
1	
	

MACTANS: 	 IN JECT ING	 MALWARE 	 INTO	
IOS 	 DEV ICES 	 V IA 	 MAL IC IOUS 	

CHARGERS 	

BILLY	 LAU,	 YEONGJIN	 JANG,	 CHENGYU	 SONG,	 	
TIELEI	 WANG,	 AND	 PAK	 HO	 CHUNG	

GEORGIA	 INSTITUTE	 OF	 TECHNOLOGY,	 ATLANTA,	 GA,	 USA	
BILLY@CC.GATECH.EDU, 	 YEONGJIN.JANG@GATECH.EDU, 	

CSONG84@GATECH.EDU, 	 TIELEI@GATECH.EDU, 	
PCHUNG34@MAIL.GATECH.EDU	

1. ABSTRACT	

Apple iOS devices are considered by many to be more secure than other mobile offerings. In
evaluating this belief, we investigated the extent to which security threats were considered when
performing everyday activities such as charging a device. The results were alarming: despite the
plethora of defense mechanisms in iOS, we successfully injected arbitrary software into current-
generation Apple devices running the latest iOS software. All users are affected, as our approach
requires neither a jailbroken device nor user interaction.

In this paper, we show how an iOS device can be compromised within one minute of being
plugged into a malicious charger. We first examine Apple’s existing security mechanisms to
protect against arbitrary software installation, and then describe how USB capabilities can be
leveraged to bypass these defense mechanisms. To demonstrate persistence of the resulting
infection, we detail how an attacker can hide their software in the same way Apple hides its own
built-in applications.

To demonstrate practical application of these vulnerabilities, we built a proof-of-concept
malicious charger, called Mactans, using a BeagleBoard. This hardware was selected to
demonstrate the ease with which innocent-looking but malicious USB chargers can be
constructed. While Mactans was built with a limited amount of time and a small budget, we also
briefly consider what more motivated, well-funded adversaries could accomplish. Finally, we
recommend ways in which users can protect themselves and suggest security features Apple
could implement to make the attacks we describe substantially more difficult to pull off.

2	
	

	

2. INTRODUCTION	

In recent years, consumers have shifted their attention from traditional computing devices such as
PCs and laptops to mobile devices such as smart phones and tablets. Although these devices come
with new security features, they are not bulletproof. Given the predominance of Apple’s iOS
devices, we set out to explore how well users are protected against various types of attacks when
using products such as the iPhone or iPad.

Currently, iOS is considered by many to be more secure than other mobile offerings, based on
security mechanisms such as mandatory code signing, app sandboxing, and a single, centralized
app store. In evaluating this belief, we examined how Apple’s existing security mechanisms
protect against arbitrary software installation and execution. Specifically, we investigated the
extent to which security threats were considered when performing everyday activities such as
charging a device. The results were alarming: despite the plethora of defense mechanisms in iOS,
we successfully injected arbitrary software (in a surreptitious manner) into current-generation
Apple devices running the latest operating system. So far, this attack works on devices equipped
with iOS versions up to and including iOS 6.

To demonstrate practical application of these vulnerabilities, we built a proof-of-concept
malicious charger, called Mactans, using a BeagleBoard. This hardware was selected to
demonstrate the ease with which innocent-looking but malicious USB chargers can be
constructed. The name was chosen to portray the characteristics of a species of spider commonly
known as the Black Widow, whose bite delivers potent neurotoxin that can be deadly to humans.
While Mactans was built with a limited amount of time and a small budget, in Section	 5.1	 we
also briefly consider what more motivated, well-funded adversaries could accomplish.

To provide a defense against such attacks, in Section	 5.3	 we recommend mitigations that Apple
could implement to make the attacks we describe substantially more difficult to pull off.
Following our disclosure to Apple, we received an email from Apple Product Security that
invited us to test iOS 7 Beta 2. Upon examination, we discovered that Apple had implemented
one of our recommendations to require user consent for an iOS device to be paired with an
unknown host for the first time.

3	
	

3. OBSERVATIONS	

We begin by describing observations made during the course of our security research that enabled
us to circumvent existing security features of iOS, install and execute arbitrary apps. The attack
consists of injecting an arbitrary app into an iOS device through a USB cable connected to a
custom-made malicious charger. Additional details are provided in Section	 4, while possible
mitigations are suggested in Section	 5.

3.1	 PHYSICAL	 WEAKNESS	 DESCRIPTIONS	

The weaknesses we describe affect iOS devices up to and including those running iOS 6.
Following the client-server communication model, we refer to the iOS device as client, and the
entity that attempts to communicate with the client as the host. Using this terminology, below is a
list of weaknesses we discovered.

