
How to assess and secure iOS apps
An NCC Group workshop

About NCC Group

2

Eighth successive year of double digit growth We protect 15,000 clients worldwide

We monitor over 16 million web pages every week World’s largest penetration testing team
September 12, 2013 – 44CON © NCC Group

Outline

♦ Introduction to iOS and Objective-C

♦ Platform security

♦ iOS apps

♦ Testing environment

♦ Black-box assessment

♦ Conclusion

© NCC Group 3 September 12, 2013 – 44CON

Outline

♦ Introduction to iOS and Objective-C

♦ Platform security

♦ iOS apps

♦ Testing environment

♦ Black-box assessment

♦ Conclusion

© NCC Group 4 September 12, 2013 – 44CON

Introduction to iOS

♦ iOS is derived from OS X, runs the same Darwin OS

♦ Apps written primarily in Objective-C

♦ Development in Xcode

 Mac is needed

 High-level API, “Cocoa Touch”

 iOS Simulator – compile apps to native code to run locally

© NCC Group 5 September 12, 2013 – 44CON

Introduction to Objective-C

♦ Object-oriented language inspired by Smalltalk

♦ Strict superset of C

 Adds syntax for classes, methods, etc.

 Adds concepts like delegation

♦ Methods are not called, messages are passed instead

♦ Libraries are referred to as frameworks

© NCC Group 6 September 12, 2013 – 44CON

Objective-C – defining interfaces

♦ These go in .h files, and define the structure of objects (like C structs)

© NCC Group 7 September 12, 2013 – 44CON

@interface Classname : NSParentObject {

SomeType aThing; // instance variables

}

+(type)classMethod :(vartype)myVariable;

-(type)instanceMethod :(vartype)myVariable;

@end

Objective-C – more on interfaces

♦ This is the new way of declaring interfaces

© NCC Group 8 September 12, 2013 – 44CON

#import "NSParentClass.h"

@interface Classname : NSParentClass {

 @public NSURL *blorg;

 @private NSString *gurgle;

}

@property(readonly) NSURL *blorg;

@property(copy) NSString *gurgle;

Message passing in Objective-C

♦ This is the “implementation”, stored in .m files

♦ @synthesize creates getter and setter methods for properties

♦ At runtime this translates to

© NCC Group 9 September 12, 2013 – 44CON

@implementation Classname

@synthesize blorg; // generates set/get methods

@synthesize gurgle;

Instance *myInstance = [[Instance alloc] init];

[myInstance setGurgle:@"foo"]; // infix notation

myInstance.gurgle = @"foo"; // dot notation

objc_msgSend(myInstance, setGurgle, @"foo")

Memory management

♦ No garbage collection in iOS

♦ In the past, object references tracked with retain and release methods

 MRR – Manual Retain-Release

♦ iOS 5 SDK adds Automatic Reference Counting (ARC)

 Compiler decides where to insert retain/release methods

© NCC Group 10 September 12, 2013 – 44CON

Outline

♦ Introduction to iOS and Objective-C

♦ Platform security

♦ iOS apps

♦ Testing environment

♦ Black-box assessment

♦ Conclusion

© NCC Group 11 September 12, 2013 – 44CON

Secure boot chain

♦ First layer of defence for the platform security

♦ Each step of the boot-up is cryptographically signed by Apple

♦ Each step ensures the next step is signed by Apple

© NCC Group 12 September 12, 2013 – 44CON

App sandbox

♦ App sandbox is called
seatbelt

♦ Based upon TrustedBSD
MAC framework

♦ Entitlements control access
to user information and
system-wide features

♦ Apps run under the same
standard user mobile

© NCC Group 13 September 12, 2013 – 44CON

App code signing

♦ Runtime security feature

♦ Only apps that are signed by Apple issued certificates can be executed

♦ Prevents running of unauthorized applications on the device by
validating the app signature upon execution

© NCC Group 14 September 12, 2013 – 44CON

Kernel, runtime protection, etc.

♦ XN bit (eXecute Never) available for quite a while

 No RWX allowed, only R-X or RW- pages

♦ Since iOS 4.3, ASLR protection

 Developer corner: ensure PIE is enabled for your Xcode project in the
Project Build Settings

♦ Syscalls SYS_setreuid and SYS_setreguid are removed at
kernel level

© NCC Group 15 September 12, 2013 – 44CON

Storage encryption

♦ iOS devices have full disk crypto

 Each file encrypted with its own key, which is in turn encrypted by the file-
system key

♦ This protects against someone disassembling the device and analyzing it
directly with a specialized reader

♦ Does not protect against

 Jailbreaking and extracting data off the drive

 Backing up device data with iTunes

 A software exploit being able to read your stuff

 Cracking the PIN and using the device

© NCC Group 16 September 12, 2013 – 44CON

Outline

♦ Introduction to iOS and Objective-C

♦ Platform security

♦ iOS apps

♦ Testing environment

♦ Black-box assessment

♦ Conclusion

© NCC Group 17 September 12, 2013 – 44CON

iOS apps

♦ Application binaries are in
the Mach-O file format

♦ Three parts:

 Header

 Load

 Data

♦ Each app gets unique
identifier (GUID) with
corresponding home
directory, inside
/var/mobile/Applications/

© NCC Group 18 September 12, 2013 – 44CON

iOS apps distribution and location

♦ Apps are distributed as .ipa archives – ZIP file format

♦ Apps are stored inside the folder /var/mobile/Applications/

♦ Apps installed natively by Apple are stored inside the folder
/Applications/

♦ Applications within the iOS Simulator are stored inside
/Users/<username>/Library/Application

Support/iPhone Simulator/<v>/Applications/

♦ Locate all installed apps

© NCC Group 19 September 12, 2013 – 44CON

iPhone:~ root# less \

/private/var/mobile/Library/Caches/com.apple.mobile.installation.plist

iPhone:~ root# find / -name "*.app"

iOS apps bundle

File Description

AppName.app/

 AppName

 Info.plist

App resources: graphics, nibs, binary, Info.plist, etc.
App binary
App configuration file, includes bundle GUID, display name,
version number, etc.

