
Attacking the iOS Kernel:

A Look at ‘evasi0n’
Tarjei Mandt

tm@azimuthsecurity.com

@kernelpool

mailto:tm@azimuthsecurity.com

About Me

• Senior Security Researcher at Azimuth Security

• Recent focus on Apple iOS/OSX

• Previously done research on Windows

▫ Windows 8 Heap Internals (w/ Chris Valasek)

▫ http://mista.nu/blog

• In the program committee of a few conferences

▫ WISA 2013 (http://www.wisa.or.kr)

▫ NSC (http://www.nosuchcon.org)

• MSc in Information Security from GUC 

http://mista.nu/blog
http://www.wisa.or.kr/
http://www.nosuchcon.org/

iOS 6

• Apple released iOS 6 in
September 2012

• Large focus on security improvements

▫ E.g. offers kernel address space layout
randomization (KASLR)

• Primarily targets strategies employed in
«jailbreaks»

• Additional security improvements in iOS 6.1

▫ E.g. service hardening (plist signing)

evasi0n Jailbreak

• First public jailbreak on iOS 6

▫ Released February 2013

▫ http://www.evasi0n.com

• Allows users to run unsigned code without
sandbox restrictions

• Comprises several components

▫ Injection vector, persistence (survive reboot), etc.

• Kernel exploit used to gain full control of the
operating system

Talk Outline

• Part 1: iOS 6 Kernel Security

▫ Kernel Address Space Layout Randomization

▫ Kernel Address Space Protection

▫ Information Leak Mitigations

• Part 2: evasi0n Kernel Exploit

▫ Vulnerability

▫ Information Leaking Strategies

▫ Gaining Arbitrary Code Execution

▫ Exploitation Techniques

Recommended Reading

• Presentations/Papers
▫ iOS 6 Kernel Security: A Hacker’s Guide
▫ Dion Blazakis – The Apple Sandbox
▫ Charlie Miller – Breaking iOS Code Signing
▫ Various iOS talks by Stefan Esser

• Books
▫ iOS Hacker’s Handbook
▫ A Guide to Kernel Exploitation: Attacking the Core
▫ OS X and iOS Kernel Programming
▫ Mac OSX and iOS Internals: To the Apple’s Core

Attacking the iOS Kernel

Kernel ASLR

• Goal

▫ Prevent attackers from modifying/utilizing data at
known addresses

• Strategy is two-fold

▫ Randomize kernel image base

▫ Randomize base of kernel_map

Kernel ASLR – Kernel Image

• Kernel base randomized by boot loader (iBoot)

▫ Random data generated

▫ SHA-1 hash of data taken

▫ Byte from SHA-1 hash used to calculate kernel
slide

• Kernel is rebased using the formula:
0x01000000 + (slide_byte * 0x00200000)

▫ If byte is 0, static offset of 0x21000000 is used

Kernel ASLR – Kernel Image

• Calculated value added to the kernel preferred
base later on
▫ Adjusted base = 0x80000000 + slide

• Kernel can be rebased at 256 possible locations
▫ Base addresses are 2MB apart (ARM cache

optimization)
▫ Example: 0x81200000, 0x81400000, …

0xA1000000

• Adjusted base passed to kernel via boot
argument structure

Kernel ASLR – Kernel Map

• Used for kernel allocations of all types

▫ kalloc(), kernel_memory_allocate(), etc.

• Spans all of kernel space

▫ 0x80000000 -> 0xFFFEFFFF

• Kernel-based maps are submaps of kernel_map

▫ zone_map, ipc_kernel_map, etc.

