The Userland Exploits of Pangu 8

@PanguTeam

Outline

Introduction

New Security Enhancements in iI0S 8

Pangu 8 Overview

Bypass Team ID Validation by Teasing the Trust-Cache
Bypass Code Signing Validation by Segment Overlapping
Sandbox Escape

Conclusion

Pangu leam

Security research team in China
Focused on 10S security for more than 3 years
Release two untether jailbreaks in half a year

e 2014.6 - Pangu Axe for iOS 7.1.x

e 2014.10 - Xuanyuan Sword for 10S 8-8.1

Pangu leam

Xiaobo Chen (@dm557)

Hao Xu (@windknown)

Tielel Wang (@INT80_pangu)
@ogcoh7

@tb557

@zengbanxian

Siglos (@0x557)

Outline

 New Security Enhancements in iOS 8

leam ID

* Check the entitlements of binary built by latest Xcode

 com.apple.developer.team-identitier

<plist version="1.0">

<dict>
<key>application-identifier</key>
<string>U46NZDWC3Y.com.iflytek.ringdiyclient</string>
<key>aps-environment</key>
<string>development</string>
<key>com.apple.developer.team-identifier</key>
<string>U46NZDWC3Y</string>
<key>get-task-allow</key>
<true/>
<key>keychain-access—-groups</key>
<array>

<string>U46NZDWC3Y.com.if lytek.ringdiyclient</string>

</array>

</dict>

</plist>

"

&)

Data Protection

 Data protection class
* A - NSFileProtectionComplete
B - NSFileProtectionCompleteUnlessOpen
* C - NSFileProtectionCompleteUntilFirstUserAuthentication

e D - NSFileProtectionNone

Data Protection

e |ots of files in “/var” are protected with
* Class C - NSFileProtectionCompleteUntilFirstUserAuthentication
 Even root cannot access those files if a device is never unlocked

e Create afile in “/var/mobile/Media” and print the attributes

NSFileCreationDate = "2014-11-04 14:11:24 +0000";
NSFileExtensionHidden = 0;

NSFileGroupOwnerAccountID = 501;
NSFileGroupOwnerAccountName = mobile;
NSFileModificationDate = "2014-11-04 14:11:24 +0000";
NSFileOwnerAccountID = 0;

NSFileOwnerAccountName = root;

NSFileSize = 576;
NSFileSystemFileNumber = 33495;
NSFileSystemNumber = 16777218;
NSFileType = NSFileTypeRegular;

Data Protection

* Apple adds a special flag for folders

o fcntl with F_GETPROTECTIONCLASS flag to get the
protection class

e O for “/var/mobile/Media”

/*

* dir_none forces new items created in the directory to pick up the mount point default
* protection level. it 1is only allowed for directories.
*/

#define PROTECTION_CLASS_DIR_NONE ©

#define PROTECTION_CLASS
#define PROTECTION_CLASS
#define PROTECTION_CLASS
#define PROTECTION_CLASS
#define PROTECTION_CLASS
#define PROTECTION_CLASS

Data Protection

* |t is possible to change the protection class of
folder to turn off the default protection

e fcntl with F SETPROTECTIONCLASS to set
orotection class = 4 which is NSFileProtectionNone

| aunchd

* Move core code from launchctl to launchd

e Kill arguments normally used by jailbreak

« “launchctl load -D all” no longer work
e Strict loading process
e Load all plist files from xpcd_cache.dylib
e Assert plist files also exist in /System/Library/LaunchDaemons

 |f you want to load a service from /System/Library/
LaunchDaemons, the plist file must exist in xpcd_cache

| aunchd

* \Weakness
o Other arguments still work
e “launchctl load paths”

e Putting your plist files in /Library/LaunchDaemons
seems no difference

Outline

 Pangu 8 Overview

lethered jallbreak

Backup *Get a backup of iIOS device

Restore

lethered jallbreak

Backup

° Inject an expired enterprise license

Restore » Turn off network connection

*nject an app containing a dylib signed
by the enterprise license

lethered jallbreak

Backup

Restore

* Mount the developer disk image

* Instruct debugserver to debug neagent
*Force neagent to load the dylib by setting
DYLD_INSERT_LIBRARIES

lethered jallbreak

Backup

Restore

e Attack kernel through the dylib

e Disable sandbox

e Modify rootfs to place libmis.dylib and
enable-dylibs-to-override-cache

e Adjust the boot sequence of launchd daemons

4

Untethered jallbreak

Disable AMFID *Bypass Code signing
*Bypass Team ID validation

Run Untethered
Payload

* Exploit and patch the kernel

Launch The Rest
Services

Outline

 Bypass Team ID Validation by Teasing the Trust-Cache

Team ldentifier Verification

* A new security mechanism introduced in i10S 8

A team identifier (Team ID) is a 10-character

alphanumeric string extracted from an Apple
Issued certificate.