3.1.1	 ANY	 HOST	 CAPABLE	 OF	 ESTABLISHING	 A	 SESSION	 WITH	 THE	 CLIENT	 IS	 IMPLICITLY	
TRUSTED	 BY	 THE	 CLIENT	

As a result, without the user’s permission, any host that understands the proprietary (SSL) XML
RPC-like communications protocol like that used by iTunes to communicate with an iOS device
can similarly and directly query or modify the state of the client. We note that this
communication protocol lacks proper authentication and assumes trust too broadly. The
consequence of this weakness is further described in Section	 4.

3.1.2	 THE	 CLIENT	 DOES	 NOT	 SEEK	 THE	 USER’S	 CONSENT	 FOR	 ACTIONS	 THAT	 WOULD	
ALTER	 ITS	 STATE	 AND	 PROVIDES	 NO	 INDICATION	 TO	 THE	 USER	 WHEN	 ITS	 STATE	 (I.E.,	

UDID)	 IS	 QUERIED	

As a result, the scenarios described in Section	 4.2	 through Section	 4.4	 can occur automatically
without the user’s consent or knowledge. This weakness is a security problem with significant
consequences.

4	
	

3.1.3	 APPLICATIONS	 INSTALLED	 ON	 THE	 CLIENT	 CAN	 BE	 HIDDEN	 IN	 THE	 SAME	 WAY	
APPLE	 HIDES	 ITS	 OWN	 IOS	 SYSTEM	 APPLICATIONS	 (E.G.,	 FIELDTEST.APP)	

As a result, the execution (through a weakness described in Section	 3.1.4) of a hidden
application installed by the host will not be visible (e.g., via SpringBoard or the iOS main screen)
to the user. This characteristic contradicts the popular assumption that all installed apps are
visible and therefore enumerable from the SpringBoard. In addition, it permits malware-like apps
to be installed without leaving any traces visible to the user.

3.1.4	 THE	 HOST	 CAN	 EXECUTE	 APPLICATIONS	 ON	 THE	 CLIENT	 (I.E.,	 DEBUGSERVER)	
WITHOUT	 THE	 USER’S	 CONSENT	

As a result, and in combination with the weaknesses described in the previous sections, the host
could mount an Apple-signed disk image (DeveloperDiskImage.dmg) and launch
com.apple.debugserver to execute an installed application regardless of whether it is
hidden.

3.1.5	 THE	 USE	 OF	 THE	 APPLE	 PROVISIONING	 PORTAL	 CAN	 BE	 EASILY	 AUTOMATED	 TO	
OBTAIN	 A	 PROVISIONING	 PROFILE	

As a result, provisioning profiles can be obtained automatically by submitting UDIDs of target
devices. Thus, potential attacks do not need to depend on availability of an Enterprise
Provisioning Profile, which while imposing no cap on the number of devices, is more difficult to
obtain.

3.2	 UNIFIED	 DATA,	 CONTROL,	 AND	 POWER	 INTERFACE	

Due to space and user-convenience considerations, iOS designers have built a unified hardware
interface that serves two primary functions:

1. Charging the battery of the iOS device, and
2. Facilitating data communications and device control.

Such choices can be seen in the form of Apple’s 30-Pin dock connector (for older devices) and
Lightning USB interfaces (for newer devices). This minimalism continues in software – we
noticed that there are no visual indicators on the screen when an iOS device is being plugged into
a host which can alter the state of a device. These observations motivated us to explore attacks
that exploit this absence of information.

5	
	

4.	 IOS	 MALWARE	 INJECTION	 ATTACK	

Using the observations described in the previous section, we chained together weaknesses and the
potential threat vector mentioned in Section	 3.2 to construct an end-to-end malware injection
attack for iOS devices. As a proof-of-concept, we successfully injected a malicious app into a
target iOS device that was plugged into a fake USB charger; this attack requires neither a
jailbroken device nor user interaction. While some users may already be aware that connecting a
mobile device to a compromised computer could lead to a compromise of the device, there is
usually little concern given when the connection for a mobile device appears to be simply a
device charger. As a result, the charger is often trusted implicitly.

With the above context as a guide, we investigated the extent to which commodity USB-based
functionalities can be miniaturized and arrived at the idea of integrating a computer into the space
profile of a charger, which we later called Mactans. With Mactans, the assumption that chargers
are trustable does not hold. Using small financial and time budgets, we were able to build a proof-
of-concept charger out of inexpensive, commodity hardware, the BeagleBoard, which is a
functional mini-computer on an 8cm x 7.5cm board.

