
The Userland Exploits of Pangu 8
@PanguTeam

Outline
• Introduction

• New Security Enhancements in iOS 8

• Pangu 8 Overview

• Bypass Team ID Validation by Teasing the Trust-Cache

• Bypass Code Signing Validation by Segment Overlapping

• Sandbox Escape

• Conclusion

Pangu Team

• Security research team in China

• Focused on iOS security for more than 3 years

• Release two untether jailbreaks in half a year

• 2014.6 - Pangu Axe for iOS 7.1.x

• 2014.10 - Xuanyuan Sword for iOS 8-8.1

Pangu Team
• Xiaobo Chen (@dm557)

• Hao Xu (@windknown)

• Tielei Wang (@INT80_pangu)

• @ogc557

• @tb557

• @zengbanxian

• Siglos (@0x557)

Outline
• Introduction

• New Security Enhancements in iOS 8

• Pangu 8 Overview

• Bypass Team ID Validation by Teasing the Trust-Cache

• Bypass Code Signing Validation by Segment Overlapping

• Sandbox Escape

• Conclusion

Team ID
• Check the entitlements of binary built by latest Xcode

• com.apple.developer.team-identifier

Data Protection

• Data protection class

• A - NSFileProtectionComplete

• B - NSFileProtectionCompleteUnlessOpen

• C - NSFileProtectionCompleteUntilFirstUserAuthentication

• D - NSFileProtectionNone

Data Protection
• Lots of files in “/var” are protected with

• Class C - NSFileProtectionCompleteUntilFirstUserAuthentication

• Even root cannot access those files if a device is never unlocked

• Create a file in “/var/mobile/Media” and print the attributes

Data Protection
• Apple adds a special flag for folders

• fcntl with F_GETPROTECTIONCLASS flag to get the
protection class

• 0 for “/var/mobile/Media”

Data Protection

• It is possible to change the protection class of
folder to turn off the default protection

• fcntl with F_SETPROTECTIONCLASS to set
protection class = 4 which is NSFileProtectionNone

Launchd
• Move core code from launchctl to launchd

• Kill arguments normally used by jailbreak

• “launchctl load -D all” no longer work

• Strict loading process

• Load all plist files from xpcd_cache.dylib

• Assert plist files also exist in /System/Library/LaunchDaemons

• If you want to load a service from /System/Library/
LaunchDaemons, the plist file must exist in xpcd_cache

Launchd

• Weakness

• Other arguments still work

• “launchctl load paths”

• Putting your plist files in /Library/LaunchDaemons
seems no difference

Outline
• Introduction

• New Security Enhancements in iOS 8

• Pangu 8 Overview

• Bypass Code Signing Validation by Segment Overlapping

• Bypass Team ID Validation by Teasing the Trust-Cache

• Sandbox Escape

• Conclusion

Tethered jailbreak
Backup

Restore

Deploy

Debug

•Get a backup of iOS device

Tethered jailbreak
Backup

Restore

Deploy

Debug

•Inject an expired enterprise license
•Turn off network connection
•Inject an app containing a dylib signed  

by the enterprise license

Tethered jailbreak
Backup

Restore

Deploy

Debug
•Mount the developer disk image
•Instruct debugserver to debug neagent
•Force neagent to load the dylib by setting  

DYLD_INSERT_LIBRARIES

Tethered jailbreak
Backup

Restore

Deploy

Debug
•Attack kernel through the dylib
•Disable sandbox
•Modify rootfs to place libmis.dylib and  

enable-dylibs-to-override-cache
•Adjust the boot sequence of launchd daemons

Untethered jailbreak
•Bypass Code Signing
•Bypass Team ID validation

•Exploit and patch the kernelRun Untethered
Payload

Disable AMFID

Launch The Rest
Services

Outline
• Introduction

• New Security Enhancements in iOS 8

• Pangu 8 Overview

• Bypass Team ID Validation by Teasing the Trust-Cache

• Bypass Code Signing Validation by Segment Overlapping

• Sandbox Escape

• Conclusion

Team Identifier Verification
• A new security mechanism introduced in iOS 8

• A team identifier (Team ID) is a 10-character
alphanumeric string extracted from an Apple
issued certificate.

Team Identifier Verification
• A program may link against any platform library

that ships with the system or any library with the
same team identifier in its code signature as the
main executable.

• System executables can only link against libraries
that ship with the system itself.

