
Tales from iOS 6 Exploitation
and iOS 7 Security Changes

Stefan Esser <stefan.esser@sektioneins.de>

http://www.sektioneins.de

mailto:stefan.esser@sektioneins.de
http://www.sektioneins.de

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 2

Who am I?

Stefan Esser

•from Cologne / Germany

•in information security since 1998

•PHP core developer since 2001

•Month of PHP Bugs and Suhosin

•recently focused on iPhone security (ASLR, kernel, jailbreak)

•Head of Research and Development at SektionEins GmbH

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 3

What is this talk about?

• the posix_spawn() vulnerability

• and how it turned out to be more than an information leak

• various iOS 7 changes with an influence on security

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 4

Part I

posix_spawn() - The info leak that was more...

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 5

posix_spawn() and the SyScan Garage Sale

• bunch of vulnerabilities were dropped at

SyScan Singapore 2013

• the posix_spawn() vulnerability was one of them

• posix_spawn() is a more powerful way to spawn/execute processes

• vulnerability was declared as kernel heap information leak

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 6

posix_spawn() File Actions

• file actions allow parent to open, close or clone file descriptors for the child

• each action is defined in a structure about 1040 bytes in size

• prefixed by a small header

typedef struct _psfa_action {

psfa_t psfaa_type; /* file action type */

int psfaa_filedes; /* fd to operate on */

struct _psfaa_open {

int psfao_oflag; /* open flags to use */

mode_t psfao_mode; /* mode for open */

char psfao_path[PATH_MAX]; /* path to open */

} psfaa_openargs;

} _psfa_action_t;

typedef enum {

PSFA_OPEN = 0,

PSFA_CLOSE = 1,

PSFA_DUP2 = 2,

PSFA_INHERIT = 3

} psfa_t;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 7

posix_spawn() File Actions

• data describing the actions is copied into the kernel after user supplied size is

checked against upper and lower bounds

if (px_args.file_actions_size != 0) {

/* Limit file_actions to allowed number of open files */

int maxfa = (p->p_limit ? p->p_rlimit[RLIMIT_NOFILE].rlim_cur : NOFILE);

if (px_args.file_actions_size < PSF_ACTIONS_SIZE(1) ||

px_args.file_actions_size > PSF_ACTIONS_SIZE(maxfa)) {

error = EINVAL;

goto bad;

}

MALLOC(px_sfap, _posix_spawn_file_actions_t, px_args.file_actions_size, M_TEMP, M_WAITOK);

if (px_sfap == NULL) {

error = ENOMEM;

goto bad;

}

imgp->ip_px_sfa = px_sfap;

if ((error = copyin(px_args.file_actions, px_sfap,

px_args.file_actions_size)) != 0)

goto bad;

}

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 8

posix_spawn() File Actions Incomplete Verification

• check against upper and lower bound is insufficient

• because of a file action count inside the data that is trusted

• it is never validated that the supplied data is enough for the count

• loop over data can therefore read outside the buffer which might crash

static int

exec_handle_file_actions(struct image_params *imgp, short psa_flags)

{

int error = 0;

int action;

proc_t p = vfs_context_proc(imgp->ip_vfs_context);

_posix_spawn_file_actions_t px_sfap = imgp->ip_px_sfa;

int ival[2]; /* dummy retval for system calls) */

for (action = 0; action < px_sfap->psfa_act_count; action++) {

_psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];

switch(psfa->psfaa_type) {

case PSFA_OPEN: {

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 9

posix_spawn() File Actions Information Leak

• by carefully crafting the data (and its size) it is possible to leak bytes from the

kernel heap with a PSFA_OPEN file action

• choose size in a way that the beginning of the filename is from within the buffer

and the end of the filename is taken from the kernel heap after it

• with fcntl(F_GETPATH) it is then possible to retrieve the leaked bytes

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 10

Only an Information Leak?

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 11

Only an information leak?

