Attacking the i0S Kernel:
A Look at ‘evasiOn’

Tarjei Mandt

tm@azimuthsecurity.com
@kernelpool

mailto:tm@azimuthsecurity.com

About Me

- Senior Security Researcher at Azimuth Security
» Recent focus on Apple i0S/0OSX
« Previously done research on Windows
s Windows 8 Heap Internals (w/ Chris Valasek)
= http://mista.nu/blog
« In the program committee of a few conferences
» WISA 2013 (http://www.wisa.or.kr)
= NSC (http://www.nosuchcon.org)
« MSc in Information Security from GUC ©

http://mista.nu/blog
http://www.wisa.or.kr/
http://www.nosuchcon.org/

10S 6

- Apple released i0S 6 in
September 2012
- Large focus on security improvements

= E.g. offers kernel address space layout
randomization (KASLR)

- Primarily targets strategies employed in
«jailbreaks»

- Additional security improvements in 10S 6.1
= E.g. service hardening (plist signing)

3rs evasion - iOS 6.0-6.1.2 Jailbreak

)

evasion Jailbreak

- First public jailbreak on iOS 6
= Released February 2013
= http://www.evasion.com

» Allows users to run unsigned code without
sandbox restrictions

- Comprises several components
= Injection vector, persistence (survive reboot), etc.

- Kernel exploit used to gain full control of the
operating system

Talk Outline

- Part 1: 10S 6 Kernel Security
» Kernel Address Space Layout Randomization
= Kernel Address Space Protection
» Information Leak Mitigations
- Part 2: evasion Kernel Exploit
= Vulnerability
= Information Leaking Strategies
= Gaining Arbitrary Code Execution
= Exploitation Techniques

Recommended Reading

- Presentations/Papers
= 10S 6 Kernel Security: A Hacker’s Guide
> Dion Blazakis — The Apple Sandbox
= Charlie Miller — Breaking i0S Code Signing
= Various 108 talks by Stefan Esser
» Books
= 10S Hacker’s Handbook
= A Guide to Kernel Exploitation: Attacking the Core
= OS X and i0S Kernel Programming
» Mac OSX and i0S Internals: To the Apple’s Core

10S 6 Kernel Security

Attacking the iOS Kernel

Kernel ASLR

« Goal

= Prevent attackers from modifying/utilizing data at
known addresses

- Strategy is two-fold
» Randomize kernel image base
= Randomize base of kernel_map

Kernel ASLR - Kernel Image

- Kernel base randomized by boot loader (iBoot)
» Random data generated
= SHA-1 hash of data taken

= Byte from SHA-1 hash used to calculate kernel
slide

- Kernel is rebased using the formula:
0x01000000 + (slide_byte * 0x00200000)
= If byte is 0, static offset of 0x21000000 is used

Kernel ASLR - Kernel Image

- Calculated value added to the kernel preferred
base later on
= Adjusted base = 0x80000000 + slide
- Kernel can be rebased at 256 possible locations
» Base addresses are 2MB apart (ARM cache
optimization)
» Example: 0x81200000, 0x81400000, ...
0xA1000000

- Adjusted base passed to kernel via boot
argument structure

Kernel ASLR - Kernel Map

» Used for kernel allocations of all types
= kalloc(), kernel _memory_allocate(), etc.

- Spans all of kernel space
s 0X80000000 -> OXFFFEFFFF

- Kernel-based maps are submaps of kernel_map
= zone_map, ipc_kernel_map, etc.

- Initialized by kmem_ init()

Kernel ASLR - Kernel Map

- Goal: Make kernel map allocations less
predictable

- Strategy: Randomize the base of the kernel map
= Random 9-bit value generated
= Multiplied by page size
= Resulting value used for initial kernel_map

allocation

s g bits = 512 different allocation size possibilities

Kernel ASLR - Kernel Map

 Subsequent kernel _map (including submap)
allocations pushed forward by random amount
= Allocation silently removed after first garbage
collection
- Behavior can be overridden with «kmapoff»
boot parameter

