals (objc_msgSend)

40

Features

Analysis /
Manipulation

Fake hardware identifier (UDID, Wireless MAC, etc.)

Fake location/GPS data

Explore and force display of available ViewControllers

List custom URL schemes

List available Objective-C classes, objects and methods

Invoke and replace arbitrary methods at runtime

41

Features

Other
Simple installation and configuration

Easy to use graphical user interface

Plenty of filter and search options

Detailed description of the XML-RPC web service interface

Freely available at the end of this year

42

Getting Started

• There’s an App for That!™

 Open the Snoop-it Configuration App

 Select Apps (System/Cydia/AppStore)
to analyze

 Adjust settings (GUI, Authentication, …)

 Run app & point your browser to the Snoop-it
web interface

43

Getting Started

• There’s an App for That!™

 Open the Snoop-it Configuration App

 Select Apps (System/Cydia/AppStore)
to analyze

 Adjust settings (GUI, Authentication, …)

 Run app & point your browser to the Snoop-it
web interface

44

Getting Started

• There’s an App for That!™

 Open the Snoop-it Configuration App

 Select Apps (System/Cydia/AppStore)
to analyze

 Adjust settings (GUI, Authentication, …)

 Run app & point your browser to the Snoop-it
web interface

45

Getting Started

• There’s an App for That!™

 Open the Snoop-it Configuration App

 Select Apps (System/Cydia/AppStore)
to analyze

 Adjust settings (GUI, Authentication, …)

 Run app & point your browser to the Snoop-it
web interface

46

Getting Started

• There’s an App for That!™

 Open the Snoop-it Configuration App

 Select Apps (System/Cydia/AppStore)
to analyze

 Adjust settings (GUI, Authentication, …)

 Run App & point your browser to the Snoop-it
web interface

DEMO

Please follow me on Twitter (@aykay)
to stay up-to-date with the latest news on Snoop-it

49

Filesystem Monitor

50

Location Faker

51

App Tracing

52

Keychain Monitor

53

Runtime Manipulation

54

Jailbreak Detection

• Purpose: Verification of platform integrity

• Common checks
– Suspicious files and directories
– File system permissions
– Mount options
– Symbolic links
– Dynamic shared libraries
– SSH Loopback
– Sandbox integrity (fork)

55

Jailbreak Detection

56

Jailbreak Detection

• In order to assess the security of an iOS App,
at first the jailbreak detection mechanisms have
to be bypassed

– Binary / Run-time patching to remove all checks
(specific, time-consuming)

Delegate.messages['isJailbroken'] =
function() { return NO; }

– Intercept system calls to simulate an unmodified
execution environment (generic)

57

Jailbreak Detection Bypass

• Snoop-it supports generic bypass of the most
common jailbreak detection mechanisms
– Simple configuration switch in the Configuration App

DEMO

Bypassing Jailbreak Detection

59

Securing the Runtime

• Minimum of data/logic on the client-side

• Preferred use of C, at least for security-critical
implementations
– Inline Functions

– Obfuscation

• Advanced Jailbreak Detection

• Runtime Integrity Checks (dladdr()[10])

At least try to,
it’s worth a shot.

60

Summary

• Runtime Analysis and Manipulation facilitates
both, dynamic and static analysis of iOS Apps

• Attack surface of iOS Apps can be explored
more efficiently

62

Acknowledgements

• Thanks to

– Markus Troßbach (University of Heidelberg)

– Sebastian Stocker (University of Heidelberg)

– Christoph Settgast (University of Erlangen)

– Andreas Weinlein (University of Erlangen)

– Francesca Serpi (University of Milan)

63

References
[1] Objective C Runtime Reference

http://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Obj
CRuntimeRef/Reference/reference.html

[2] dyld - the dynamic link editor (DYLD_INSERT_LIBRARIES)
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/M
anpages/man1/dyld.1.html

[3] Mobile Substrate
http://iphonedevwiki.net/index.php/MobileSubstrate

[4] Theos
http://iphonedevwiki.net/index.php/Theos

[5] Cycript
http://www.cycript.org

http://developer.apple.com/library/mac/documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
http://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man1/dyld.1.html
http://iphonedevwiki.net/index.php/MobileSubstrate
http://iphonedevwiki.net/index.php/Theos
http://www.cycript.org/

64

References
[6] Cycript Overview

http://iphonedevwiki.net/index.php/Cycript

[7] Cycript Tips
http://iphonedevwiki.net/index.php/Cycript_Tricks

[8] Aspective-C by saurik
http://svn.saurik.com/repos/menes/trunk/aspectivec/AspectiveC.mm

[9] Subjective-C by KennyTM~
http://networkpx.blogspot.de/2009/09/introducing-subjective-c.html

[10] dladdr - find the image containing a given address
http://developer.apple.com/library/Mac/#documentation/Darwin/Reference/
ManPages/man3/dladdr.3.html

http://iphonedevwiki.net/index.php/Cycript
http://iphonedevwiki.net/index.php/Cycript_Tricks
http://svn.saurik.com/repos/menes/trunk/aspectivec/AspectiveC.mm
http://networkpx.blogspot.de/2009/09/introducing-subjective-c.html
http://developer.apple.com/library/Mac/documentation/Darwin/Reference/ManPages/man3/dladdr.3.html

Weipertstraße 8-10 ∙ 74076 Heilbronn
 +49 (7131) 7669-540

info@nesolabs.de
www.nesolabs.de