• questions came up on Twitter if posix_spawn is more than an information leak

• to be more than an information leak we need a write outside the buffer

• we need to check if there is any write in exec_handle_file_actions() function

• and if we can abuse it

• let‘s read more carefully ...

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 12

Structure of exec_handle_file_actions

• function consists of two loops

• with an error condition exit in-between

• both loops implement a switch statement for the cases

• PSFA_OPEN

• PSFA_DUP2

• PSFA_CLOSE

• PSFA_INHERIT

• let‘s check all cases ...

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 13

PSFA_OPEN (I)

• no write in first part of PSFA_OPEN in first loop

case PSFA_OPEN: {

/*

* Open is different, in that it requires the use of

* a path argument, which is normally copied in from

* user space; because of this, we have to support an

* open from kernel space that passes an address space

* context of UIO_SYSSPACE, and casts the address

* argument to a user_addr_t.

*/

struct vnode_attr va;

struct nameidata nd;

int mode = psfa->psfaa_openargs.psfao_mode;

struct dup2_args dup2a;

struct close_nocancel_args ca;

int origfd;

VATTR_INIT(&va);

/* Mask off all but regular access permissions */

mode = ((mode &~ p->p_fd->fd_cmask) & ALLPERMS) & ~S_ISTXT;

VATTR_SET(&va, va_mode, mode & ACCESSPERMS);

NDINIT(&nd, LOOKUP, OP_OPEN, FOLLOW | AUDITVNPATH1, UIO_SYSSPACE,

CAST_USER_ADDR_T(psfa->psfaa_openargs.psfao_path),

imgp->ip_vfs_context);

error = open1(imgp->ip_vfs_context,

&nd,

psfa->psfaa_openargs.psfao_oflag,

&va,

ival);

}

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 14

PSFA_OPEN (II)

• no write in second part of PSFA_OPEN in first loop

if (error || ival[0] == psfa->psfaa_filedes)

break;

origfd = ival[0];

/*

* If we didn't fall out from an error, we ended up

* with the wrong fd; so now we've got to try to dup2

* it to the right one.

*/

dup2a.from = origfd;

dup2a.to = psfa->psfaa_filedes;

/*

* The dup2() system call implementation sets

* ival to newfd in the success case, but we

* can ignore that, since if we didn't get the

* fd we wanted, the error will stop us.

*/

error = dup2(p, &dup2a, ival);

if (error)

break;

/*

* Finally, close the original fd.

*/

ca.fd = origfd;

error = close_nocancel(p, &ca, ival);

}

break;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 15

PSFA_DUP2 (III)

• no write in PSFA_DUP2 in first loop

case PSFA_DUP2: {

struct dup2_args dup2a;

dup2a.from = psfa->psfaa_filedes;

dup2a.to = psfa->psfaa_openargs.psfao_oflag;

/*

* The dup2() system call implementation sets

* ival to newfd in the success case, but we

* can ignore that, since if we didn't get the

* fd we wanted, the error will stop us.

*/

error = dup2(p, &dup2a, ival);

}

break;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 16

PSFA_CLOSE

• no write in PSFA_CLOSE in first loop

case PSFA_CLOSE: {

struct close_nocancel_args ca;

ca.fd = psfa->psfaa_filedes;

error = close_nocancel(p, &ca, ival);

}

break;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 17

PSFA_INHERIT

• we found a write in PSFA_INHERIT

• but can we make it write outside of our or another buffer?

case PSFA_INHERIT: {

struct fileproc *fp;

int fd = psfa->psfaa_filedes;

/*

* Check to see if the descriptor exists, and

* ensure it's -not- marked as close-on-exec.

* [Less code than the equivalent F_GETFD/F_SETFD.]

*/

proc_fdlock(p);

if ((error = fp_lookup(p, fd, &fp, 1)) == 0) {

*fdflags(p, fd) &= ~UF_EXCLOSE;

(void) fp_drop(p, fd, fp, 1);

}

proc_fdunlock(p);

}

break;

This is a write
in form of a
binary AND

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 18

What is the macro fdflags()?