Kernel ASLR - Kernel Map

0x80000000 [Rris SEent ™) kmap offset: 0 -> 2MB

Kernel Image

Stolen memo \ Kernel

OxFFEFFFFF W
OxFFFFOO00

Static
OxFFFF1000 Pages

i0S 6 Kernel Memory Layout

Kernel Address Space Protection

» Goal: Prevent user-mode dereference
vulnerabilities (from kernel)
= E.g. offset-to-null

- Previously, kernel and user shared address space

- NULL-dereferences were prevented by forcing
binaries to have PAGE ZERO section

= Does not prevent dereferences above this section

Kernel Address Space Protection

» In 10S 6, the kernel task has its own address
space while executing
» Transitioned to with interrupt handlers
= Switched between during copyin() / copyout()

- Also configurable on 64-bit OSX with the
no_shared_cr3 boot argument

- User-mode pages therefore not accessible while
executing in kernel mode

Kernel Address Space Protection

0x00000000 T 0x00000000

User task

|
|
i
|
(Unmapped) |
|
|
|
|
|
|

i0S 6 Process 0x80000000
Memory Layout

0x80000000

L Useraccessible

OXFFFF0O000 Wl Kernel-only accessible OxFFFFO000
OXFFFF1000 OxFFFF1000

Usermode Task Kernel Task

Kernel Address Space Protection

- ARMv6+ has two translation table base registers

s TTBRO: process specific addresses
» TTBR1: OS (kernel) and I/0O addresses

« On 10S 6, TTBR1 is mirrored to TTBRo while the
kernel is executing

- TTBRO is set to process table during copyin() /

copyout()
= Also switches ASID to prevent cache leaks

Kernel Address Space Protection

« Memory is no longer RWX
» Kernel code cannot be directly patched
= Heap is non-executable
= Stack is non-executable
- Syscall table is no longer writable
= Moved into DATA const section

Information Leaking Mitigations

- Goals

= Prevent disclosure of kernel base

= Prevent disclosure of kernel heap addresses
- Strategies

= Disables some APIs

= Obfuscate kernel pointers for some APIs

= Zero out pointers for others

Information Leaking Mitigations

- Previous attacks relied on zone allocator status
disclosure
» host_zone_info() / mach_zone_info()

- Allowed attacker to determine the number of
allocations needed to fill a particular zone
» Used to defragment a heap

- APIs now require debug access (configured
using boot argument)

Information Leaking Mitigations

- Several APIs disclose kernel object pointers
» mach_port_kobject()
= mach_ port_space_info()
s vin__region_recurse()
= vm_map_region_recurse()
= proc_info(...)
= fstat() (when querying pipes)
s sysctl(net.inet.* .pcblist)

Information Leaking Mitigations

« Need these APIs for lots of reasons

= Often, underlying APIs rather than those
previously listed

- Some pointer values are used as unique
identifiers to user mode
= E.g. pipe inode number
- Strategy: Obfuscate pointers
= Generate random value at boot time
» Add random value to real pointer

Information Leaking Mitigations

Generate random value

/*
* Initialize the global used for permuting kernel at boot time
* addresses that may be exported to userland as tokens
* using VM KERNEL ADDRPERM(). Force the random number
* to be odd to avoid mapping a non-zero
* word-aligned address to zero via addition.
%/ Macro for obfuscating
vm_kernel addrperm = (vm offset t)early random() | 1; kernel;xﬁnters
#define VM KERNEL ADDRPERM(v)
(((vm_offset t) (v) == 0) ? \
Example use: obfuscated (vim_offset_t) (0) \
pipe Object pointer (vm_offset_t) (_V) + vm_kernel_addrperm)
/x0T
* Return a relatively unique inode number based on the current
* address of this pipe's struct pipe. This number may be recycled
* relatively quickly.
*/

sb->st_ino = (ino_t)VM KERNEL ADDRPERM((uintptr t)cpipe);

Information Leaking Mitigations

« Other APIs disclose pointers unnecessarily
» Zero them out

- Used to mitigate some leaks via sysctl()
= E.g. known process structure info leak