4.1	 PROOF-‐OF-‐CONCEPT	 REQUIREMENTS	

Below are the requirements for the proof-of-concept attack we describe in this section.

-‐ Apple 30-Pin or Lightning USB cable
-‐ Active iOS individual developer’s license
-‐ iOS device (target)
-‐ Internet connection (via Wi-Fi or cellular data connection)
-‐ Mactans charger, consisting of:

o A USB port that can provide power
o Small scale microprocessor/microcontroller
o Linux operating system
o iOS XML RPC communications library (e.g., libimobiledevice)

4.2	 OBTAINING	 UDID	

A Unique Device Identifier (UDID) is a 40 digit hexadecimal number that serves as a fingerprint
of an iOS device. It was originally used by app developers to uniquely identify different devices
for various purposes. However, today the UDID is considered a sensitive piece of information
and its use in regular apps has been deprecated since iOS 5.01. Therefore, unauthorized access to
the UDID can be considered a privacy leak.

In our proof-of-concept attack, obtaining the UDID is an essential preliminary step in preparing
the target device for app injection. To obtain the UDID, we simply query the device’s USB

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	
https://developer.apple.com/library/ios/#documentation/uikit/reference/UIDevice_Class/DeprecationAppen
dix/AppendixADeprecatedAPI.html	

6	
	

identifier using standard tools such as lsusb. The UDID can be obtained even if the device is
passcode-locked.

4.3	 OBTAINING	 &	 INSTALLING	 A	 PROVISIONING	 PROFILE	

Once obtained, the UDID can be used to create a provisioning profile for the target device, which
will allow the injection of attacker-decided applications. A provisioning profile is a
cryptographically signed file that contains information about the developer who created the
profile as well as UDIDs of devices that can execute apps signed by this developer. To maintain
control of the walled garden model, all provisioning profiles are signed by Apple. Without an
appropriate provisioning profile, the installation of arbitrary apps will be rejected by iOS on the
target device.

Creation of a provisioning profile introduces the requirement of a working internet connection for
Mactans. Specifically, the UDID must be submitted to developer.apple.com for profile
generation. There are at least two ways to fulfill this requirement:

1. Mactans can be equipped with 3G/4G cellular capabilities via a SIM card module.
Moreover, there are SIM vendors that provide anonymous cellular activation; Mactans can thus
be on-air anonymously. Therefore, Mactans can directly connect to the Apple Provisioning
Portal, submit the UDID of a target device, and then obtain a provisioning profile for that device.

2. Mactans can be equipped with Wi-Fi capabilities via various wireless modules. Under
this option, connecting to the Internet will be a matter of scanning for unprotected access points,
cracking weak access points2, brute forcing wireless passwords, or tunneling over DNS.

With Internet connectivity, Mactans can generate a provisioning profile that is unique to the
victim device containing the UDID obtained previously. With a provisioning profile in hand,
Mactans can trivially install it onto the target device through communication with
com.apple.misagent (via lockdownd).

4.4	 INJECT	 MALICIOUS	 APP	

After the provisioning profile has been installed successfully, Mactans will proceed to inject an
arbitrary app into the iOS device. This step is performed via communication with
com.apple.mobile.installation_proxy. In our proof-of-concept, we demonstrate the
significance of a Mactans attack by showing how it can be used to inject a Trojan horse Facebook
app; please see the presentation slides that accompany this whitepaper for additional details.

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 Aircrack & Reaver	

7	
	

4.5	 PAYLOAD	

Even though Mactans can inject any app into the target device, another hurdle exists for the
payload: app sandboxing. In our proof-of-concept, Mactans does not perform jailbreaking nor
does it escape from the sandbox; the injected app has the same privileges as other regular apps
(i.e., those of the ‘mobile’ account). However, a Mactans-injected app completely bypasses
Apple’s App Store review process. In combination with publicly available information about
various private iOS APIs3, attackers can create apps that would otherwise be rejected during the
app review process.

As examples of private API abuses, we introduce two proof-of-concept capabilities of a potential
payload app. First, as a live background process, such an app can take a screenshot of the current
foreground screen by making a private API call. Second, an injected app could generate screen
touch events and simulate the hardware button presses by exploiting functionality available in
private libraries present in DeveloperDisk.dmg after mounting it through communication
with com.apple.mobile_image_mounter.