• Initialized by kmem_init()

Kernel ASLR – Kernel Map

• Goal: Make kernel map allocations less
predictable

• Strategy: Randomize the base of the kernel map

▫ Random 9-bit value generated

▫ Multiplied by page size

▫ Resulting value used for initial kernel_map
allocation

▫ 9 bits = 512 different allocation size possibilities

Kernel ASLR – Kernel Map

• Subsequent kernel_map (including submap)
allocations pushed forward by random amount

▫ Allocation silently removed after first garbage
collection

• Behavior can be overridden with «kmapoff»
boot parameter

Kernel ASLR – Kernel Map

Kernel Address Space Protection

• Goal: Prevent user-mode dereference
vulnerabilities (from kernel)

▫ E.g. offset-to-null

• Previously, kernel and user shared address space

• NULL-dereferences were prevented by forcing
binaries to have __PAGE_ZERO section

▫ Does not prevent dereferences above this section

Kernel Address Space Protection

• In iOS 6, the kernel task has its own address
space while executing

▫ Transitioned to with interrupt handlers

▫ Switched between during copyin() / copyout()

• Also configurable on 64-bit OSX with the
no_shared_cr3 boot argument

• User-mode pages therefore not accessible while
executing in kernel mode

Kernel Address Space Protection

Kernel Address Space Protection

• ARMv6+ has two translation table base registers

▫ TTBR0: process specific addresses

▫ TTBR1: OS (kernel) and I/O addresses

• On iOS 6, TTBR1 is mirrored to TTBR0 while the
kernel is executing

• TTBR0 is set to process table during copyin() /
copyout()

▫ Also switches ASID to prevent cache leaks

Kernel Address Space Protection

• Memory is no longer RWX

▫ Kernel code cannot be directly patched

▫ Heap is non-executable

▫ Stack is non-executable

• Syscall table is no longer writable

▫ Moved into DATA const section

Information Leaking Mitigations

• Goals

▫ Prevent disclosure of kernel base

▫ Prevent disclosure of kernel heap addresses

• Strategies

▫ Disables some APIs

▫ Obfuscate kernel pointers for some APIs

▫ Zero out pointers for others

Information Leaking Mitigations

• Previous attacks relied on zone allocator status
disclosure

▫ host_zone_info() / mach_zone_info()

• Allowed attacker to determine the number of
allocations needed to fill a particular zone

▫ Used to defragment a heap

• APIs now require debug access (configured
using boot argument)

Information Leaking Mitigations

• Several APIs disclose kernel object pointers

▫ mach_port_kobject()

▫ mach_port_space_info()

▫ vm_region_recurse()

▫ vm_map_region_recurse()

▫ proc_info(…)

▫ fstat() (when querying pipes)

▫ sysctl(net.inet.* .pcblist)

Information Leaking Mitigations

• Need these APIs for lots of reasons

▫ Often, underlying APIs rather than those
previously listed

• Some pointer values are used as unique
identifiers to user mode

▫ E.g. pipe inode number

• Strategy: Obfuscate pointers

▫ Generate random value at boot time

▫ Add random value to real pointer

Information Leaking Mitigations
/*

 * Initialize the global used for permuting kernel

 * addresses that may be exported to userland as tokens

 * using VM_KERNEL_ADDRPERM(). Force the random number

 * to be odd to avoid mapping a non-zero

 * word-aligned address to zero via addition.

 */

vm_kernel_addrperm = (vm_offset_t)early_random() | 1;

#define VM_KERNEL_ADDRPERM(_v) \

 (((vm_offset_t)(_v) == 0) ? \

 (vm_offset_t)(0) : \

 (vm_offset_t)(_v) + vm_kernel_addrperm)

/*

 * Return a relatively unique inode number based on the current

 * address of this pipe's struct pipe. This number may be recycled

 * relatively quickly.