Heap / Stack Hardening

 Cookie introduced to the kernel stack
= Aims to mitigate return address overwrite
» Multiple hardenings to the kernel heap
= Pointer validation
= Block poisoning
= Freelist integrity verification
 Described in more detail in «10S 6 Kernel
Security: A Hacker’s Guide»

evasiOn Kernel Exploit

Attacking the iOS Kernel

evasion

» Uses a kernel vulnerability to gain full control of
the OS kernel
= com.apple.iokit. IOUSBDeviceFamily

- Primarily required to evade sandbox restrictions
and code signing enforcement

- Arguably the most complex public kernel exploit
seen to date on 10S
= Written by David Wang (@planetbeing)

|OUSBDeviceFamily

- Kernel extension enabling a device to
communicate with a host over USB
= E.g. to 1Tunes or accessory port devices

» Used by various applications and daemons
= Picture-transport-protocol daemon
= Media server daemon (usb audio streaming)

- Represents the device end, whereas
IOUSBFamily (OSX) represents the host end

|OUSBDevicelnterface

« IOKit class used to represent a USB interface on a
device

- Provides a user client for user space access
= JOUSBDevicelnterfaceUserClient
= Exposes various methods to support USB interaction

- Commonly accessed from a user-space library
s JOUSBDeviceFamily.kext/Plugins/IOUSBDeviceLib.plugin
= Implemented as a CFPlugln extension

 Accessible to tasks with the USB entitlement
(com.apple.security.device.usb)

|OUSBDevicelnterface Interaction

User Space Application
bP IOCreatePlugInInterface

ForService

IOUSBDeviceLib

IOUSBDevicelnterface

IOUSBDevicelnterfaceUserClient

IOUSBDeviceFamily

Kernel Space

Pipe Translation

- A pipe is the communication channel between a
host and a device endpoint

- Applications normally access pipes by their
index value
» Index 0: default control pipe
s GetNumEndpoints() on interface object

- Value passed in as argument to user client
» Translates pipe index to real pipe object
= Performs operation with pipe object

Pipe Translation in IOUSBFamily (OSX)

IOReturn

IOUSBInterfaceUserClientV2::ResetPipe (UInt8 pipeRef)
{

IOUSBPipe

*pipeObij;
IOReturn

ret;

User client takes pipe index

(pipeRef) as input

if (fOwner && !isInactive())

{

pipeObj = GetPipeObj (pipeRef) ;
Pipe index translated to pipe if (pipeOb7)

object {

ret = pipeObj->Reset () ;
pipeObj->release();

ret = kIOUSBUnknownPipeErr;

IOUSBFamily-540.4.1\I0USBUserClient\Classes\IOUSBInterfaceUserClient.cpp

|OUSBDeviceFamily Vulnerability

« The IOUSBDevicelnteface user client does not
operate with pipe index values

= Pipe object pointers passed in directly from user
mode

« Methods exposed by the user client only check if
the pipe object pointer is non-null
= E.g. read/writePipe, abortPipe, and stallPipe

- An attacker can connect to the user client and
specify an arbitrary pipe pointer

|OUSBDeviceFamily Vulnerability

User Space

Malicious
Pipe Object

IOUSBDevicelnterfaceUserClient stallPipe()

IOUSBDeviceFamily

Kernel Space

stallPipe() Disassembly #1

0000:80660EE8 ; unsigned int stallPipe(int interface, int pipe)
0000:80660EES8

0000:80660EES8 PUSH {R7,LR}

0000:80660EEA MOVW RO, #0x2C2

0000:80660EEE MOV R7, SP

0000:80660EF0 MOVT.W RO, #0xE000

0000:80660EF4 CMP R1, #0 // is pipe object pointer null?
0000:80660EF6 IT EQ

0000:80660EF8 POPEQ {R7,PC} // return if null
0000:80660EFA MOV RO, RI1

0000:80660EFC BL __stallPipe // pass in as arg if non-null
0000:80660F00 MOVS RO, #0

0000:80660F02 POP {R7,PC}

stallPipe() Disassembly #2

0000:8065FC60 _ stallPipe

0000:8065FC60 LDR R1, [RO,#0x28]