Troubles for jailbreak
• Code signing bypass

• Method: force dyld to load a fake libmis.dylib

• evasi0n, evasi0n 7, pangu 7

• Challenge: the fake libmis.dylib must also pass the TeamID
validation

• Sandbox escape

• Method: Inject a dynamic library signed by a developer license
into system processes, e.g., setting DYLD_INSERT_LIBRARIES

• Challenge: the injected library has to pass the TeamID validation

Team ID verification
Implementation

• AppleMobileFileIntegrity hooks the mmap function

• When a file is mapped into memory:

• csfg_get_platform_binary

• csfg_get_teamid

• csproc_get_platform_binary

• csproc_get_teamid

if (permissions & PROT_EXEC)

csfg_get_teamid
csfg_get_platform_binary

if(the lib has no team id && is not a
platform binary)

if(main executable has
com.apple.private.skip-library-validation)

PASS

csproc_get_teamid
csproc_get_platform_binary

if(main executable has no team id && is
not a platform binary)

if(the lib is not a platform
binary)

if(main executable is a platform binary)

if(main executable’s team id
!= lib’s team id)

PASS

PASS FAIL

if (permissions & PROT_EXEC)

csfg_get_teamid
csfg_get_platform_binary

if(the lib has no team id && is not a
platform binary)

if(main executable has
com.apple.private.skip-library-validation)

PASS

csproc_get_teamid
csproc_get_platform_binary

if(main executable has no team id && is
not a platform binary)

if(the lib is not a platform
binary)

if(main executable is a platform binary)

if(main executable’s team id
!= lib’s team id)

PASS

PASS FAIL

Who has the com.apple.private.skip-
library-validation

Good News: neagent has the entitlement

Bad News: neagent is the only one with the entitlement

Recall: Troubles for jailbreak
• Code signing bypass

• Method: force dyld to load a fake libmis.dylib

• Challenge: the fake libmis.dylib must also pass the TeamID validation

• Unsolved

• Sandbox escape

• Method: Inject a dynamic library signed by a developer license into
system processes, e.g., setting DYLD_INSERT_LIBRARIES

• Challenge: the injected library has to pass the TeamID validation

• Solved: inject the library to neagent

if (permissions & PROT_EXEC)

csfg_get_teamid
csfg_get_platform_binary

if(the lib has no team id && is not a
platform binary)

if(main executable has
com.apple.private.skip-library-validation)

PASS

csproc_get_teamid
csproc_get_platform_binary

if(main executable has no team id && is
not a platform binary)

if(the lib is not a platform
binary)

if(main executable is a platform binary)

if(main executable’s team id
!= lib’s team id)

PASS

PASS FAIL

How does iOS confirm a
platform binary?

How does iOS confirm a
platform binary?

• Trust Cache

• The kernel records the hash values of system
executables

• Rather than storing the hash value of the whole
file, the trust cache only stores the sha1 value
of the CS_CodeDirectory structure of the code
signature segment in a system executable

Fake libmis with a “correct”
code signature segment

fake libmisreal system executable

code
signature
segment

code
signature
segment

copy

Outline
• Introduction

• New Security Enhancements in iOS 8

• Pangu 8 Overview

• Bypass Team ID Validation by Teasing the Trust-Cache

• Bypass Code Signing Validation by Segment Overlapping

• Sandbox Escape

• Conclusion

Code Signing Workflow

 If in Trust Cache
AMFI kext

If trustly signed
Userland AMFID

PASS

Execve
Kernel

PASS

FAIL

HASH comparison happens later

HASH comparison happens later

Code Signing Workflow

 If in Trust Cache
AMFI kext

If trustly signed
Userland AMFID

PASS

Execve
Kernel

PASS

FAIL

HASH comparison happens later

HASH comparison happens later

call MISValidateSignature
in libmis.dylib

High Level Idea
• First proposed by evad3rs since evasi0n 6

• Use a simple dylib with no executable pages to
replace libmis.dylib

• The simple dylib itself does not trigger code
signing checks at all, but it can interpose critical
APIs responsible for the code signing
enforcement