Documents/

 Inbox/

User specific data. Backed up in iTunes
Data other apps have asked the app to open

Library/

 Application Support/

 Caches/

 Snapshots/

 Cookies/

 Preferences/

 WebKit/

App specific files. Backed up in iTunes. Not shared with user
App generated files, templates, etc.
Data to persist across subsequent executions (eg. db caches)
Display screenshots
Cookies
User’s preferences – NSUserDefaults
WebKit local storage

tmp/ Temporary files

iTunesMetadata.plist Dictionary file (containing some sensitive information about
the purchaser)

© NCC Group 20 September 12, 2013 – 44CON

Outline

♦ Introduction to iOS and Objective-C

♦ Platform security

♦ iOS apps

♦ Testing environment

♦ Black-box assessment

♦ Conclusion

© NCC Group 21 September 12, 2013 – 44CON

Jailbreak your iDevice

♦ Allow running any app, control iDevice and access arbitrarily the file
system access

♦ Exploit a vulnerability to install own tools and maintain access

 Disables sandbox and diminishes code signing requirement

♦ Two types of jailbreaks, depending on the tool and underlying
exploitation technique

 Untethered – once restarted upon jailbreak, you can still use the phone and
it remains jailbroken

 Tethered – once restarted upon jailbreak you will need to connect to the PC
to boot into jailbroken mode

♦ Currently, no public jailbreak for iOS 7.0 – latest is evasi0n for iOS
6.0-6.1.2

© NCC Group 22 September 12, 2013 – 44CON

http://evasi0n.com/

Cydia

♦ Application platform for jailbroken iDevices

 Typically installed during the jailbreak
process

♦ Cydia repositories host iOS tweaks and
apps not allowed in the App Store

♦ Cydia apps are packaged as .deb files –
Debian’s dpkg package format

♦ Install APT 0.6 Transitional for
apt-get to install apps from command
line

♦ Install OpenSSH for SSH server on iDevice

© NCC Group 23 September 12, 2013 – 44CON

Access the device

♦ Login over SSH to the device after OpenSSH is installed

♦ Default credentials: root / alpine (change it with passwd command)

♦ Alternatively, tunnel a network connectivity through USB multiplexer

 With usbmuxd (OS X)

 With iTunnelMux (Windows and OS X)

© NCC Group 24 September 12, 2013 – 44CON

$ git clone http://cgit.sukimashita.com/usbmuxd.git/

$ cd usbmuxd/python-client/

$ python tcprelay.py –t 22:2222

$ ssh –p 2222 root@127.0.0.1 # in another shell

C:\>itunnel_mux.exe --lport 2222

http://cgit.sukimashita.com/usbmuxd.git/
http://code.google.com/p/iphonetunnel-usbmuxconnectbyport/

Cydia repositories

♦ Public Cydia repositories list – http://www.ijailbreak.com/cydia-
repositories/

♦ Well-known repositories with tools useful to assess apps

© NCC Group 25 September 12, 2013 – 44CON

iPhone:~ root# cat << EOF > /etc/apt/sources.list.d/repos.list

deb http://apt.modmyi.com/ stable main

deb http://apt.saurik.com/ ios/793.00 main

deb http://apt.thebigboss.org/repofiles/cydia/ stable main

deb http://cydia.zodttd.com/repo/cydia/ stable main

deb http://coredev.nl/cydia iphone main

deb http://nix.howett.net/theos ./

deb http://repo.insanelyi.com/ ./

deb http://repo.nesolabs.de/ ./

EOF

iPhone:~ root# apt-get update

iPhone:~ root# apt-get upgrade

http://www.ijailbreak.com/cydia-repositories/
http://www.ijailbreak.com/cydia-repositories/
http://www.ijailbreak.com/cydia-repositories/
http://www.ijailbreak.com/cydia-repositories/
http://www.ijailbreak.com/cydia-repositories/

Instrumentation

♦ Apple ships the iPhone without a usable shell

 A lot of common/useful utilities are not installed by default

♦ Install tools manually after jail-breaking

♦ One-liner for tools within public Cydia repositories

© NCC Group 26 September 12, 2013 – 44CON

iPhone:~ root# apt-get install adv-cmds com.sull.clutchpatched

curl cycript odcctools developer-cmds dpkg

com.ericasadun.utilities file file-cmds findutils gawk git grep

inetutils com.autopear.installipa ldid less lsof mobilesubstrate

com.saurik.substrate.safemode mobileterminal-applesdk nano netcat

network-cmds python sed shell-cmds sqlite3 syslogd system-cmds

tcpdump top uikittools unrar unzip vim wget whois zip

Build target app from source code

♦ Disable code signing for Xcode – SDKSettings.plist file

♦ Edit Build Settings for your project

© NCC Group 27 September 12, 2013 – 44CON

Pack target app

♦ Pack the app to an .ipa file

 In Xcode click on Product  Archive

 Click on Distribute…

 Select Save for Enterprise or Ad-Hoc Deployment

© NCC Group 28 September 12, 2013 – 44CON

Deploy target app to iDevice

♦ Upload the packed app to the iDevice (with scp)

♦ Use the IPA Installer Console to install the app – example

♦ Alternatively, use iPhone Configuration Utility by adding the app to the
library and then installing it to the plugged-in iDevice

© NCC Group 29 September 12, 2013 – 44CON

iPhone:~ root# ipainstaller -c TargetApp.ipa

Clean installation enabled.

Will not restore any saved documents and other resources.

Analyzing TargetApp.ipa...

Installing TargetApp (v1.0)...

Installed TargetApp (v1.0) successfully.

Cleaning old contents of TargetApp...

http://moreinfo.thebigboss.org/moreinfo/depiction.php?file=ipainstallerconsoleDp
http://moreinfo.thebigboss.org/moreinfo/depiction.php?file=ipainstallerconsoleDp
http://moreinfo.thebigboss.org/moreinfo/depiction.php?file=ipainstallerconsoleDp
http://support.apple.com/kb/DL1465

Outline

♦ Introduction to iOS and Objective-C

♦ Platform security

♦ iOS apps

♦ Testing environment

♦ Black-box assessment

♦ Conclusion

© NCC Group 30 September 12, 2013 – 44CON

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 31 September 12, 2013 – 44CON

Passive network traffic monitoring

♦ Numerous apps act as clients to a server

♦ Passive traffic interception

♦ Piping tcpdump with netcat

© NCC Group 32 September 12, 2013 – 44CON

iPhone:~ root# tcpdump -vv -i en0 -s 0 -n -U -w /dump.pcap

Linux:~$ sudo wireshark -k -i <(nc -l 7777)

iPhone:~ root# tcpdump -vv -i en0 -s 0 -n -U -w - \

"not port 7777" | nc <Linux IP> 7777

Passive network traffic monitoring

♦ Piping tcpdump with named pipe

♦ Execute Wireshark to read the above named pipe

♦ Similarly, on Windows you can use ADVsock2pipe

© NCC Group 33 September 12, 2013 – 44CON

Linux~$ sudo mkfifo /tmp/pipe

Linux~$ ssh root@<iDevice IP> "tcpdump -vv -i en0 -s 0 -n

-U -w - "not port 22" > /tmp/pipe

Linux~$ sudo wireshark -k -i /tmp/pipe

https://github.com/ADVTOOLS/ADVsock2pipe

Be a gateway to the iDevice

♦ You can monitor the traffic on a network gateway – your laptop

♦ Set the Router of your iDevice to be your laptop while connected to a
wireless network

 Settings  Wi-Fi  Network name  IP Address  Static

♦ Enable IP forwarding on your laptop – Linux

♦ On Windows set the following registry key to 1 – reboot is required

♦ Ensure that your laptop firewall is disabled

© NCC Group 34 September 12, 2013 – 44CON

Linux~$ sudo sysctl -w net.ipv4.ip_forward=1

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\IP

EnableRouter

Intercept HTTP traffic

♦ Run your real-time web proxy software
of choice on your laptop

 Burp Suite

♦ When connected to a wireless network

 Settings  Wi-Fi  Network

name  HTTP Proxy  Manual

 enter Server and Port

♦ When connected to a mobile network

 Use iPhone Configuration Utility to
create a Configuration Profile with a
proxy server and port for APN