 */

sb->st_ino = (ino_t)VM_KERNEL_ADDRPERM((uintptr_t)cpipe);

Example use: obfuscated
pipe object pointer

Macro for obfuscating
kernel pointers

Generate random value
at boot time

Information Leaking Mitigations

• Other APIs disclose pointers unnecessarily

▫ Zero them out

• Used to mitigate some leaks via sysctl()

▫ E.g. known process structure info leak

Heap / Stack Hardening

• Cookie introduced to the kernel stack

▫ Aims to mitigate return address overwrite

• Multiple hardenings to the kernel heap

▫ Pointer validation

▫ Block poisoning

▫ Freelist integrity verification

• Described in more detail in «iOS 6 Kernel
Security: A Hacker’s Guide»

Attacking the iOS Kernel

evasi0n

• Uses a kernel vulnerability to gain full control of
the OS kernel

▫ com.apple.iokit.IOUSBDeviceFamily

• Primarily required to evade sandbox restrictions
and code signing enforcement

• Arguably the most complex public kernel exploit
seen to date on iOS

▫ Written by David Wang (@planetbeing)

IOUSBDeviceFamily

• Kernel extension enabling a device to
communicate with a host over USB

▫ E.g. to iTunes or accessory port devices

• Used by various applications and daemons

▫ Picture-transport-protocol daemon

▫ Media server daemon (usb audio streaming)

• Represents the device end, whereas
IOUSBFamily (OSX) represents the host end

IOUSBDeviceInterface

• IOKit class used to represent a USB interface on a
device

• Provides a user client for user space access

▫ IOUSBDeviceInterfaceUserClient

▫ Exposes various methods to support USB interaction

• Commonly accessed from a user-space library
▫ IOUSBDeviceFamily.kext/PlugIns/IOUSBDeviceLib.plugin

▫ Implemented as a CFPlugIn extension

• Accessible to tasks with the USB entitlement
(com.apple.security.device.usb)

IOUSBDeviceInterface Interaction

Application

IOUSBDeviceLib

IOUSBDeviceInterface

User Space

Kernel Space

IOUSBDeviceFamily

IOUSBDeviceInterfaceUserClient

IOCreatePlugInInterface
ForService

Pipe Translation

• A pipe is the communication channel between a
host and a device endpoint

• Applications normally access pipes by their
index value

▫ Index 0: default control pipe

▫ GetNumEndpoints() on interface object

• Value passed in as argument to user client

▫ Translates pipe index to real pipe object

▫ Performs operation with pipe object

Pipe Translation in IOUSBFamily (OSX)

IOReturn

IOUSBInterfaceUserClientV2::ResetPipe(UInt8 pipeRef)

{

 IOUSBPipe *pipeObj;

 IOReturn ret;

 ...

 if (fOwner && !isInactive())

 {

 pipeObj = GetPipeObj(pipeRef);

 if (pipeObj)

 {

 ret = pipeObj->Reset();

 pipeObj->release();

 }

 else

 ret = kIOUSBUnknownPipeErr;

 }

Pipe index translated to pipe
object

User client takes pipe index
(pipeRef) as input

IOUSBFamily-540.4.1\IOUSBUserClient\Classes\IOUSBInterfaceUserClient.cpp

IOUSBDeviceFamily Vulnerability

• The IOUSBDeviceInteface user client does not
operate with pipe index values

▫ Pipe object pointers passed in directly from user
mode

• Methods exposed by the user client only check if
the pipe object pointer is non-null

▫ E.g. read/writePipe, abortPipe, and stallPipe

• An attacker can connect to the user client and
specify an arbitrary pipe pointer

IOUSBDeviceFamily Vulnerability

Application

User Space

Kernel Space

IOUSBDeviceFamily

IOUSBDeviceInterfaceUserClient stallPipe()

Malicious
Pipe Object

stallPipe() Disassembly #1
0000:80660EE8 ; unsigned int stallPipe(int interface, int pipe)

0000:80660EE8

0000:80660EE8 PUSH {R7,LR}

0000:80660EEA MOVW R0, #0x2C2

0000:80660EEE MOV R7, SP

0000:80660EF0 MOVT.W R0, #0xE000

0000:80660EF4 CMP R1, #0 // is pipe object pointer null?