0000:8065FC62 CMP R1, #1 // check if active

0000:8065FC64 IT NE

0000:8065FC66 BXNE LR

0000:8065FC68 LDR R2, [RO, #8] // get object X from pipe object
0000:8065FC6A LDR R1, [RO,#0x20] // get value from pipe object
0000:8065FC6C MOV RO, R2

0000:8065FC6E MOVS R2, #1

0000:8065FC70 B.W sub 80661B70

stallPipe() Disassembly #3

0000:80661B70 ; int sub 80661B70 (int interface)
0000:80661B70

0000:80661B70 PUSH {R7,LR}

0000:80661B72 MOV R7, SP

0000:80661B74 SUB Sp, SP, #8

0000:80661B76 LDR.W R9, [RO] // get object Y from object X
0000:80661B7A MOV R12, R2

0000:80661B7C LDR RO, [RO,#0x50] // get object Z from X (1lst arg)
0000:80661B7E MoV R2, R1 // 3rd arg

0000:80661B80 LDR.W R1, [R9,#0x344] // get value from Y (2nd arg)
0000:80661B84 LDR R3, [RO] // object Z vtable
0000:80661B86 LDR.W R9, [R3,#0x70] // get function from Z vtable
0000:80661B8A MOVS R3, #0

0000:80661B8C STR R3, [SP,#0x10+var 10]

0000:80661B8E STR R3, [SP,#0x10+var C]

0000:80661BS0 MOV R3, R12

0000:80661B92 BLX R9 // call function
0000:80661B%4 ADD SpP, SP, #8

0000:80661B96 POP {R7,PC}

stallPipe() Object Handling

Potentially attacker A 4 v ond argument to
controlled object Object X Object Y function

~ +oh Object Y
Pipe Object

+50h Object Z

+344h 2nd arg

+8h object X

I‘..

-
n
]
-

+20h 3rd arg

Object Z (1st arg) Object Z vtable

+0h vtable
+70h function

Called by

+28h isActive

3rd argument to
function

1st argument to stallPipe()

function

Exploitation

- An attacker who is able to control the referenced
memory can control execution

« On i0S 5, the attacker could allocate memory in
user-mode in order to fully control the object
= Easy win

« On i0S 6, user/kernel address space separation
does not allow this

= Evasion must find a way to inject user controlled
data into kernel memory

Attack Strategy

- Inject user controlled data into kernel memory
= Need to control the values of the fake pipe object
- Learn the location of user controlled data
= Typically requires an information disclosure
- Learn the base address of the kernel
= Required in order to patch sandbox and code
signing checks
» Build read and write primitives
= Arbitrary read /write to kernel memory

Information Disclosure

- An application can request a memory mapping
when interacting with IOUSBDevicelnterface
= Selector method 18 — createData()
= Produces an IOMemoryMap kernel object

« The IOMemoryMap object address is returned to
the user as a «map token»

= Object addresses typically used as
handles/identifiers

= kalloc(68) -> allocated in the kalloc.88 zone

Information Disclosure

uint64 t length = 1024;
uint64 t output[3]; IOUSBDevicelnterface

uint32 t outputCnt = 3; user client
N

rc = IOConnectCallScalarMethod(dataPort, 18, &length, 1, output, &outputCnt);

if (KERN SUCCESS != rc)

{
printf ("Unable to map memory\n"); data ptr: 446c000
return 0; capacity: 1000

} map token: a48fb948

printf("data ptr: %$x\n", (uint32 t) output[0]);

printf("capacity: %x\n", (uint32 t) output[l]); Address in

kalloc.88 zone

printf("map token: %x\n", (uint32 t) output[2]);

Defragmenting the Kernel Heap

» Information disclosure is more useful with a
predictable kernel heap
= Can be used to infer the location of user data

- A defragmented (filled) heap is more predictable

= New pages used for subsequent allocations
- Divided into equally sized chunks
- E.g. 88 bytes for kalloc.88 zone

= New chunks served in a sequential manner

Defragmenting the Kernel Heap

- evasion requests memory mappings until the
kernel heap is defragmented

» Waits until it has 9 sequentially positioned
IOMemoryMap objects

- Subsequent allocations assumed to fall directly
next to the last IOMemoryMap object
= Target for user data injection

Defragmenting the Kernel Heap

User Space Request memory

mapping

Kernel Space

—
createData()

—
| |
| |

Low Address User data target

IIIIIIIIIIIIIIIIIIIIII.