• fdflags addresses an element in the current processes‘ fd_ofileflags structure

• write position depends on supplied file descriptor fd

• we need to check what and how big fd_ofileflags is

• then we can see if we can make it write outside that buffer

#define fdflags(p, fd) \

(&(p)->p_fd->fd_ofileflags[(fd)])

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 19

The filedesc struct

• fd_ofileflags is actually a byte array

• now we check where it points to our how it is allocated

struct filedesc {

struct fileproc **fd_ofiles; /* file structures for open files */

char *fd_ofileflags; /* per-process open file flags */

struct vnode *fd_cdir; /* current directory */

struct vnode *fd_rdir; /* root directory */

int fd_nfiles; /* number of open files allocated */

int fd_lastfile; /* high-water mark of fd_ofiles */

int fd_freefile; /* approx. next free file */

u_short fd_cmask; /* mask for file creation */

uint32_t fd_refcnt; /* reference count */

int fd_knlistsize; /* size of knlist */

struct klist *fd_knlist; /* list of attached knotes */

u_long fd_knhashmask; /* size of knhash */

struct klist *fd_knhash; /* hash table for attached knotes */

int fd_flags;

};

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 20

Where does fd_ofileflags come from?

• fd_ofileflags is actually not the start of an allocated memory block

• first allocation of fd_ofiles as 5 bytes times current max file descriptor

• then fd_ofileflags set to point to the last „current max file descriptor“ bytes

MALLOC_ZONE(newofiles, struct fileproc **,

numfiles * OFILESIZE, M_OFILETABL, M_WAITOK);

proc_fdlock(p);

if (newofiles == NULL) {

return (ENOMEM);

}

if (fdp->fd_nfiles >= numfiles) {

FREE_ZONE(newofiles, numfiles * OFILESIZE, M_OFILETABL);

continue;

}

newofileflags = (char *) &newofiles[numfiles];

...

ofiles = fdp->fd_ofiles;

fdp->fd_ofiles = newofiles;

fdp->fd_ofileflags = newofileflags;

fdp->fd_nfiles = numfiles;

FREE_ZONE(ofiles, oldnfiles * OFILESIZE, M_OFILETABL);

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 21

What do we know so far?

• fd_ofileflags is not start of a buffer but points into the middle of one

• buffer it points to is allocated with MALLOC_ZONE()

• in case of dynamic buffers MALLOC_ZONE() is identical to kalloc()

• and finally the length of fd_ofileflags is „current max filedescriptors“ bytes

• to write outside of that buffer we need to pass illegal file descriptor to fdflags

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 22

PSFA_INHERIT and illegal file descriptors?

• in PSFA_INHERIT passed fd is verified by fp_loopkup

• so we cannot pass an illegal fd to fdflags here

case PSFA_INHERIT: {

struct fileproc *fp;

int fd = psfa->psfaa_filedes;

/*

* Check to see if the descriptor exists, and

* ensure it's -not- marked as close-on-exec.

* [Less code than the equivalent F_GETFD/F_SETFD.]

*/

proc_fdlock(p);

if ((error = fp_lookup(p, fd, &fp, 1)) == 0) {

*fdflags(p, fd) &= ~UF_EXCLOSE;

(void) fp_drop(p, fd, fp, 1);

}

proc_fdunlock(p);

}

break;

fp_lookup
will ensure
only valid
fd pass

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 23

proc_fdlock(p);

for (action = 0; action < px_sfap->psfa_act_count; action++) {

_psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];

int fd = psfa->psfaa_filedes;

switch (psfa->psfaa_type) {

case PSFA_DUP2:

fd = psfa->psfaa_openargs.psfao_oflag;

/*FALLTHROUGH*/

case PSFA_OPEN:

case PSFA_INHERIT:

*fdflags(p, fd) |= UF_INHERIT;

break;

case PSFA_CLOSE:

break;

}

}

proc_fdunlock(p);

Is there a write in the second loop?