0000:80660EF6 IT EQ

0000:80660EF8 POPEQ {R7,PC} // return if null

0000:80660EFA MOV R0, R1

0000:80660EFC BL __stallPipe // pass in as arg if non-null

0000:80660F00 MOVS R0, #0

0000:80660F02 POP {R7,PC}

stallPipe() Disassembly #2
0000:8065FC60 __stallPipe

0000:8065FC60 LDR R1, [R0,#0x28]

0000:8065FC62 CMP R1, #1 // check if active

0000:8065FC64 IT NE

0000:8065FC66 BXNE LR

0000:8065FC68 LDR R2, [R0,#8] // get object X from pipe object

0000:8065FC6A LDR R1, [R0,#0x20] // get value from pipe object

0000:8065FC6C MOV R0, R2

0000:8065FC6E MOVS R2, #1

0000:8065FC70 B.W sub_80661B70

stallPipe() Disassembly #3
0000:80661B70 ; int sub_80661B70(int interface)

0000:80661B70

0000:80661B70 PUSH {R7,LR}

0000:80661B72 MOV R7, SP

0000:80661B74 SUB SP, SP, #8

0000:80661B76 LDR.W R9, [R0] // get object Y from object X

0000:80661B7A MOV R12, R2

0000:80661B7C LDR R0, [R0,#0x50] // get object Z from X (1st arg)

0000:80661B7E MOV R2, R1 // 3rd arg

0000:80661B80 LDR.W R1, [R9,#0x344] // get value from Y (2nd arg)

0000:80661B84 LDR R3, [R0] // object Z vtable

0000:80661B86 LDR.W R9, [R3,#0x70] // get function from Z vtable

0000:80661B8A MOVS R3, #0

0000:80661B8C STR R3, [SP,#0x10+var_10]

0000:80661B8E STR R3, [SP,#0x10+var_C]

0000:80661B90 MOV R3, R12

0000:80661B92 BLX R9 // call function

0000:80661B94 ADD SP, SP, #8

0000:80661B96 POP {R7,PC}

stallPipe() Object Handling

Pipe Object

+8h object X

…

+20h 3rd arg

…

+28h isActive

Object X

+0h Object Y

…

+50h Object Z

Object Y

…

+344h 2nd arg

Object Z (1st arg)

+0h vtable
function

Object Z vtable

…

+70h function

2nd argument to
function

1st argument to
function

3rd argument to
function

Potentially attacker
controlled object

Called by
stallPipe()

Exploitation

• An attacker who is able to control the referenced
memory can control execution

• On iOS 5, the attacker could allocate memory in
user-mode in order to fully control the object

▫ Easy win

• On iOS 6, user/kernel address space separation
does not allow this

▫ Evasi0n must find a way to inject user controlled
data into kernel memory

Attack Strategy

• Inject user controlled data into kernel memory

▫ Need to control the values of the fake pipe object

• Learn the location of user controlled data

▫ Typically requires an information disclosure

• Learn the base address of the kernel

▫ Required in order to patch sandbox and code
signing checks

• Build read and write primitives

▫ Arbitrary read/write to kernel memory

Information Disclosure

• An application can request a memory mapping
when interacting with IOUSBDeviceInterface

▫ Selector method 18 – createData()

▫ Produces an IOMemoryMap kernel object

• The IOMemoryMap object address is returned to
the user as a «map token»

▫ Object addresses typically used as
handles/identifiers

▫ kalloc(68) -> allocated in the kalloc.88 zone

Information Disclosure
uint64_t length = 1024;

uint64_t output[3];

uint32_t outputCnt = 3;

rc = IOConnectCallScalarMethod(dataPort, 18, &length, 1, output, &outputCnt);

if (KERN_SUCCESS != rc)

{

 printf("Unable to map memory\n");

 return 0;