<key>keychain-access-groups</key>
<array>

<string>249286WSCD.com.cisco.anyconnect.guic<
</array>

<key>com.apple.networking.vpn.configuration</key>
<array>

<string>com.cisco.anyconnect.applevpn.plugin<
</array>

<key>com.apple.developer.team-identifier</key>
<string>8NHSK37H72</string>

<key>application-identifier</key>
<string>249286WSCD.com.cisco.anyconnect.gui</string>

Team ldentifier Verification

e A program may link against any platform library
that ships with the system or any library with the
same team identifier in its code signature as the
main executable.

e System executables can only link against libraries
that ship with the system itself.

com.apple.driver.AppleMobileFilelnteg...
com.apple.driver.AppleMobileFileinteg...
com.apple.driver.AppleMobileFileinteg...
com.apple.driver.AppleMobileFilelnteg...
com.apple.driver.AppleMobileFilelnteg...
com.apple.driver.AppleMobileFilelnteg...
com.apple.driver.AppleMobileFilelnteg...
com.apple.driver.AppleMobileFilelnteg...

00000034
0000004C
00000048
00000041

00000041

0000001F
0000002B
0000002F

SNONONONONONONS

AMFI: in mmap but not enforcing library validation\n

[deny-mmap] mapped file has no team identifier and is not a platform binary
[deny-mmap] process has no team identifier and is not a platform binary
[deny-mmap] process is a platform binary, but mapped file is not
[deny-mmap] mapped file does not have a matching team identifier

AMFI: failed to get file path\n

[deny-mmap] process has team identifier %s

[deny-mmap] mapped file has team identifier %s

,4"‘
)

\ 8
N P

P

Troubles for jallbreak

« Code signing bypass
* Method: force dyld to load a fake libmis.dylib
e evasiOn, evasiOn 7, pangu 7

e Challenge: the fake libmis.dylib must also pass the TeamID
validation

o Sandbox escape

 Method: Inject a dynamic library signed by a developer license
into system processes, e.g., setting DYLD_INSERT_LIBRARIES

e Challenge: the injected library has to pass the TeamID validation

Team ID veritication

Implementation
* AppleMobileFilelntegrity hooks the mmap function

 When a file Is mapped into memory:
e csfg_get_platform_binary
e csfg_get_teamid
e csproc_get_platform_binary

e csproc_get_teamid

if (permissions & PROT_EXEC)

csfg_get_teamid
csfg_get_platform_binary
if(the lib has no team id && is not a
platform binary)

if(the lib is not a platform
binary)

csproc_get_teamid
csproc_get_platform_binary
if(main executable has no team id && is
not a platform binar

if(main executable has
com.apple.private.skip-library-validation

if(main executable’s team id
I=lib’s team id)

if (permissions & PROT_EXEC)

csfg_get_teamid
csfg_get_platform_binary
if(the lib has no team id && is not a
platform binary)

if(the lib is not a platform
binary)

csproc_get_teamid
csproc_get_platform_binary
if(main executable has no team id && is
not a platform binar

if(main executable has
com.apple.private.skip-library-validation

if(main executable’s team id
I=lib’s team id)

Who has the com.apple.private.skip-
ilorary-valigation

Good News: neagent has the entitlement

<plist version="1.0">
<dict>
<key>com.apple.private.MobileGestalt.AllowedProtectedKeys</key>
<array>
<string>UniqueDevicelD</string>
/array>
<key>com.apple.private.neagent</key>
<true/>
<key>com.apple.private.necp.match</key>
<true/>
<key>com.apple.private.skip-library-validation</key>
<true/>

<drray-
<string>com.apple.identities</string>
<string>apple</string>
<string>com.apple.certificates</string>