© NCC Group 35 September 12, 2013 – 44CON

http://portswigger.net/burp/

Deal with HTTPS connections

♦ Import PortSwigger CA (Burp
Suite) to the iDevice

 Navigate to http://burp/cert
with Safari

 Install the CA to establish trust

♦ Alternatively, export the CA to a
.crt file, send it by email as an
attachment, open it in Mail
app and install it

♦ You can also use iPhone
Configuration Utility to create a
Configuration Profile adding
the CA under Credentials

© NCC Group 36 September 12, 2013 – 44CON

http://burp/cert

Network traffic local redirection

♦ CFStreams and NSStreams do not honour HTTP proxy settings
unless their traffic is routed via
CFNetworkCopySystemProxySettings() – non-default

♦ Set your laptop to be the gateway for the iDevice

♦ On your laptop, redirect all HTTP(S) traffic to your local instance of Burp

♦ Ensure that Burp listener supports invisible proxying

© NCC Group 37 September 12, 2013 – 44CON

Linux~$ sudo iptables -t nat -A PREROUTING -i eth0 -p \

tcp -m tcp --dport 80 -j REDIRECT --to-ports 8080

Linux~$ sudo iptables -t nat -A PREROUTING -i eth0 -p \

tcp -m tcp --dport 443 -j REDIRECT --to-ports 8080

Non-HTTP(S) network monitoring

♦ Sometimes apps generate non-HTTP(S) traffic – DNS, SNMP, FTP, etc.

♦ Device proxy settings only route (most) HTTP traffic

♦ Setup a custom DNS server to resolve the target domain to your laptop
IP address and use it from your iDevice

 dnsRedir (by iSEC)

 dnsChef

 Metasploit’s FakeDNS

© NCC Group 38 September 12, 2013 – 44CON

https://github.com/iSECPartners/dnsRedir
http://www.thesprawl.org/projects/dnschef/
http://www.rapid7.com/db/modules/auxiliary/server/fakedns

Non-HTTP(S) network monitoring

♦ Run a suitable TCP/UDP proxy on your laptop

 tcpprox (SSL trickery and IPv6 support, by iSEC)

♦ Note aside, Burp can also automatically redirect HTTP(S) traffic to a
target IP and port

© NCC Group 39 September 12, 2013 – 44CON

Linux~$ python prox.py -L 8888 <target IP> 25

https://github.com/iSECPartners/tcpprox

Intercept arbitrary TCP and UDP traffic

♦ Run a transparent TCP/UDP proxy capable of intercepting and
manipulating packets on your laptop – Mallory (by Intrepidus Group)

© NCC Group 40 September 12, 2013 – 44CON

http://intrepidusgroup.com/insight/mallory/

Intercept arbitrary TCP and UDP traffic

♦ Set your laptop to be the gateway for the iDevice

 Preferably by acting as a wireless access point and setting the iDevice to
associate to it

♦ On your laptop, redirect all TCP and UDP traffic from the iDevice to your
local instance of Mallory which will in turn forward it to the target server

 at0 is the virtual network interface on your laptop acting as wireless access
point to the iDevice

 20755 is the TCP and UDP port where Mallory is listening on

© NCC Group 41 September 12, 2013 – 44CON

Linux~$ sudo iptables -t nat -A PREROUTING -i at0 -p tcp \

-m tcp -j REDIRECT --to-ports 20755

Linux~$ sudo iptables -t nat -A PREROUTING -i at0 -p udp \

-m udp -j REDIRECT --to-ports 20755

All-in-one network traffic interception

♦ Firstly, set your iDevice to associate to your laptop’s wireless access point

© NCC Group 42 September 12, 2013 – 44CON

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -F

iptables -F -t nat

iptables --delete-chain

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables -t nat -A PREROUTING -i at0 -p tcp -m tcp \

--dport 80 -j REDIRECT --to-ports 8080

iptables -t nat -A PREROUTING -i at0 -p tcp -m tcp \

--dport 443 -j REDIRECT --to-ports 8080

iptables -t nat -A PREROUTING -i at0 -p tcp -m tcp \

-j REDIRECT --to-ports 20755

iptables -t nat -A PREROUTING -i at0 -p udp -m udp \

-j REDIRECT --to-ports 20755

Implement certificate pinning

♦ The security of the app’s network communications can be improved
through SSL pinning

 Solves the rogue CA issue in a MiTM scenario

♦ Library developed by iSEC can be used – SSL Conservatory’s
SSLCertificatePinning class

♦ OWASP also released a certificate pinning library

© NCC Group 43 September 12, 2013 – 44CON

NSData *certData = [TestSSLCertificatePinning

loadCertificateFromFile:@"www.targetapp.com.der"];

 if (certData == nil) {

 NSLog(@"Failed to load the certificates");

 return;

 }

 [domainsToPin setObject:certData forKey:@"www.targetapp.com"];

https://github.com/iSECPartners/ssl-conservatory/tree/master/ios
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning#iOS

Circumvent certificate pinning

♦ Successful proxying SSL traffic can be difficult if the application performs
certificate pinning

♦ Disable SSL certificate validation and accept all certificate chains

 trustme – it replaces SecTrustEvaluate by Intrepidus Group

 ios-ssl-killswitch – it hooks functions within the Secure Transport API by iSEC

 It adds a new menu in the device's Settings where you can enable the
extension

© NCC Group 44 September 12, 2013 – 44CON

Linux~$ scp ios-ssl-kill-switch.deb root@<iDevice IP>

Linux~$ ssh root@<iDevice IP>

iPhone:~ root# dpkg -i ios-ssl-kill-switch.deb

iPhone:~ root# killall -HUP SpringBoard

https://github.com/intrepidusgroup/trustme
https://developer.apple.com/library/ios/DOCUMENTATION/Security/Reference/certifkeytrustservices/Reference/reference.html#//apple_ref/c/func/SecTrustEvaluate
https://github.com/iSECPartners/ios-ssl-kill-switch
https://github.com/iSECPartners/ios-ssl-kill-switch
https://github.com/iSECPartners/ios-ssl-kill-switch
https://github.com/iSECPartners/ios-ssl-kill-switch
https://github.com/iSECPartners/ios-ssl-kill-switch
https://developer.apple.com/library/ios/DOCUMENTATION/Security/Reference/secureTransportRef/Reference/reference.html

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 45 September 12, 2013 – 44CON

SSL certificate mismatch

♦ NSURLConnection by default, rejects the use of self-signed
certificates

♦ Warning message Cannot Verify Server Identity is displayed
when the SSL certificate provided is invalid

 Developer corner: app needs to handle this case gracefully with
NSURLConnection's connection:didFailWithError