• second loop also contains an fdflags write (binary OR)

• and fd is either filled from psfaa_filedes or psfaa_openargs.psfao_oflag

• both these variables are checked to only contain valid fd in first loop

another
potential

write

both
validated
in loop 1

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 24

Vulnerable or Not?

• so is this code vulnerable or not?

• in both cases the file descriptors passed to fdflags are verified

• ... but can you spot an important difference in both verifications?

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 25

Write One

• for write one the fd is read from memory

• then verified

• and then used for the write

case PSFA_INHERIT: {

struct fileproc *fp;

int fd = psfa->psfaa_filedes;

/*

* Check to see if the descriptor exists, and

* ensure it's -not- marked as close-on-exec.

* [Less code than the equivalent F_GETFD/F_SETFD.]

*/

proc_fdlock(p);

if ((error = fp_lookup(p, fd, &fp, 1)) == 0) {

*fdflags(p, fd) &= ~UF_EXCLOSE;

(void) fp_drop(p, fd, fp, 1);

}

proc_fdunlock(p);

}

break;

read from
memory

write

verification

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 26

proc_fdlock(p);

for (action = 0; action < px_sfap->psfa_act_count; action++) {

_psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];

int fd = psfa->psfaa_filedes;

switch (psfa->psfaa_type) {

case PSFA_DUP2:

fd = psfa->psfaa_openargs.psfao_oflag;

/*FALLTHROUGH*/

case PSFA_OPEN:

case PSFA_INHERIT:

*fdflags(p, fd) |= UF_INHERIT;

break;

case PSFA_CLOSE:

break;

}

}

proc_fdunlock(p);

Write Two

• in the second loop the used fd is read from memory

• and then used

• no check in second loop because it relies on check of first loop

write

read
from

memory

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 27

Difference in Writes: TOCTOU

• the obvious difference between the writes is the TOCTOU

(Time Of Check Time To Use)

• for write two the final re-read is happening AFTER verification

• for write two the read is happening BEFORE verification

Write One

READ FROM MEMORY

VERIFICATION

WRITE

Write Two

READ FROM MEMORY

VERIFICATION

...

RE-READ FROM MEMORY

WRITE

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 28

Is difference in TOCTOU a vulnerability here?

• Re-phrasing:

Is it possible for the memory containing the fd to change between TOCTOU?

• Under normal circumstances:

The fd is read from memory only this kernel thread has access to.

It does not change the value in-between so no TOCTOU problem.

• But we are not in a normal situation:

We have a vuln that allows file actions to be read from outside the buffer.

Anything outside buffer can be modified at any time by another kernel thread.

=> this is a TOCTOU / race condition vulnerability

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 29

Winning the Race?

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 30

Winning the Race?

• the race condition can only be exploited

if we manage to change the memory

between verification and re-read

• so we need a second thread to do the

modification at the right moment

• we need to have good syncing and be fast

enough to change between check in loop

1 and usage in loop 2

• whenever possible we try to slow down the

vulnerable kernel thread to enlarge the

window of opportunity

Write Two

READ FROM MEMORY

VERIFICATION

...

RE-READ FROM MEMORY

WRITE

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 31

Slowing down exec_handle_file_actions()?

• slowing down a loop can be done by either

• increasing the iterations of the loop

= increasing number of file actions

• slowing down operations inside the loop

= slowing down open() / dup2() / close()

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 32

Increasing number of file actions?

• each file action is 1040 bytes

• file actions are allocated with kalloc()

• so we have either 4kb or 12kb memory

• only space for 3 to 11 file actions

• NOT ENOUGH FOR NOTABLE SLOW DOWN

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 33

Slowing down file actions?

• we cannot slow down dup2()

• we cannot slow down close()

• but what about open() ???