Recall: Troubles for jailbreak

» Code signing bypass
* Method: force dyld to load a fake libmis.dylib
» Challenge: the fake libmis.dylib must also pass the TeamID validation
- Unsolved

e Sandbox escape

 Method: Inject a dynamic library signed by a developer license into
system processes, e.g., setting DYLD_INSERT_LIBRARIES

» Challenge: the injected library has to pass the Teaml|D validation

- Solved: inject the library to neagent

if (permissions & PROT_EXEC)

Sl

Iaﬁorrﬁ_ﬁinary .

pltform binar)

if(the lib is not a platform
binary)

T WS DS SN 1 Y

pkoc;gét:pla’c?okrh;bina '

not a platform binar

if(main executable has
com.apple.private.skip-library-validation

if(main executable’s team id
I=lib’s team id)

How does 10S confirm a

EXPORT _csproc_get platform binary
_csproc_get_platform binary

PUSH {R7 ,LR}
CMP RO, #0
MOV R7, SP
ITT NE
LDRNE.W R1, [RO,#0x158]
CMPNE R1, #0
BEQ returnBranch
A 4
WE
LDRD.W R2, R3, [RO,#0x15C)
MOV RO, R1
MOV.W R1l, #0xFFFFFFFF
BL _ubc_cs_blob_get
CMP RO, #0
ITT NE
LDRNE RO, [RO,#0x50]
POPNE {R7 ,PC}
_ P9
“'_‘

returnBranch

MOVS RO, #0

POP {R7,PC}

End nf fuinctdinn

renracr oot nlatfarm hinarv

struct c¢s_blob {
struct cs_blob
cpu_type_t
unsigned int
off_t
off_t
off_t
ipc port t
vm_size_t
vm_offset_t
vm_address_t
unsigned char
unsigned int
const char
unsigned int

}s

platform binary?

*csb_next;
csb_cpu_type;
csb_flags;
csb_base_offset;
csb_start_offset;
csb_end_offset;
c¢sb_mem_handle;
csb_mem_size;
csb_mem_offset;
csb_mem_kaddr;
csb_shal[SHA1 _RESULTLEN];
csb_sigpup;
*csb_teamid;
csb_platform_binary;

How does 10S confirm a
platform binary?

e Jrust Cache

* The kernel records the hash values of system
executables

* Rather than storing the hash value of the whole
file, the trust cache only stores the shal value
of the CS_CodeDirectory structure of the code
signature segment in a system executable

Fake libmis with a “correct”
code signature segment

real system executable fake liomis

COpY

©

Outline

 Bypass Code Signing Validation by Segment Overlapping

Code Signing Workflow

Execve
Kernel

If in Trust Cache
AMFI kext

HASH comparison happens later

If trustly signed
Userland AMFID

I HASH comparison happens later

Code Signing Workflow

Execve
Kernel

If in Trust Cache
AMFI kext

HASH comparison happens later

If trustly signed

call MISValidateSignature Userland AMFEID

in libmis.dylib

I HASH comparison happens later

HIgh Level Idea

* First proposed by evad3rs since evasiOn 6

 Use a simple dylib with no executable pages to
replace libmis.aylib

 The simple dylib itself does not trigger code
signing checks at all, but it can interpose critical
APls responsible for the code signing
enforcement

Code Signing Bypass

Execve
Kernel

If in Trust Cache
AMFI kext

HASH comparison happens later

If trustly signed
Userland AMFID

I HASH comparison happens later

How to construct the ayli

Remove X bit

No codesign checking

amfid

Macho
Header

LINKEDIT
segment

Dyld re-expot
info

libmis.dylib

_kMISValidation...

[_MISVaIidateSignature

7

\

_kCFUserNotification...

< _[_CFEquaI

]

Y 4

.

Segment Overlapping Attack
N evasiOn ©

Mach O File in Disk Memory

Loading into Memory

>

R.-.X =Y
TEXT Segment A VMAddr: 0 TEXT Segment A B
VMSize: 4KB

R.-.-
TEXT Segment B VMAddr: 0
VMSize: 4KB

Segment Overlapping Attack
N evasiOn ©

Mach O File in Disk Memory

R.-.X

TEXT Segment A VMAddr: 0 FRTSSEREh B Pk
VMSize: 4KB
R.-.-

TEXT Segment B VMAddr: 0
VMSize: 4KB

Review the fix

e |tis really a challenge for us to find a new code sign
exploit

 We reviewed the latest dyld source code carefully

 How did Apple fix the segment overlapping problem?