}

printf("data ptr: %x\n", (uint32_t) output[0]);

printf("capacity: %x\n", (uint32_t) output[1]);

printf("map token: %x\n", (uint32_t) output[2]);

data ptr: 446c000

capacity: 1000

map token: a48fb948

Address in
kalloc.88 zone

IOUSBDeviceInterface
user client

Defragmenting the Kernel Heap

• Information disclosure is more useful with a
predictable kernel heap

▫ Can be used to infer the location of user data

• A defragmented (filled) heap is more predictable

▫ New pages used for subsequent allocations

 Divided into equally sized chunks

 E.g. 88 bytes for kalloc.88 zone

▫ New chunks served in a sequential manner

Defragmenting the Kernel Heap

• evasi0n requests memory mappings until the
kernel heap is defragmented

▫ Waits until it has 9 sequentially positioned
IOMemoryMap objects

• Subsequent allocations assumed to fall directly
next to the last IOMemoryMap object

▫ Target for user data injection

Defragmenting the Kernel Heap

Side
Allocation

IOMemory
Map

Side
Allocation

IOMemory
Map

Free Free Free

IOUSBDeviceInterfaceUserClient

createData()

User data target

kalloc.88 zone
(88-byte memory chunks)

Object address
returned to client

Object address
returned to client

Kernel Space

evasi0n User Space Request memory
mapping

High Address Low Address

Injecting User Controlled Data

• Mach message used to set the contents of the
bordering free data

• Message holds 20 «out-of-line descriptors»

▫ Allows arbitrary sized data to be passed between a
sender and receiver

▫ 40 bytes of user controlled data in each descriptor

• While in transit, ool descriptor data is internally
wrapped by a «vm_map_copy_t» structure

▫ kalloc(48 + 40 bytes data) -> kalloc.88 zone

Injecting User Controlled Data

Message
header

Side
Allocation

IOMemory
Map

Side
Allocation

IOMemory
Map

vm_map_
copy_t

vm_map_
copy_t

vm_map_
copy_t

Out-of-line
descriptor

Out-of-line
descriptor

Out-of-line
descriptor

…

Sender
Destination

port

Created by
evasi0n

Message layout in
kernel memory

Points to data held by
vm_map_copy_t

while in transit

Last 40 bytes is user
defined data kalloc.88 zone

(88-byte memory chunks)

Controlling the Program Counter

• evasi0n can now find its user controlled data in
kernel memory

▫ Relative offset from IOMemoryMap object

• Used to gain control of execution

▫ Crafts a fake pipe object in user data

▫ Provides its pointer to stallPipe()

▫ Fully controls called function pointer and args (…)

• Needs to find a useful function to call

▫ Heap is non-executable

Finding the Kernel Image Base

• Kernel address space is not
entirely randomized

• ARM exception vectors located at
a fixed address

▫ 0xFFFF0000

• Can call the data abort handler
directly to generate a user
exception

• Allows retrieval of all the CPU
registers at the time of exception

Offset Handler

00h Reset

04h Undefined Instruction

08h Supervisor Call (SVC)

0Ch Prefetch Abort

10h Data Abort

14h (Reserved)

18h Interrupt (IRQ)

1Ch Fast Interrupt (FIQ)

ARM vector table
at 0xffff0000

Finding the Kernel Image Base

• evasi0n calls the data abort handler to record the
address of the «faulting» instruction

▫ Sets up an exception state identity handler

• Address used to reveal the base address of
com.apple.iokit.IOUSBDeviceFamily

▫ Located at a fixed offset from the kernel itself

• Retrieves the offset to the kernel image using
OSKextCopyLoadedKextInfo()

▫ Used to compute the kernel image base address

Arbitrary Read and Write

• Ultimate goal of any kernel exploit

• Allows necessary locations in memory to be
patched

▫ E.g. sandbox settings

• evasi0n is no exception

▫ Needs to locate functions in memory

▫ Needs to patch variables in memory

Arbitrary Kernel Memory Read

• Can also leak 4 bytes using exception technique

▫ Controls the memory read into R1 («object Y»)