♦ Sometimes developers override this built-in check

 Developer corner: make sure the app does not do

♦ Check for calls to

 NSURLRequest's private method setAllowsAnyHTTPSCertificate

 NSURLConnection's delegation
continueWithoutCredentialForAuthenticationChallenge

© NCC Group 46 September 12, 2013 – 44CON

HTTP(S) responses caching

♦ HTTP and HTTPS requests are cached by default

♦ Developer corner: can be prevented using NSURLConnection delegate

© NCC Group 47 September 12, 2013 – 44CON

-(NSCachedURLResponse *)connection:(NSURLConnection *)connection

 willCacheResponse:(NSCachedURLResponse *)cachedResponse

{

 NSCachedURLResponse *newCachedResponse=cachedResponse;

 if ([[[[cachedResponse response] URL] scheme] isEqual:@"https"])

 {

 newCachedResponse=nil;

 }

 return newCachedResponse;

}

HTTP cookies

♦ Manipulated by the URL loading system

♦ Developer can alter cookieAcceptPolicy to

 NSHTTPCookieAcceptPolicyNever

 NSHTTPCookieAcceptPolicyOnlyFromMainDocumentDomain

♦ Check if the target app set persistent cookies

 Inspect HTTP(S) responses’ Set-Cookie header in Burp Suite Proxy

 Decode the locally stored persistent cookies

© NCC Group 48 September 12, 2013 – 44CON

Persistent HTTP cookies decoding

♦ Persistent cookies are stored in a file called
Cookies.binarycookies under

 /private/var/mobile/Library/

 /private/var/mobile/<App GUID>/Library/Cookies

♦ Use BinaryCookieReader.py script to decode cookies from this file

 Verify the expiry date of the cookies

♦ Developer corner: avoid the use of persistent cookies

© NCC Group 49 September 12, 2013 – 44CON

http://securitylearn.net/wp-content/uploads/tools/iOS/BinaryCookieReader.py

CFStreams sockets

♦ Lower-level network sockets

♦ Security defined by kCFStreamPropertySSLSettings

♦ Configurable, but hopefully you never see this

♦ Developer corner: only kCFStreamSSLLevel should be set to
kCFStreamSocketSecurityLevelTLSv1

© NCC Group 50 September 12, 2013 – 44CON

CFStringRef kCFStreamSSLLevel;

CFStringRef kCFStreamSSLAllowsExpiredCertificates;

CFStringRef kCFStreamSSLAllowsExpiredRoots;

CFStringRef kCFStreamSSLAllowsAnyRoot;

CFStringRef kCFStreamSSLValidatesCertificateChain;

CFStringRef kCFStreamSSLPeerName;

UIWebViews

♦ UIWebView’s are used to embed web content into an application

♦ An UIWebView object is created and the URL is passed to it

♦ The object will render the HTML with the ability to execute JavaScript

 With UIWebView::stringByEvaluatingJavaScriptFromString

 Potential for cross-site scripting (XSS)

♦ Developer corner: sanitization should be performed before passing data
to the object. Avoid evaluating JavaScript if unnecessary

© NCC Group 51 September 12, 2013 – 44CON

UDID and personal info leaking

♦ Unique Device Identifier derived from hardware information

♦ UDID cannot be removed or changed

 It can be spooked with UDIDFaker tool

♦ UDID is exposed through API – deprecated with iOS 5

 Check for calls to [[UIDevice currentDevice] uniqueIdentifier]

♦ Developer corner: do not rely on UDID for anything, ever

 Use [UIDevice currentDevice] identifierForVendor]

 Instance of NSUUID class

 Guaranteed to return the same value when called by apps signed by the same
developer certificate

 Will change for a vendor if all of their apps are uninstalled

© NCC Group 52 September 12, 2013 – 44CON

Address book leaking

♦ A number of apps have sent the entire address book of a user to a remote
server in the past

♦ Developer corner: avoid the use of
ABAddressBrookCopyArrayOfAllPeople

♦ You can use AdiOS to find all the apps that do call this function

© NCC Group 53 September 12, 2013 – 44CON

https://developer.apple.com/library/ios/documentation/AddressBook/Reference/ABPersonRef_iPhoneOS/Reference/reference.html#//apple_ref/c/func/ABAddressBookCopyArrayOfAllPeople
https://www.veracode.com/security-tools/adios

Geolocation

♦ Developer corner: use the least degree of accuracy necessary and
shouldn’t log locally

♦ Ensure graceful handling of locationServicesEnabled and
authorizationStatus method responses

♦ Several accuracy constants

© NCC Group 54 September 12, 2013 – 44CON

CLLocationAccuracy kCLLocationAccuracyBestForNavigation;

CLLocationAccuracy kCLLocationAccuracyBest;

CLLocationAccuracy kCLLocationAccuracyNearestTenMeters;

CLLocationAccuracy kCLLocationAccuracyHundredMeters;

CLLocationAccuracy kCLLocationAccuracyKilometer;

CLLocationAccuracy kCLLocationAccuracyThreeKilometers;

XML injections

♦ Common to see XML snippets back and forth in the network traffic

♦ Fuzzing server responses may yield XML parsing vulnerabilities in the app

 Check for calls to NSXMLParser

 Handles DTD by default (XXE vulnerability)

♦ Based on shouldResolveExternalEntities, e.g.

♦ Developer corner: ensure setShouldResolveExternalEntities
is set to NO

© NCC Group 55 September 12, 2013 – 44CON

NSURL *testURL = [NSURL URLWithString:@"http://target.com"];

NSXMLParser *testParser = [[NSXMLParser alloc] initWithContentsOfURL: testURL];

[testParser setShouldResolveExternalEntities: YES];

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 56 September 12, 2013 – 44CON

Local data storage

♦ Data stored by the app to retain information across executions

♦ Information such as app config settings, preferences, media files, etc.

♦ Not uncommon to identify credentials and server’s authentication tokens
being stored in insecure manner

 File storage

 Property list files (.plist files)

 SQLite databases (.sqlite, .db, .sqlite3 files)

 Core data

© NCC Group 57 September 12, 2013 – 44CON

Data protection

♦ Data protection “protects the user’s data
when the device is lost or stolen”

 API introduced in iOS 4

♦ Apps can tie the user’s passcode to the
mechanism to encrypt

 Files

 Keychain entries

♦ By setting up a device passcode, the user
enables data protection

© NCC Group 58 September 12, 2013 – 44CON

Data protection – file storage

♦ Set the NSFileProtectionKey attribute with the
NSFileProtectionComplete value on NSFileManager

© NCC Group 59 September 12, 2013 – 44CON

[[NSFileManager defaultManager] createFileAtPath:[self filePath]

 contents:[@"file content" dataUsingEncoding:NSUTF8StringEncoding]

 attributes:[NSDictionary dictionaryWithObject:NSFileProtectionComplete

forKey:NSFileProtectionKey]];

Protection class Description

NSFileProtectionComplete File only accessible when device unlocked

NSFileProtectionCompleteUnlessOpen File must be open when device unlocked but
accessible when unlocked