// <rdar://problem/13145644> verify another segment does not over-map load commands

cmd = startCmds;
if (context.codeSigningEnforced) {
for (uint32 t i = 0; i < cmd_count; ++i) {
switch (cmd->cmd) {
case LC SEGMENT COMMAND:

segCmd = (struct macho_segment command*)cmd;

uintptr t start = segCmd->vmaddr;

uintptr t end = segCmd->vmaddr + segCmd->vmsize;

if (((start <= loadCommandSegmentVMStart) && (end > loadCommandSegmentVMStart))

|| ((start >= loadCommandSegmentVMStart) && (start < loadCommandSeqmentVMEnd)))
h % -

malformed mach-o0 image aps load commands seqgCmd->segname) ;

}

cmd = (const struct load command*)(((char*)cmd)+cmd->cmdsize);

Segment Overlapping’s Revenge
N Pangu 7

uintptr_t end = segCmd->vmaddr + segCmd-
>VMSIZE;

loadCommandSegmentVMENd = segCmd-
>vmaddr + segCmd->vmsize;

- Integer overflow will cause the overlapping
check to be bypassed

* Finally we can still force two segments to overlap

Segment Overlapping’s
Revenge In Pangu /

Mach O File in Disk Memory

Loading into Memory
TEXT Segment A Foks

>

R.-.X
VMAdQdar: 4KB
VMSize: -4KB

TEXT Segment A

R.-.-
TEXT Segment B VMAdQar: 4KB
VMSize: -4KB

Segment Overlapping’s
Revenge In Pangu /

Mach O File in Disk Memory

R.-.X
TEXT Segment A VMAddr: 4KB XSS SeahYR
VMSize: -4KB
K
9
£
O
$
s
R.-.- 5
TEXT Segment B VMAddr: 4KB
VMSize: -4KB

Apple’s fix in 10S 8

e Jo fix Pangu7/’s codesign exploit, Apple adds more
checks to the 1st R-X segment

e vmsize can't be negative

 vmaddr + vmsize cannot overflow any more

loadCommandSegmentVMStart = segCmd->vmaddr;
loadCommandSegmentVMEnd = segCmd->vmaddr + segCmd->vmsize;
if ((intptr_t)(segCmd->vmsize) < 0)
dyld::throwf("malformed mach-o image: segment load command %s size too large", segCmd->segname);
if (loadCommandSegmentVMEnd < loadCommandSegmentVMStart)
dyld: :throwf("malformed mach-o image: segment load command %S wraps around address space", segCmd->segname);

)

The new problem in 10S 8

* [he added checks do not apply to other segments!

for(unsigned int i=0, e=segmentCount(); i < e; ++i) {
const uintptr_t seglLow = segPreferredLoadAddress(i);
const uintptr_t segHigh = dyld_page_round(segLow + segSize(i));
if (segLow < highAddr) {
if (dyld_page_size > 4096)
dyld: :throwf("can't map segments into 16KB pages");
else
dyld::throwf("overlapping segments");
}
if (segLow < lowAddr)
lowAddr = seglLow;
if (segHigh > highAddr)
highAddr = segHigh;

* No negative or overtlow checking for other
segments!

http://opensource.apple.com/source/dyld/dyld-353.2.1/src/ImagelL.oaderMachO.cpp

Segment Overlapping’s Revenge in
Pangu 8

Load command 0
cmd LC_SEGMENT
cmdsize 56

» What did Pangu8 do > Vhaddr Gx00000000

vmsize 0Ox00040000

ritecf 9

filesize 262144

» dyld will first allocate a memory range naxprot @x00000001

initprot 0x00000005

for the first segment base on its vmaddr e

flags Ox0@
Load command 1
cmd LC_SEGMENT

 \WWe can make the second segment to gndsize 56

segname __ TEX]