IOMemory Side IOMemory
Map Allocation Map Allocation

o
...

kalloc.88 zone Object address Object address
(88-byte memory chunks) returned to client returned to client

Injecting User Controlled Data

- Mach message used to set the contents of the
bordering free data
- Message holds 20 «out-of-line descriptors»

= Allows arbitrary sized data to be passed between a
sender and receiver

= 40 bytes of user controlled data in each descriptor
- While in transit, ool descriptor data is internally

wrapped by a «vmm_map_ copy_t» structure

= kalloc(48 + 40 bytes data) -> kalloc.88 zone

Injecting User Controlled Data

Message layout in Created by
S kernel memory evasion
‘ \ Destination
port

E Message Out-of-line Out-of-line Out-of-line ?
S header descriptor descriptor descriptor aaaaasasaass
llllllllllllllllllllllllllllllllll: : : POintStOdataheldby

: llllllllllllllllllllllllllllllll: : Vm_map_copy_t

E - while in transit

IOMemory Side IOMemory Side
Map Allocation Map Allocation

o
..

Last 40 bytes is user
kallOC.88 zone defined data

(88-byte memory chunks)

Controlling the Program Counter

- evasion can now find its user controlled data in
kernel memory
= Relative offset from IOMemoryMap object
» Used to gain control of execution
= Crafts a fake pipe object in user data
= Provides its pointer to stallPipe()
= Fully controls called function pointer and args (...)
- Needs to find a useful function to call
= Heap is non-executable

Finding the Kernel Image Base

- Kernel address space is not | Offset | Handler
. . ooh Reset
entlrely randomlzed 04h Undefined Instruction

- ARM exception vectors located at osh supervisor call svo)

. oCh Prefetch Abort
a fixed address e ——
= OXFFFF0000 14h (Reserved)

18h Interrupt (IRQ)

 Can call the data abort handler iCh FastInterrupt (FIQ)

directly to generate a user
at oxftffoooo

- Allows retrieval of all the CPU
registers at the time of exception

Finding the Kernel Image Base

- evasion calls the data abort handler to record the
address of the «faulting» instruction
= Sets up an exception state identity handler

» Address used to reveal the base address of
com.apple.iokit.IOUSBDeviceFamily
= Located at a fixed offset from the kernel itself

- Retrieves the offset to the kernel image using
OSKextCopyLoadedKextInfo()

= Used to compute the kernel image base address

Arbitrary Read and Write

- Ultimate goal of any kernel exploit
- Allows necessary locations in memory to be
patched
= E.g. sandbox settings
* evasion 1s no exception
= Needs to locate functions in memory
= Needs to patch variables in memory

Arbitrary Kernel Memory Read

- Can also leak 4 bytes using exception technique
s Controls the memory read into R1 («object Y»)

- Non-ideal method
= Requires the heap data to be updated every time
= Message must be received and re-sent

- Instead, finds a pointer to memmove()
= Scans from the kernel code section base
» Follows branching instructions
= Looks for a specific bytecode signature

Arbitrary Kernel Memory Read

_eXli__Textiseass/48

_ TEXT:_ _text:2@888744 } ===s=========== S UB RO UT I N E ==sss===s====s====ss===s=s==s=s========
_ TEXT:_ _text:2@888744

__TEXT:_ _text:B82888744 ; Attributes: bp-based frame

_ TEXT:_ _text:22888744

__ TEXT:__text:E@888744 ; void *memmove(void *, const void *, size_t)

__TEXT:_ _text:B82888744 EXPORT _memmove

__TEXT:_ _text:82888744 _memmove ; CODE XREF: sub_BBe247F4+BA1p
__TEXT:_ _text:82088744 ; sub_B888e47F4+E41p ...
__TEXT:_ _text:B8e888744 CMP R2, #8 ; _memcpy