NSFileProtectionCompleteUntilFirstUser

Authentication

File protected until the device is unlocked
after reboot

Data protection – file storage

♦ Alternatively, passed to calls to
NSData::writeToFile:options:error

© NCC Group 60 September 12, 2013 – 44CON

enum {

 NSDataWritingAtomic = 1UL << 0,

 NSDataWritingWithoutOverwriting = 1UL << 1,

 NSDataWritingFileProtectionNone = 0x10000000,

 NSDataWritingFileProtectionComplete = 0x20000000,

 NSDataWritingFileProtectionCompleteUnlessOpen = 0x30000000,

 NSDataWritingFileProtectionCompleteUntilFirstUserAuthentication = 0x40000000,

 NSDataWritingFileProtectionMask = 0xf0000000,

};

typedef NSUInteger NSDataWritingOptions;

File storage

♦ Check file attributes – sample code

♦ You can also check file attributes and operations during runtime analysis

© NCC Group 61 September 12, 2013 – 44CON

NSString *fileProtectionValue = [[[NSFileManager defaultManager]

attributesOfItemAtPath:@"/path/to/file" error:NULL] valueForKey:

NSFileProtectionKey];

NSLog(@"NSFileProtectionKey: %@", fileProtectionValue);

Monitor file system operations

♦ Use filemon to monitor file system operations in real-time

© NCC Group 62 September 12, 2013 – 44CON

http://www.newosxbook.com/files/filemon.iOS

Property list files

♦ Used to store application configuration and user preferences

 Sometimes used to store confidential information such as credentials

♦ Stored within the application’s Library/Preferences/ directory

♦ They are clear-text XML or structured serialized format

 Use plutil -convert xml1 to convert the serialized into human-readable format

© NCC Group 63 September 12, 2013 – 44CON

http://ericasadun.com/ftp/EricaUtilities/

Property list files

♦ NSUserDefaults class provides methods to create, access and modify
property files

♦ Typical insecure use of NSUserDefaults

♦ Check all calls made to NSUserDefaults and content of property files
to ensure no confidential information is stored onto the iDevice

♦ Developer corner: use keychain to store confidential information

© NCC Group 64 September 12, 2013 – 44CON

NSString *creditCardNumber = [...];

[[NSUserDefaults standardUserDefaults] setObject:creditCardNumber

forKey:@"cc-number"];

[[NSUserDefaults standardUserDefaults] synchronize];

SQLite databases

♦ SQLite is a file-based database

 Sometimes used to store confidential information such as credentials

♦ Stored within the application’s Documents/ directory

♦ Use sqlite3 tool to access, query and edit SQLite files

© NCC Group 65 September 12, 2013 – 44CON

SQLite and SQL injection

♦ Check all calls made to sqlite3_* methods

♦ Avoid querying the SQLite database like this – bad dynamic statement

♦ One-liner to list the database scheme of all SQLite files

♦ Developer corner: use parameterized queries

© NCC Group 66 September 12, 2013 – 44CON

NSString *uid = [myHTTPConnection getUID];

NSString *statement = [NSString StringWithFormat:@"SELECT

 username FROM users where uid = '%@'", uid];

const char *sql = [statement UTF8String];

const char *sql = "SELECT username FROM users where uid = ?";

sqlite3_prepare_v2(db , sql , -1, &selectUid , NULL);

sqlite3_bind_int(selectUid , 1, uid);

int status = sqlite3_step(selectUid);

Tests-iPhone:~ root# find / -name "*.sqlite" -exec echo {} \; -

exec sqlite3 -batch {} ".schema" \;

Core data

♦ Way to store persistent data inside iOS without having to worry with the
management

 Easily accessible and manageable at the same time

 In the form of SQLite files

 Difference with others SQLite databases is that all tables start with Z

♦ Defective assumption: Apple takes care of the security

♦ Check calls to NSManagedObjectContext

♦ Developer corner: use keychain to store confidential information

© NCC Group 67 September 12, 2013 – 44CON

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 68 September 12, 2013 – 44CON

Keychain

♦ Secure storage of passwords, keys, certificates, and notes for one or
more users

 Encrypted with device and keybag specific keys

♦ In iOS, there is a single keychain that stores keychain items for all apps

 Each app has only access to its own keychain items

 /private/var/Keychains/keychain-2.db

© NCC Group 69 September 12, 2013 – 44CON

Keychain table Description

genp Generic passwords –
kSecClassGenericPassword

inet Internet passwords –
kSecClassInternetPassword

cert and keys Certificates, keys and digital identity
(cert+key) items –
kSecClassCertificates and
kSecClassIdentity

Data protection – keychain

♦ Simpler API than OS X

 SecItemAdd, SecItemUpdate, SecItemCopyMatching,
SecItemDelete

♦ Key accessibility is defined by data protection

 Pass appropriate kSecAttrAccessible value to SecItemAdd and
SecItemUpdate

 ThisDeviceOnly value denies iTunes backup to export the entry to other
devices

© NCC Group 70 September 12, 2013 – 44CON

CFTypeRef kSecAttrAccessibleWhenUnlocked; // Only when the device is unlocked

CFTypeRef kSecAttrAccessibleAfterFirstUnlock; // After user enters passcode once

CFTypeRef kSecAttrAccessibleAlways; // Following boot

CFTypeRef kSecAttrAccessibleWhenUnlockedThisDeviceOnly; // Omitted from backups

CFTypeRef kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly;

CFTypeRef kSecAttrAccessibleAlwaysThisDeviceOnly;

Dump keychain items

♦ App signed with entitlement file
with a wildcard or with
com.apple.keystore.acce

ss-keychain-keys as
keychain access group can access
all keychain items

♦ You can use a number of tools to
dump keychain items

 keychain_dumper – command
line tool to list keychain items

 keychain_dump – command line
tool to export to human-readable
Plist files the keychain items

 KeychainViewer – graphical app
to list keychain items

© NCC Group 71 September 12, 2013 – 44CON

https://github.com/ptoomey3/Keychain-Dumper
https://iphone-dataprotection.googlecode.com/files/keychain_dump
https://iphone-dataprotection.googlecode.com/files/keychainviewer0.3.deb

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 72 September 12, 2013 – 44CON

Logs

♦ Console tab of the iPhone Configuration Utility

 Sometimes developers forget debug NSLog calls disclosing sensitive
information to the Apple system log

♦ Install Cydia’s syslogd tool to store logs to /var/log/syslog too

© NCC Group 73 September 12, 2013 – 44CON

NSLog(@"Username: %@, password: %@, remember me: 1", myName, myPass);

Logs

♦ App Store’s Console and System Console apps allow to read and
search logs too

♦ Developer corner: ensure that the app does not disclose any sensitive
information into Apple system log or disable NSLog in non-debug builds

♦ iTunes sync retrieve logs, including crash reports

 These may yield valuable information

© NCC Group 74 September 12, 2013 – 44CON

C:\Users\<username>\AppData\Roaming\Apple

Computer\Logs\CrashReporter\MobileDevice\<DEVICE NAME>\

/Users/<username>/Library/Logs/CrashReporter/MobileDevice/<DEVICE NAME>/

#ifdef DEBUG

define NSLog (...) NSLog(_{VA_ARGS_ {);

#else

define NSLog (...)