overlap the first one again by setting the |t

, msize 0x0001000
second segment’s vmaddr and vmsize |l

maxprot 9x00000001
initprot 0x00000001
nsects 0
flags 0x0

Segment Overlapping’s
Revenge In Pangu 8

Mach O File in Disk Memory

Loading into Memory
TEXT Segment A Foks

>

R.-.X
VMAdadr: OKB
VMSize: 4KB

TEXT Segment A

R.-.-
TEXT Segment B VMAaQar: -4KB
VMSize: 4KB

Segment Overlapping’s
Revenge In Pangu 8

Mach O File in Disk Memory

R.-.X TEXT Segment B
TEXT Segment A VMAddr: OKB

S
-$
O
$
$
R.-.- ¥
TEXT SegmentB NULREEHELEG

VMSize: 4KB

Segment Overlapping’s Revenge in
Pangu 8

 What did Pangu8 do

The dyld’s debugging output while loading
Pangu8’s limbs.dylib

dvlid: Mannina ./libmis.dvlib (slice offset=16384)
__FAKE_TEXT at 0x00129000—>0x00168FFF with permissions r.X
___TEXT at 0x00128000—>0x00168FFF W1th permissions ks

dyld: loaded /llbmls dyllb

- " s & e e S i

We can still do the overlap segment attack!

)

Apple’s fix in I0S 8.1.1

 Apple added vmsize and filesize checks In
ImageloaderMachO::sniffLoadCommands

else if ((DWORD)al == 1)
{
LODWORD(al) = *(DWORD *)(vl12 + 28);
HIDWORD(al) = *(DWORD *)(vl12 + 36);
if (HIDWORD(al) > (unsigned int)al)
dyld::throwf (
(dyld *)"malformed mach-o image: segment load command %s filesize is larger than vmsize",
(const char *)(vl2 + 8),
as);

Hey Apple, do you really understand the issue?

Apple’s fx in 10S 8.1.1

* [he issue Is about overlap In vmaddr

 Checks on vmsize/file size do not help at all

 We can still adjust vmsize in our codesign exploit
and it is still working on i0OS 8.1.1-8.1.2

)

Apple’s final fix in 10S 8.1.3

* Apple adds more checks for vm/file content
overlapping

if (v28 >= v23 && v28 < v26 && v30 > v28)
{
v3i7 = (dyld *)"malformed mach-o image: segment %s vm overlaps segment 3$s";
goto LABEL_81;
}
v33 = *(_DWORD *)(v25 + 36) + v29;
if (v29 <= v21)
{
vi4 = yv33 >m yv21;
v35 = v33 == vil;
if (v33 > v21)
{
vi4d = v24 >= v2l;
vis = vi24 == vil;

if (1v35 & v34)
goto LABEL_ 100;

}
if (v29 >= v21 && v29 < v24 && v33 > v29)
| {
‘ v37 = (dyld *)"malformed mach-o image: segment %s file content overlaps segment %s";

dyld::throwf(v37, (const char *)(vl19 + 8), v25 + 8);
}

e Bypassable?

)

Outline

« Sandbox Escape

Why we chose neagent

e Kernel exploits against IOHIDEventService require
a loose sandboxed environment

 We have to bypass the Team |D veritication at the
first step

* debugserver + neagent is the perfect target

Forcing neagent to load our
lorary

e Solution: leverage idevicedebug in the
Ibimobiledevice package to communicate with
debugserver in the I0S device

Usage: 1devicedebug |OPTIONS

Interact with the debugserver service of a device.

Where COMMAND 1is one of:

run BUNDLEID [ARGS...] run app with BUNDLEID and optional ARGS on device.

The following OPTIONS are accepted:
e, env NAME=VALUE set environment variable NAME to VALUE

udid UDID target specific device by its 40-digit device UDID

d, debug enable communication debugging

help prints usage information

Apple’s fix in I0S 8.1.2

 Apple only allows debugserver to launch
executables with debug-mode

allow process—fork
(@) [25] (debug—mode)|

allow process—-exec—interpreter
(0) [29] (debug-mode)

Conclusion

* Developing an untethered jailbreak requires a lot of
effort

 Apple made similar mistakes again and again

* Next jailbreak?

Thanks

Thank all of you

hanks Apple for bringing us such great devices
Thanks the jailoreak community

e special thanks goes to evada3rs, saurik and
IH8sNOw

Thanks for open source project libimobiledevice
and Duilib

Q& A