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 34

Manpage of open()
OPEN(2) BSD System Calls Manual OPEN(2)

NAME
open -- open or create a file for reading or writing

SYNOPSIS
#include <fcntl.h>

int
open(const char *path, int oflag, ...);

DESCRIPTION
The file name specified by path is opened for reading and/or writing, as specified by the argument
oflag; the file descriptor is returned to the calling process.

The oflag argument may indicate that the file is to be created if it does not exist (by specifying
the O_CREAT flag). In this case, open requires a third argument mode_t mode; the file is created
with mode mode as described in chmod(2) and modified by the process' umask value (see umask(2)).

The flags specified are formed by or'ing the following values:

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing
O_NONBLOCK do not block on open or for data to become available
O_APPEND append on each write
O_CREAT create file if it does not exist
O_TRUNC truncate size to 0
O_EXCL error if O_CREAT and the file exists
O_SHLOCK atomically obtain a shared lock
O_EXLOCK atomically obtain an exclusive lock
O_NOFOLLOW do not follow symlinks
O_SYMLINK allow open of symlinks
O_EVTONLY descriptor requested for event notifications only
O_CLOEXEC mark as close-on-exec

open supports
file locking

if we open already
locked file

posix_spawn will
sleep until lock is released

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 35

Winning the Race !!!

• turns out that the race condition is easy

to win 100% of the time

• just need to sync with a secondary

thread via file locking

Write Two

READ FROM MEMORY

VERIFICATION

...
OPEN LOCKED FILE
...

RE-READ FROM MEMORY

WRITE

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 36

File Locking Sync

Thread 1

OPEN FILE A (O_EXLOCK)

POSIX_SPAWN

File Action 1
SOME ACTION

File Action 2
CLOSE FILE A (LOCK RELEASE)

... wait for unlock of file B ...

... wait for unlock of file B ...

... wait for unlock of file B ...

File Action 3
OPEN FILE B (O_EXLOCK)

Thread 2

OPEN FILE B (O_EXLOCK)

OPEN FILE A (O_EXLOCK)
... wait for unlock of file A ...
... wait for unlock of file A ...
... wait for unlock of file A ...
... wait for unlock of file A ...

MODIFICATION OF MEMORY
OF FILE ACTION 2

CLOSE FILE B (LOCK RELEASE)

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 37

At this point we have the following

• winning the race is easy with

3 file actions, 2 file locks

and 2 threads

• we need to deal with kalloc.1536 or

bigger

• most of file action 2 and

whole file action 3 outside of buffer

• requires already Heap-Feng-Shui

to achieve this

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 38

How to control the write?

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 39

How to control the write?

• the write is a BINARY OR against UF_INHERIT = 0x20

• we can only set bit 5 in some byte anywhere in memory

• write is relative to fd_ofileflags

• PROBLEM: where is fd_ofileflags?

*fdflags(p, fd) |= UF_INHERIT;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 40

Where is fd_ofileflags?

• fd_ofileflags is allocated after process is started

• and we have no idea where it is

• to find out the address of fd_ofileflags we require some information leak

• we have no information leak that gives us its address :-(

• so we have to abuse the relative write to create a man-made information leak

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 41

Force fd_ofileflags relocation (I)

• fd_ofileflags is allocated in an

unknown position

• to abuse the relative write we need to

be at least able to relocate it

• reallocation happens in fdalloc()

when all file descriptors are

exhausted

• by default we start with a limit

of 256 allowed file descriptors

int fdalloc(proc_t p, int want, int *result)

{

...

lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);

for (;;) {

...

/*

* No space in current array. Expand?

*/

if (fdp->fd_nfiles >= lim)

return (EMFILE);

if (fdp->fd_nfiles < NDEXTENT)

numfiles = NDEXTENT;

else

numfiles = 2 * fdp->fd_nfiles;

/* Enforce lim */

if (numfiles > lim)

numfiles = lim;

proc_fdunlock(p);

MALLOC_ZONE(newofiles, struct fileproc **,

numfiles * OFILESIZE, M_OFILETABL, M_WAITOK);

proc_fdlock(p);

if (newofiles == NULL) {

return (ENOMEM);

}

...

newofileflags = (char *) &newofiles[numfiles];

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 42

Force fd_ofileflags relocation (II)

• forcing a fd_ofileflags reallocation comes down to

• raising the limit for openable files with setrlimit(RLIMIT_NOFILE) to 257

• using dup2() to force use of highest allowed file descriptor

• memory allocation will be for 5 * 257 = 1285

• reallocated fd_ofileflags ends up in the kalloc.1536 zone

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 43

Relocated... What now?