#endif

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 75 September 12, 2013 – 44CON

UIPasteboard

♦ Allows app to share data with other apps

 UIPasteboardNameGeneral, UIPasteboardNameFind

♦ Developer corner

 Limit the lifetime of data on the pasteboard

 If app only needs to copy/paste internally, wipe the pasteboard on
applicationDidEnterBackground and
applicationWillTerminate by setting
pasteBoard.items = nil

 Disable copy/paste menu for sensitive data fields

© NCC Group 76 September 12, 2013 – 44CON

-(BOOL)canPerformAction:(SEL)action withSender:(id)sender {

 UIMenuController *menuController = [UIMenuController sharedMenuController];

 if (menuController) {

 [UIMenuController sharedMenuController].menuVisible = NO;

 }

 return NO;

}

Backgrounding – state transition

♦ Screenshot is taken right before the application is backgrounded

 <Application GUID>/Library/Caches/Snapshots/*/*.png

♦ Developer corner: prior to this, app should remove any sensitive data
from view

 Set windows.hidden properties to YES of UIWindow in the
applicationDidEnterBackground delegate and set
windows.hidden properties to NO in the
applicationWillEnterForeground delegate

 Set hidden attribute on sensitive fields

© NCC Group 77 September 12, 2013 – 44CON

Backgrounding – state preservation

♦ iOS 6 introduces the concept of state preservation

 application:shouldSaveApplicationState

♦ Saves state of views and view controllers tagged with a
restorationIdentifier

♦ Theoretically can be done safely using
willEncodeRestorableStateWithCoder and
didDecodeRestorableStateWithCoder delegates

♦ Developer corner: implement an NSCoder to perform cryptographic
operations and store key in keychain

© NCC Group 78 September 12, 2013 – 44CON

Keyboard cache

♦ iOS logs keystrokes to provide customized auto-correction, form
completion and other features

 Almost every non-numeric word is cached

♦ Stored in /var/mobile/Library/Keyboard/en_GB-dynamic-
text.dat

♦ Cache content beyond the app developer realm

♦ Developer corner: for any sensitive UITextField and UISearchBar
mark them as secure fields and disable auto correction

© NCC Group 79 September 12, 2013 – 44CON

fieldName.secureTextEntry = YES

fieldName.autocorrectionType = UITextAutocorrectionTypeNo

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 80 September 12, 2013 – 44CON

Inter-protocol communication (IPC)

♦ IPC is performed by registering URL schemes handled by
UIApplicationDelegate::openURL:(NSURL *)url

sourceApplication:(NSString *)sourceApplication

annotation:(id)annotation

 Allows for determining calling application, receives data in plist form

♦ Other applications make requests using those schemes in order to invoke
the registering application

♦ Web pages also can call URL handlers, without confirmation

© NCC Group 81 September 12, 2013 – 44CON

openURL:[NSURL URLWithString:@"myapp://?un=foo&pw=test"];

URL scheme conflict

♦ “If more than one third-party app registers to handle the same URL scheme,
there is currently no process for determining which app will be given that
scheme” – Apple

♦ Developer corner: be wary of passing private data in app URLs

© NCC Group 82 September 12, 2013 – 44CON

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html#//apple_ref/doc/uid/TP40007072-CH7-SW6

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 83 September 12, 2013 – 44CON

App binary encryption

♦ Apps from the App Store are encrypted

 FairPlay DRM

 Does not apply to Apple built-in apps under /Applications/

♦ To successfully analyse the binary, you need first to decrypt it

♦ Firstly, ensure that it is encrypted by inspecting the Mach-O binary
header with otool utility

© NCC Group 84 September 12, 2013 – 44CON

Encrypted

Decrypt app binary

♦ Locate the encrypted segment

♦ The encrypted segment starts at 0x2000 (8192)

♦ The segment is 0x539000 bytes (cryptsize 5476352)

© NCC Group 85 September 12, 2013 – 44CON

Decrypt app binary

♦ Run the app under a debugger (gdb) to dump the decrypted segments
before the app runs

© NCC Group 86 September 12, 2013 – 44CON

Decrypt app binary – repackaging

♦ Transpose the decrypted segments into a copy of the original binary

♦ Patch the binary’s Load commands header’s cryptid value to 0

 You can use vbindiff from command line or MachOView from OSX

© NCC Group 87 September 12, 2013 – 44CON

https://github.com/gdbinit/MachOView
https://github.com/gdbinit/MachOView

Decrypt app with ClutchPatched

♦ ClutchPatched (com.sull.clutchpatched)

© NCC Group 88 September 12, 2013 – 44CON

http://repo.insanelyi.com/depiction.php?package=clutchpatched

Decrypt app with dumpdecrypted

♦ dumpdecrypted by Stefan Esser

© NCC Group 89 September 12, 2013 – 44CON

https://github.com/stefanesser/dumpdecrypted

Binary analysis – otool

♦ otool can be used to inspect the Objective-C segment (__OBJC)

♦ Reveals class names, method names, and instance variables

♦ Can also be used to disassemble the text segment

♦ Check also exported symbols

♦ Recommended using additional tools for disassembly

 Hopper is a good (and cheap) alternative to IDA Pro

© NCC Group 90 September 12, 2013 – 44CON

otool -oV DecryptedApp

otool -tV DecryptedApp

otool -IV DecryptedApp

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/otool.1.html
http://www.hopperapp.com/

Binary analysis – otx

♦ otx – object tool extended

♦ Uses otool to disassemble a Mach-
O executable file

♦ Enhances the disassembled
output

 Display names and data types of
Obj-C methods even if symbols
have been stripped

 Descriptive comments to member
variables

 Etc.

© NCC Group 91 September 12, 2013 – 44CON

http://otx.osxninja.com/

Check for exploit mitigations

♦ Check for PIE (Position Independent) flag from mach header

♦ Check for stack smashing protection (“stack canary”) from symbol table

© NCC Group 92 September 12, 2013 – 44CON

Tests-iPhone:~ root# otool -hv DecryptedApp

DecryptedApp:

Mach header

 magic cputype cpusubtype caps filetype ncmds sizeofcmds

flags

 MH_MAGIC ARM 9 0x00 EXECUTE 51 5500

NOUNDEFS DYLDLINK TWOLEVEL BINDS_TO_WEAK PIE

Tests-iPhone:~ root# otool -Iv DecryptedApp | grep __stack

0x0040804c 148284 ___stack_chk_fail

0x0053c048 148285 ___stack_chk_guard

0x0053d4d0 148284 ___stack_chk_fail

Check for exploit mitigations

♦ Check for Automatic Reference Counting flag from mach header

♦ Symbols that prove the use of ARC

 __objc_retainAutoreleaseReturnValue

 __objc_autoreleaseReturnValue

 __objc_storeStrong

 __objc_retain

 __objc_release

 __objc_retainAutoreleasedReturnValue

© NCC Group 93 September 12, 2013 – 44CON

Tests-iPhone:~ root# otool -Iv DecryptedApp | grep _objc_release

0x00407cac 148535 _objc_release

0x0053d3e8 148535 _objc_release

Objective-C runtime information

♦ class-dump-z is used to examine the Objective-C runtime information
stored in Mach-O binaries