• Non-ideal method

▫ Requires the heap data to be updated every time

▫ Message must be received and re-sent

• Instead, finds a pointer to memmove()

▫ Scans from the kernel code section base

▫ Follows branching instructions

▫ Looks for a specific bytecode signature

Arbitrary Kernel Memory Read

Arbitrary Kernel Memory Read

• Uses memmove() to read memory back into the
ool descriptor data buffer

▫ Always pointed to by the first argument

▫ memmove(objectZ, source, length)

▫ Source and length is attacker controlled

• Can be copied out to user-mode by receiving the
sent message

• Limited to 24 bytes

▫ Copy starts 16 bytes into the buffer

Arbitrary Kernel Memory Read

Side
Allocation

vm_map_copy_t
header

data
vm_map_copy_t

header
data

IOMemory
Map

Destination
port

Message
header

Out-of-line
descriptor

Out-of-line
descriptor

…

Copies out message
data to user-mode

Destination address
in memmove()

Arbitrary Kernel Memory Read

• Different approach needed for reads > 24 bytes

• Corrupts a vm_map_copy_t structure in order
to leak arbitrary sized data

▫ A size larger than 24 bytes corrupts the next
vm_map_copy_t structure

• Technique presented by Azimuth Security at
Hack In the Box / Breakpoint last year

▫ iOS 6 Kernel Security: A Hacker’s Guide

Data Structure: vm_map_copy_t

Type VM_MAP_COPY_KERNEL_BUFFER

Offset 0

Size 0x100

Kdata <pointer>

Kalloc Size 0x100 + sizeof(vm_map_copy_t)

Data AAAA…. (0x100 bytes)

Pointer to data

Size of data

Data always follows
the header structure

Data Structure Corruption

vm_map_copy_t
header

data
vm_map_copy_t

header
data

Destination address
in memmove()

Source address in
memmove()

Side
Allocation

IOMemory
Map

Data used to overwrite
vm_map_copy_t header

Type VM_MAP_COPY_KERNEL_BUFFER

Offset 0

Size New size

Kdata New address to copy out to user

Kalloc Size 0x100 + sizeof(vm_map_copy_t)

Arbitrary Kernel Memory Write

• Cannot use memmove() technique for patching

▫ evasi0n does not fully control the destination
pointer

• Instead, searches for an STR R1, [R2], BX LR
instruction sequence in memory

▫ Writes four bytes (R1) into the location pointed to
by R2

▫ First argument is irrelevant

• Used for subsequent kernel patches

Patching the Kernel

• Various patches made to the kernel

▫ Disable mandatory code signing

▫ Disable sandbox checks

▫ Enable task_for_pid(0) -> kernel task

▫ Enable RWX protection

▫ Disable service (plist) signing

• Code pages are initially read/executable

▫ Made writable by patching the phyiscal memory
map (kernel_pmap)

Attacking the iOS Kernel

Vulnerability Fix

• Apple has addressed the IOUSBDeviceFamily
vulnerability in iOS 6.1.3

▫ Vulnerable APIs have been disabled

• Also addresses the ARM exception vector
information leak

▫ Checks the caller of the data abort handler

• Still possible to leak the address of
IOMemoryMap objects

Closing Notes

• KASLR and address space separation greatly
complicate kernel exploitation

▫ iOS 5 was a walk in the park 

• Address space information leaks are now
paramount to the attacker

▫ Data injection may also be necessary

• Sandboxing reduces attack surface

▫ Vulnerability can only be triggered by a less
restrictive sandbox (i.e. not from MobileSafari)

Thanks!

• Questions?

• http://blog.azimuthsecurity.com/2013/02/from
-usr-to-svc-dissecting-evasi0n.html

• E-mail

▫ tm@azimuthsecurity.com

▫ kernelpool@gmail.com

http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
mailto:tm@azimuthsecurity.com
mailto:tm@azimuthsecurity.com
mailto:kernelpool@gmail.com