• re-allocation allows to put fd_ofileflags into a relative position to other blocks

• heap-feng-shui in kalloc.1536 zone required

• so what can we do with our relative binary-or of 0x20?

• use Azimuth‘s vm_map_copy_t self locating technique

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 44

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be

behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of

size field of first vm_map_copy_t

• now receive the first message to

information leak the content behind

• discloses the 2nd vm_map_copy_t

including its address

• and also the content of the fd_ofileflags

structure

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 45

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be

behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of

size field of first vm_map_copy_t

• now receive the first message to

information leak the content behind

• discloses the 2nd vm_map_copy_t

including its address

• and also the content of the fd_ofileflags

structure

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 46

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be

behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of

size field of first vm_map_copy_t

• now receive the first message to

information leak the content behind

• discloses the 2nd vm_map_copy_t

including its address

• and also the content of the fd_ofileflags

structure

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 47

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be

behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of

size field of first vm_map_copy_t

• now receive the first message to

information leak the content behind

• discloses the 2nd vm_map_copy_t

including its address

• and also the content of the fd_ofileflags

structure

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 48

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be

behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of

size field of first vm_map_copy_t

• now receive the first message to

information leak the content behind

• discloses the 2nd vm_map_copy_t

including its address

• and also the content of the fd_ofileflags

structure

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 49

What we have so far ...

• fill the kalloc.1536 zone via vm_map_copy_t (OOL mach_msg)

• peek a hole and trigger fd_ofileflags relocation into it (setrlimit + dup2)

• poke two more holes (H1 followed by H2) and

re-fill H2 with our initial file actions 2+3 (close A+open B) (OOL mach msg)

• do posix_spawn

• when it releases file A and waits for file B let other thread modify memory

• ...

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 50

What we have so far ...

• ...

• second thread pokes a hole at H2 and re-fill it with new file actions

• file action 2 is changed from PSFA_CLOSE to PSFA_DUP2

• fd of file action 2 is set to relative position of size field of the first

vm_map_copy_t structure

• second thread closes file B to wake-up posix_spawn

• after posix_spawn has returned with an error receive the first mach message

=> from leaked data we now know the address of fd_ofileflags

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 51

Now write where?

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 52

Now write where?

• we now have the address of fd_ofileflags

• further writes can be anywhere in memory

• what to overwrite to control code execution?

=> many possibilities

=> we go after the size field of a data object to create a buffer overflow

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 53

From Data Objects to Overflows...

• we have to solve the following problems

• how to create a data object to overwrite

• how to get its address so that we know where to write

• and finally destroying the data object to trigger kfree into wrong zone

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 54

Creating Data and Leaking its Address

• creating data objects is easy with OSUnserializeXML()

• we can do this via io_service_open_extended() and properties

• leaking is also easy in our situation

• we put the data object and 256 references to it into an array

• array bucket will be allocated into the kalloc.1536 zone

• we can do this in parallel to the vm_map_copy_t self-locating and leak the

content of the array bucket at the same time

=> this gives us the data object address

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 55

Overwriting and Destroying the Data Object

• we now have to do the posix_spawn() attack again with the

data object‘s capacity field as target

• we can then free the data object by closing the driver

connection again

=> this will free the data buffer into the wrong zone

=> next allocation in that zone will give back a too short buffer

=> we can send a OOL mach_msg to trigger that overflow

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 56

What to overflow into...