__TEXT:_ _text:22088748 CMPNE R®, R1

_ TEXT:_ _text:8208874C BXEQ LR

__ TEXT:_ _text:22888750 STMFD Sp!, {R@,R4,R5,R7,LR}

_ TEXT:_ _text:22888754 ADD R7, SP, #@xC

__TEXT:__text:82888758 814 81 38 48 28 SUBCS R3, R8, R1

__ TEXT:_ _text:2@08875C 814 @@ 38 41 3@ SUBCC R3, R1, R

__ TEXT:_ _text:2@088760 814 82 @8 53 E1 cMP R3, R2

__ TEXT:_ _text:2@088764 814 51 @8 88 3A BCC loc_BSB9E8EER

TEXT: text:B8288B768

Arbitrary Kernel Memory Read

» Uses memmove() to read memory back into the
ool descriptor data buffer
= Always pointed to by the first argument
= memmove(objectZ, source, length)
= Source and length is attacker controlled

- Can be copied out to user-mode by receiving the
sent message

- Limited to 24 bytes
= Copy starts 16 bytes into the buffer

Arbitrary Kernel Memory Read

Copies out message

data to user-mode

Message Out-of-line Out-of-line b Destination
header descriptor descriptor 3 port

A

vm_map_ copy_t vm_map_copy_t IOMemory Side.
header header Map Allocation

Destination address
in memmove()

Arbitrary Kernel Memory Read

- Different approach needed for reads > 24 bytes
 Corrupts a vm_map_ copy_t structure in order
to leak arbitrary sized data
= A size larger than 24 bytes corrupts the next
vim__map_ copy_t structure
 Technique presented by Azimuth Security at
Hack In the Box / Breakpoint last year
= 10S 6 Kernel Security: A Hacker’s Guide

Data Structure: vm_map_copy_t

Type VM_MAP_ COPY KERNEL BUFFER
7 Size 0x100

. e Kdata <p0inter> T "
Pointer to data 5

" Kalloc Size 0x100 + sizeof(vin_map_copy_t)

Data always follows
the header structure .

“ Data AAAA.... (0x100 bytes) SIAEY (TREE ;

Data Structure Corruption

Type VM_MAP_COPY_KERNEL BUFFER
Offset (0]

Size New size

Kdata New address to copy out to user
Kalloc Size =~ 0x100 + sizeof(vm_map_ copy_t)

Source address in
memmove()

vm_map_ copy_t St L\ map_copy_t IOMemory Side.
header header Map Allocation

Data used to overwrite
vm_map_ copy_t header

Destination address
in memmove()

Arbitrary Kernel Memory Write

- Cannot use memmove() technique for patching

= evasion does not fully control the destination
pointer

 Instead, searches for an STR R1, [R2], BX LR
instruction sequence in memory
= Writes four bytes (R1) into the location pointed to
by R2
= First argument is irrelevant
- Used for subsequent kernel patches

Patching the Kernel

- Various patches made to the kernel
= Disable mandatory code signing
= Disable sandbox checks
= Enable task_for pid(o) -> kernel task
= Enable RWX protection
= Disable service (plist) signing
- Code pages are initially read/executable

= Made writable by patching the phyiscal memory
map (kernel_pmap)

Conclusion

Attacking the iOS Kernel

Vulnerability Fix

- Apple has addressed the IOUSBDeviceFamily
vulnerability in 10S 6.1.3
= Vulnerable APIs have been disabled

- Also addresses the ARM exception vector
information leak
= Checks the caller of the data abort handler

- Still possible to leak the address of
IOMemoryMap objects

Closing Notes

- KASLR and address space separation greatly
complicate kernel exploitation
= 10S 5 was a walk in the park ©

- Address space information leaks are now
paramount to the attacker
= Data injection may also be necessary

- Sandboxing reduces attack surface

» Vulnerability can only be triggered by a less
restrictive sandbox (i.e. not from MobileSatari)

Thanks!

« Questions?

o http://blog.azimuthsecurity.com/2013/02/from
-usr-to-sve-dissecting-evasion.html

« E-mail
s tm@azimuthsecurity.com
= kernelpool@gmail.com

http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html
mailto:tm@azimuthsecurity.com
mailto:tm@azimuthsecurity.com
mailto:kernelpool@gmail.com