♦ Generates similar output to otool –oV

♦ Output presented as normal Objective-C declerations

 Easier to read and becomes handy when writing MobileSubstrate hooks

© NCC Group 94 September 12, 2013 – 44CON

Tests-iPhone:~ root# class-dump-z DecryptedApp > DecryptedApp

Tests-iPhone:~ root# less DecryptedApp

[…]

@interface NSData (Keychain)

+ (void)deleteKeychainData:(id)arg1 account:(id)arg2;

+ (id)dataFromKeychain:(id)arg1 account:(id)arg2;

- (BOOL)storeInKeychain:(id)arg1 account:(id)arg2 accessibility:(void *)arg3;

@end

http://code.google.com/p/networkpx/wiki/class_dump_z
http://code.google.com/p/networkpx/wiki/class_dump_z
http://code.google.com/p/networkpx/wiki/class_dump_z
http://code.google.com/p/networkpx/wiki/class_dump_z
http://code.google.com/p/networkpx/wiki/class_dump_z
http://iphonedevwiki.net/index.php/MobileSubstrate

Black-box assessment

♦ Application traffic analysis

♦ Client / server assessment

♦ Local data storage

♦ Keychain

♦ Logs

♦ Cache

♦ Inter-protocol communication (IPC)

♦ Binary analysis

♦ Runtime analysis

© NCC Group 95 September 12, 2013 – 44CON

Runtime analysis and manipulation

♦ Running apps can be extended with additional debugging and runtime
tracing capabilities

 Injecting a library with new functionality

 Injecting an interpreter for on-the-fly manipulation

♦ MobileSubstrate: framework that allows third-party developers to develop
runtime patches (extensions) to system and application functions

 MobileLoader: loads third-party patching code into the running application

 MobileHooker: hooks and replaces methods and functions

♦ Runtime manipulation can be used to

 Bypass client-side controls

 Execute hidden functionality

 Unlock premium content

 Etc.

© NCC Group 96 September 12, 2013 – 44CON

http://iphonedevwiki.net/index.php/MobileSubstrate
http://iphonedevwiki.net/index.php/MobileSubstrate

Runtime manipulation example

♦ Example of MobileHooker to replace a function

© NCC Group 97 September 12, 2013 – 44CON

static int (* orig_dladdr)(const void *, Dl_info *);

int replaced_dladdr(const void *addr , Dl_info *info) {

 IMP impl = class_getMethodImplementation(objc_getClass("JailBreakSecurity"),

 @selector(isFunctionValid:));

 return ((uintptr_t)addr == (uintptr_t)impl) ? 1 : 0;

}

MSHookFunction((void *)dladdr , (void *)replaced_dladdr, (void **)&orig_dladdr);

Runtime manipulation with theos

♦ Theos: set of tools for working with iOS apps outside of Xcode

 Logos is a built-in preprocessor-based library of directives designed to make
MobileSubstrate extension development easy

♦ Example

© NCC Group 98 September 12, 2013 – 44CON

%group NSURLConnectionHooks

%hook NSURLConnection

- (id)initWithRequest:(NSURLRequest *)request delegate:(id <

 NSURLConnectionDelegate >)delegate {

 NSLog(@"Requesting: %@", [[request url] absoluteString]);

 return %orig(request, delegateProxy);

}

%end

%ctor {

 %init(NSURLConnectionHooks);

}

http://iphonedevwiki.net/index.php/Theos
http://iphonedevwiki.net/index.php/Logos

Runtime analysis with cycript

♦ JavaScript interpreter which understands Objective-C syntax

♦ Runtime injection and modification of control flow

♦ Hook into a running process

♦ Application instance (UIApplication sharedApplication)
stored by default in UIApp

♦ Get the instance of the view controller for the key window run
UIApp.keyWindow.rootViewController

© NCC Group 99 September 12, 2013 – 44CON

Runtime analysis with cycript

♦ Use class-dump-z to dump class information, list the view controller
instance name (e.g. AppNameViewController)

♦ Scroll down in the output and look for the properties of the active
window – example

♦ Use this info to access these properties – example

© NCC Group 100 September 12, 2013 – 44CON

[...]

@property(assign, nonatomic) __weak UITextField* username;

@property(assign, nonatomic) __weak UITextField* password;

@property(assign, nonatomic) __weak UILabel* result;

[...]

cy# UIApp.keyWindow.rootViewController.username

@"<UITextField: ...; text = 'foobar'; ...>"

Runtime analysis with cycript

♦ Modify property value – example

♦ List instance variables (iVars) of a specific object

♦ Access directly the value of an iVar

© NCC Group 101 September 12, 2013 – 44CON

cy# UIApp.keyWindow.rootViewController.result.text = "Valid

credentials!"

cy# function tryPrintIvars(a){ var x={}; for(i in *a){ try{

x[i] = (*a)[i]; } catch(e){} } return x; }

Example:

cy# tryPrintIvars(UIApp.keyWindow.rootViewController)

cy# UIApp.keyWindow.rootViewController->userInput

Runtime analysis with cycript

♦ List class methods

© NCC Group 102 September 12, 2013 – 44CON

function printMethods(className) {

 var count = new new Type("I");

 var methods =

class_copyMethodList(objc_getClass(className), count);

 var methodsArray = [];

 for(var i = 0; i < *count; i++) {

 var method = methods[i];

 methodsArray.push({selector:method_getName(method),

implementation:method_getImplementation(method)});

 }

 free(methods);

 free(count);

 return methodsArray;

}

cy# printMethods("AppNameViewController")

[{selector:@selector(setCredentials:),...},{selector:...}]

Runtime analysis with cycript

♦ Replace class methods (hook) – need to get to its metaclass

♦ Now you can either execute the functionality that calls the
validateCredentials method from your iDevice screen or execute
it directly from cycript – example

© NCC Group 103 September 12, 2013 – 44CON

cy# UIApp.keyWindow.rootViewController-

>isa.messages['validateCredentials:'] = function() { return true; }

function() {return true;}

cy# [UIApp.keyWindow.rootViewController validateCredentials]

Introspy

♦ Introspy is an open-source security profiler for iOS by iSEC Partners

♦ Two separate components

♦ iOS tracer

 On jailbroken iDevice

 Hook security-sensitive APIs called by given app

 Records details on a SQLite database

♦ Analyzer

 Analyzes the details stored in the SQLite database, offline

 Generates an HTML report displaying recorded calls

 Lists potential vulnerabilities

© NCC Group 104 September 12, 2013 – 44CON

https://isecpartners.github.io/introspy/

Introspy menu – apps

© NCC Group 105 September 12, 2013 – 44CON

Introspy menu – settings

© NCC Group 106 September 12, 2013 – 44CON

Introspy – log to the console

© NCC Group 107 September 12, 2013 – 44CON

Introspy analyzer

♦ Python script

♦ Recover the tracer’s SQLite database from the iDevice

♦ Process a SQLite database generated by the tracer

♦ Output various information about the traced calls

♦ Generate an HTML report

© NCC Group 108 September 12, 2013 – 44CON

$ python introspy.py 172.16.47.8 -o iGoat

mobile@172.16.47.8's password:

0. ./Applications/7ED82FBE-8D70-4214-894C-7AE31F8BC92A/introspy-

com.krvw.iGoat.db

Select the database to analyze: 0

scp mobile@172.16.47.8:././Applications/7ED82FBE-8D70-4214-894C-

7AE31F8BC92A/introspy-com.krvw.iGoat.db ./

mobile@172.16.47.8's password:

Introspy analyzer – report

© NCC Group 109 September 12, 2013 – 44CON

Introspy analyzer – report

© NCC Group 110 September 12, 2013 – 44CON

Outline

♦ Introduction to iOS and Objective-C

♦ Platform security

♦ iOS apps

♦ Testing environment

♦ Black-box assessment

♦ Conclusion

© NCC Group 111 September 12, 2013 – 44CON

Conclusion for developers

♦ Learn about security-oriented Cocoa Touch API objects

 Prefer use of C for security-critical implementations

♦ Least data and logic possible on the client-side

 Security enforced server-side, not by the app’s logic

 As in JavaScript client-side controls for web applications

© NCC Group 112 September 12, 2013 – 44CON

References

♦ July 11, 2013 - Pentesting iOS Apps - Runtime Analysis and Manipulation by Andreas Kurtz

♦ February 22, 2013 - End-to-End Mobile Security by NCC Group

♦ January 11, 2013 - Inspecting Class Information at runtime for Encrypted iOS Applications
by Jason Haddix

♦ November 29, 2012 - Pentesting iOS Apps - Runtime Analysis and Manipulation by Andreas
Kurtz

♦ October 2, 2012 - iOS Security by Apple

♦ August 2, 2012 - The Dark Art of iOS Application Hacking by Jonathan Zdziarski

♦ July 14, 2012 - When Security Gets in the Way: PenTesting Mobile Apps That Use Certificate
Pinning by Justine Osborne and Alban Diquet (NCC Group)

♦ May 2, 2012 - iOS Application (In)Security by Dominic Chell

♦ March 28, 2012 - Debunking NSLog Misconceptions by Ron Gutierrez

♦ April 21, 2011 - Secure Development on iOS by David Thiel (NCC Group)

♦ March 12, 2011 - New Age Attacks Against Apple's iOS (and Countermeasures) by Nitesh
Dhanjani

© NCC Group 113 September 12, 2013 – 44CON

http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.slideshare.net/Shakacon/andreas-kurtz
http://www.nccgroup.com/media/227628/ncc_group_mobile_security_whitepaper_final.pdf
http://www.nccgroup.com/media/227628/ncc_group_mobile_security_whitepaper_final.pdf
http://www.nccgroup.com/media/227628/ncc_group_mobile_security_whitepaper_final.pdf
http://www.nccgroup.com/media/227628/ncc_group_mobile_security_whitepaper_final.pdf
http://www.nccgroup.com/media/227628/ncc_group_mobile_security_whitepaper_final.pdf
http://h30499.www3.hp.com/t5/Fortify-Application-Security/Inspecting-Class-Information-at-runtime-for-Encrypted-iOS/ba-p/5929531
http://h30499.www3.hp.com/t5/Fortify-Application-Security/Inspecting-Class-Information-at-runtime-for-Encrypted-iOS/ba-p/5929531
http://h30499.www3.hp.com/t5/Fortify-Application-Security/Inspecting-Class-Information-at-runtime-for-Encrypted-iOS/ba-p/5929531
http://h30499.www3.hp.com/t5/Fortify-Application-Security/Inspecting-Class-Information-at-runtime-for-Encrypted-iOS/ba-p/5929531
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://deepsec.net/docs/Slides/2012/DeepSec_2012_Andreas_Kurtz_-_Pentesting_iOS_Apps.pdf
https://ssl.apple.com/iphone/business/docs/iOS_Security_Oct12.pdf
https://ssl.apple.com/iphone/business/docs/iOS_Security_Oct12.pdf
https://ssl.apple.com/iphone/business/docs/iOS_Security_Oct12.pdf
https://media.blackhat.com/bh-us-12/Briefings/Zdziarski/BH_US_12_Zdziarski_Dark_Art_of_iOS_Application_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Zdziarski/BH_US_12_Zdziarski_Dark_Art_of_iOS_Application_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Zdziarski/BH_US_12_Zdziarski_Dark_Art_of_iOS_Application_Hacking_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Zdziarski/BH_US_12_Zdziarski_Dark_Art_of_iOS_Application_Hacking_Slides.pdf
http://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf
http://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf
http://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf
http://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf
http://media.blackhat.com/bh-us-12/Turbo/Diquet/BH_US_12_Diqut_Osborne_Mobile_Certificate_Pinning_Slides.pdf
http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_v1.0_final.pdf
http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_v1.0_final.pdf
http://www.mdsec.co.uk/research/iOS_Application_Insecurity_wp_v1.0_final.pdf
http://blog.gdssecurity.com/labs/2012/3/28/debunking-nslog-misconceptions.html
http://blog.gdssecurity.com/labs/2012/3/28/debunking-nslog-misconceptions.html
http://blog.gdssecurity.com/labs/2012/3/28/debunking-nslog-misconceptions.html
http://blog.gdssecurity.com/labs/2012/3/28/debunking-nslog-misconceptions.html
https://www.isecpartners.com/media/12964/iOS_Secure_Development_SOURCE_Boston_2011.pdf
https://www.isecpartners.com/media/12964/iOS_Secure_Development_SOURCE_Boston_2011.pdf
http://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
http://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
http://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf
http://media.blackhat.com/bh-eu-11/Nitesh_Dhanjani/BlackHat_EU_2011_Dhanjani_Attacks_Against_Apples_iOS-WP.pdf

Thanks to

♦ Tom Daniels, David Thiel, Alban Diquet, Peter Oehlert, Joel Wallenstrom
and Raphael Salas

 iSEC Partners (NCC Group USA)

♦ Doug Ipperciel, Richard Warren, Ollie Whitehouse and Arjun Pednekar

 NCC Group UK

♦ Steve, Adrian and the rest of the 44CON crew

© NCC Group 114 September 12, 2013 – 44CON

Thank you! Questions?

Contact us
training@nccgroup.com

UK Offices

Manchester - Head Office

Cheltenham

Edinburgh

Leatherhead

London

Thame

North American Offices

San Francisco

Atlanta

New York

Seattle

Austin

Chicago

Australian Offices

Sydney

European Offices

Amsterdam - Netherlands

Munich – Germany

Zurich - Switzerland

mailto:training@nccgroup.com