• now we can create a heap buffer overflow out of posix_spawn()

• we need a target to overflow into

• again we have a multitude of options

• some examples:

• overflow an IOUserClient created by a driver connection for code exec

• overflow into a vm_map_copy_t for arbitrary information leaks

• ...

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 57

Overflowing into vm_map_copy_t

• by overflowing into a vm_map_copy_t structure we can

• read “any amount“ of bytes from anywhere in kernel into user space

• just need to setup a fake vm_map_copy_t header

• and then receive the message

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 58

Overflowing into a driver connection

• by overflowing into a IOUserClient object instance we can

• replace the vtable with a list of our own methods

• set the retainCount to a high value to not cause problems

=> but what to overwrite the vtable with?

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 59

Vtable where are thou?

• our fake vtable is a list of pointers that we just need to put into memory

• we can put it into kernel memory by sending a mach_msg

• we best use the kalloc.1536 target zone

• cause enough space for a long vtable

• and we already know address of blocks in a relative position to it

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 60

From Vtable to Pwnage

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 61

From Vtable to Pwnage (I)

• at this point we have to select the addresses our vtable should point to

• for this we need to know the current address of the kernel

• and the content of the kernel

• we can use any KASLR information leak for getting the kernel base address

or just leak the vtable of an object via the vm_map_copy_t technique

• the second we can also get by overflowing into vm_map_copy_t instead of a

user client object

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 62

From Vtable to Pwnage (II)

• from here it is easiest to go after IOUserClient external traps

• they can be called from mach_trap 100 iokit_user_client_trap

• allows to call arbitrary functions with arbitrary parameters in the kernel

kern_return_t iokit_user_client_trap(struct iokit_user_client_trap_args *args)

{

kern_return_t result = kIOReturnBadArgument;

IOUserClient *userClient;

if ((userClient = OSDynamicCast(IOUserClient,

iokit_lookup_connect_ref_current_task((OSObject *)(args->userClientRef))))) {

IOExternalTrap *trap;

IOService *target = NULL;

trap = userClient->getTargetAndTrapForIndex(&target, args->index);

if (trap && target) {

IOTrap func;

func = trap->func;

if (func) {

result = (target->*func)(args->p1, args->p2, args->p3, args->p4, args->p5, args->p6);

}

}

userClient->release();

}

return result;

}

fake vtable
needs to

implement this

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 63

From Vtable to Pwnage (III)

• default implementation in IOUserClient does call getExternalTrapForIndex()

• its default is returning NULL

• we should only overwrite getExternalTrapForIndex()

IOExternalTrap * IOUserClient::

getExternalTrapForIndex(UInt32 index)

{

return NULL;

}

IOExternalTrap * IOUserClient::

getTargetAndTrapForIndex(IOService ** targetP, UInt32 index)

{

IOExternalTrap *trap = getExternalTrapForIndex(index);

if (trap) {

*targetP = trap->object;

}

return trap;

}

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 64

From Vtable to Pwnage (IV)

• in our vtable we set getTargetAndTrapForIndex to the original

IOUserClient::getTargetAndTrapForIndex

• and we set getExternalTrapForIndex() to a gadget that

performs the below (e.g. MOV R0, R1; BX LR)

IOExternalTrap * IOUserClient::

OUR_FAKE_getExternalTrapForIndex(void *index)

{

return index;

}

IOExternalTrap * IOUserClient::

getTargetAndTrapForIndex(IOService ** targetP, UInt32 index)

{

IOExternalTrap *trap = getExternalTrapForIndex(index);

if (trap) {

*targetP = trap->object;

}

return trap;

}

index from
user space
will be used

as kernel pointer
to IOExternalTrap

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 65

From Vtable to Pwnage (V)

• by setting the „index“ argument of iokit_user_client_trap to our buffer

• we can call any function in the kernel with up to 7 parameters

kern_return_t iokit_user_client_trap(struct iokit_user_client_trap_args *args)

{

kern_return_t result = kIOReturnBadArgument;