	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 https://github.com/nst/iOS-Runtime-Headers

8	
	

	

5.	 DISCUSSION	

5.1	 ATTACK	 SCENARIOS	

In this section, we discuss possible scenarios in which an attack could be successful.

5.1.1	 GOVERNMENT	 TARGETED	 ATTACK	

In this scenario, an attacker wishing to target a particular individual could provide a suitably
packaged Mactans charger to the target. While this vector requires careful construction of a
malicious charger that looks indistinguishable from an original Apple accessory, such an
approach by a nation state is well within the realm of plausibility.

Alternatively, a priori knowledge of the target could be leveraged by a resourceful attacker to
selectively modify the environment. Examples include installation of a custom, Mactans-like
charger in a specific airplane seat or hotel room (e.g., built into a console or desk).

5.1.2	 GENERAL	 ATTACK	

In a more general scenario, a Mactans charger can be installed in a public waiting area. One
example of such a station is pictured in Figure	 1. High-traffic areas, such as airports, could result
in many hundreds of victims each day.

9	
	

	

Figure	 1: A user replenishing the battery of his iPad at a
public charging station while he continues to use it.

5.2	 SECURITY	 CONSEQUENCES	

Although we deliberately chose to implement weaker payloads as in our proof-of-concept, it is
not inconceivable that adversaries could easily engineer a payload with substantially higher
impact. In fact, Mactans may offer a new dimension to the phenomenon of espionage (if not
already present) and targeted attacks.

However, the difficulty of attacks can be substantially increased if the weaknesses discussed in
Section	 3.1 are addressed by the suggested mitigations proposed in Section	 5.3. The authors are
thankful that after communication with the vendor, an update was released (iOS 7 Beta 2) that is
not susceptible to the attack described in Section	 4.

	

10	
	

5.3	 MITIGATIONS	

Possible mitigations to overcome the weaknesses we describe in Section	 3.1 are listed here. In
particular, we believe that any mobile OS should by default inform the user before the state of
their device is queried or modified by a USB-connected host. More specifically, we think that it is
important to require the user’s consent in the following cases:

1) Prior to the process of USB device pairing, which enables additional capabilities,
including those stated next in 2).

2) Prior to installing a provisioning profile or side-loading an application associated with a
provisioning profile (as described in Section	 3.1.2).

A primary possible mitigation is to require the user’s consent (e.g., via introduction of a
debugging mode setting on the client) in order for the host to launch applications on the client (or
perhaps to launch specific applications such as debugserver).

In the case of iOS, Apple could also prevent third party developers from setting the SBAppTags
with the value hidden in an app’s Info.plist so that side-loaded apps cannot be invisible.
Furthermore, the process of obtaining provisioning profiles can be made less-automatable by
requiring iOS developers to solve a CAPTCHA prior to issuing a profile for a device specified by
a UDID.

5.4	 LIMITATIONS	

If an iOS device is passcode-protected, Mactans requires the phone to be unlocked at least once
after being connected. While this requirement may seem to render Mactans impractical, we posit
that users will regularly create this situation while charging their device.

Given that our proof-of-concept relies on an individual developer license, a Mactans charger
equipped with one individual license can accommodate only 100 devices. However, more
resourceful adversaries are likely to have access to an enterprise developer license, which waives
this limit. Enterprise license possession also lowers the bar for provisioning profile injection, as a
UDID need not be submitted to Apple’s Provisioning Portal to generate a provisioning profile.

Diligent, security-minded users may detect attempts to compromise their iOS device if they check
installed developer licenses in the Settings section of their device. However, we believe that
regular users may not know of the existence or purpose of this information and therefore will not
check or understand this setting. Furthermore, even if the provisioning profile is removed, the
injected app will continue to run until the device is rebooted. Upon a subsequent connection to a
Mactans charger, the attack can be repeated.

11	
	

6.	 CONCLUSION	

In this paper, we have shown that for iOS devices up to and including those running iOS 6,
arbitrary apps can be injected into a user’s mobile device when connected to a malicious host. We
demonstrated the potential danger of this capability through a proof-of-concept implementation of
a malicious charger that injects a Trojan horse app with a payload. The relevance of our work is
represented by Apple’s release of an update to iOS 7 that implements a mitigation we
recommended in our disclosure; Figure	 2 shows a screenshot of iOS 7 when an unknown host
tries to communicate with the phone through a USB connection.

Figure	 2: Screenshot of iOS 7 Beta 2 when the device is plugged into
 an unknown host that tries to pair with the phone.