IOUserClient *userClient;

if ((userClient = OSDynamicCast(IOUserClient,

iokit_lookup_connect_ref_current_task((OSObject *)(args->userClientRef))))) {

IOExternalTrap *trap;

IOService *target = NULL;

trap = userClient->getTargetAndTrapForIndex(&target, args->index);

if (trap && target) {

IOTrap func;

func = trap->func;

if (func) {

result = (target->*func)(args->p1, args->p2, args->p3, args->p4, args->p5, args->p6);

}

}

userClient->release();

}

return result;

}

we can
call everything

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 66

Part II

iOS 7 Security Changes

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 67

iOS 7 Security Changes

• as always this cannot be considered a complete list

• it is hard to list all security changes

• because you will only notice those that you

encounter while playing with the kernel

• therefore this list might grow over time

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 68

kernel changes

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 69

System Call Table Hardening (Structure)

• in previous versions of iOS Apple has protected the table by

• removing symbols

• moving variables like the system call number around

• this was done to protect against easy detection in memory / in the binary

• in iOS 7 they went a step further and changed the actual structure of the

system call table entries

 unknown if Apple did this a security protection but it makes all public detectors

fail

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 70

System Call Table Hardening (Access)

• in iOS 6 Apple has moved system call table into __DATA::__const

• this section is read-only at runtime

• protects system call table from overwrites

• but the code would access table via a writable pointer in __nl_symbol_ptr

• iOS 7 fixes this by using PC relative addressing when accessing _sysent

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 71

System Call Table Hardening (Variables)

• potential attack has always been tampering with the nsys variable

• overwriting this allowed referencing memory outside the table

• executing illegal syscalls would have resulted in execution hijack

• iOS 7 fixes this by removing access to the nsys variable

• maximum number of system calls is now hardcoded into the code

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 72

user space changes

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 73

Juice Jacking

• attack vector known for years

• iOS devices vulnerable to malicious USB ports

(e.g. charger)

• malicious USB port can pair with device and use

features like backup, file transfer or activate

developer mode

• in developer mode malware upload is trivial

• largely ignored until BlackHat + US media hyped it

• iOS 7 adds a popup menu as countermeasure

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 74

LaunchDaemon Security

• Apple added code signing for launch daemons in iOS 6.1

• but Apple forgot / or ignored /etc/launchd.conf

• /etc/launchd.conf defines commands launchctl executes on start

• jailbreaks like evasi0n abused this to execute arbitrary existing commands

• in iOS 7 Apple removed usage of this file

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 75

Partial Code Signing Hardening

• many jailbreaks used partial code signing vulnerabilities for persistence

• basically all those exploited the dynamic linker dyld

• with iOS 7 Apple has added a new function called crashIfInvalidCodeSignature

• function touches all segments to cause crashes if invalid signature is provided

int __fastcall ImageLoaderMachO::crashIfInvalidCodeSignature(int a1)
{
int v1; // r4@1
int result; // r0@1
unsigned int v3; // r5@2

v1 = a1;
result = 0;
if (*(_BYTE *)(v1 + 72))
{
v3 = 0;
while ((*(int (__fastcall **)(int, unsigned int))(*(_DWORD *)v1 + 208))(v1, v3)

|| !(*(int (__fastcall **)(int, unsigned int))(*(_DWORD *)v1 + 200))(v1, v3))
{
++v3;
result = 0;
if (v3 >= *(_BYTE *)(v1 + 72))
return result;

}
result = *(_DWORD *)(*(int (__fastcall **)(int, unsigned int))(*(_DWORD *)v1 + 236))(v1, v3);

}
return result;

}

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 76

Library Randomization

• iOS 6 slid the dynamic shared cache between 0x30000000 - 0x3FFFFFFF

• in this 256MB window 21500 different base addresses possible (iPod 4G)

• new devices = more code = less random

• iOS 7 now slides between 0x2C000000 - 0x3FFFFFFF adds 2^13 entropy

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • September 2013 • 77

Questions