Code Signing Bypass

 If in Trust Cache
AMFI kext

If trustly signed
Userland AMFID

PASS

Execve
Kernel

PASS

FAIL

HASH comparison happens later

HASH comparison happens later

Fake libmis.dylib and re-
exports

MISValidateSignature
always returning 0

How to construct the dylib

Macho
Header

TEXT
segment

LINKEDIT
segment

…

Dyld re-expot
info

_MISValidateSignature
_kMISValidation…

_CFEqual
_kCFUserNotification…

libmis.dylibamfid

Remove X bit
No codesign checking

TEXT Segment A R.-.XTEXT Segment A
R.-.X
VMAddr: 0
VMSize: 4KB

Mach O File in Disk Memory

TEXT Segment B
R.-.-
VMAddr: 0
VMSize: 4KB

Loading into Memory

Segment Overlapping Attack
in evasi0n 6

TEXT Segment A R.-.-TEXT Segment A
R.-.X
VMAddr: 0
VMSize: 4KB

Mach O File in Disk Memory

TEXT Segment B
R.-.-
VMAddr: 0
VMSize: 4KB

Lo
ad

ing
 in

to
 M

em
or

y TEXT Segment B

Segment Overlapping Attack
in evasi0n 6

Review the fix
• It is really a challenge for us to find a new code sign

exploit

• We reviewed the latest dyld source code carefully

• How did Apple fix the segment overlapping problem?

Segment Overlapping’s Revenge
in Pangu 7

uintptr_t end = segCmd->vmaddr + segCmd-
>vmsize;

loadCommandSegmentVMEnd = segCmd-
>vmaddr + segCmd->vmsize;

• Integer overflow will cause the overlapping
check to be bypassed

• Finally we can still force two segments to overlap

TEXT Segment A R.-.XTEXT Segment A
R.-.X
VMAddr: 4KB
VMSize: -4KB

Mach O File in Disk Memory

TEXT Segment B
R.-.-
VMAddr: 4KB
VMSize: -4KB

Loading into Memory

Segment Overlapping’s
Revenge in Pangu 7

TEXT Segment A R.-.-TEXT Segment A

Mach O File in Disk Memory

TEXT Segment B

Lo
ad

ing
 in

to
 M

em
or

y TEXT Segment B

Segment Overlapping’s
Revenge in Pangu 7

R.-.X
VMAddr: 4KB
VMSize: -4KB

R.-.-
VMAddr: 4KB
VMSize: -4KB

Apple’s fix in iOS 8

• To fix Pangu7’s codesign exploit, Apple adds more
checks to the 1st R-X segment

• vmsize can’t be negative

• vmaddr + vmsize cannot overflow any more

The new problem in iOS 8
• The added checks do not apply to other segments!

• No negative or overflow checking for other
segments!

http://opensource.apple.com/source/dyld/dyld-353.2.1/src/ImageLoaderMachO.cpp

Segment Overlapping’s Revenge in
Pangu 8

• What did Pangu8 do

• dyld will first allocate a memory range
for the first segment base on its vmaddr

• We can make the second segment to
overlap the first one again by setting the
second segment’s vmaddr and vmsize

TEXT Segment A R.-.XTEXT Segment A
R.-.X
VMAddr: 0KB
VMSize: 4KB

Mach O File in Disk Memory

TEXT Segment B
R.-.-
VMAddr: -4KB
VMSize: 4KB

Loading into Memory

Segment Overlapping’s
Revenge in Pangu 8

TEXT Segment A R.-.-TEXT Segment A

Mach O File in Disk Memory

TEXT Segment B

Lo
ad

ing
 in

to
 M

em
or

y

TEXT Segment B

Segment Overlapping’s
Revenge in Pangu 8

R.-.X
VMAddr: 0KB
VMSize: 4KB

R.-.-
VMAddr: -4KB
VMSize: 4KB

• What did Pangu8 do

• The dyld’s debugging output while loading
Pangu8’s limbs.dylib

• We can still do the overlap segment attack!

Segment Overlapping’s Revenge in
Pangu 8

Apple’s fix in iOS 8.1.1
• Apple added vmsize and filesize checks in

ImageLoaderMachO::sniffLoadCommands

Hey Apple, do you really understand the issue?

Apple’s fix in iOS 8.1.1
• The issue is about overlap in vmaddr

• Checks on vmsize/file size do not help at all

• We can still adjust vmsize in our codesign exploit
and it is still working on iOS 8.1.1 - 8.1.2

Apple’s final fix in iOS 8.1.3
• Apple adds more checks for vm/file content

overlapping

• Bypassable?

Outline
• Introduction

• New Security Enhancements in iOS 8

• Pangu 8 Overview

• Bypass Team ID Validation by Teasing the Trust-Cache

• Bypass Code Signing Validation by Segment Overlapping

• Sandbox Escape

• Conclusion

Why we chose neagent
• Kernel exploits against IOHIDEventService require

a loose sandboxed environment

• We have to bypass the Team ID verification at the
first step

• debugserver + neagent is the perfect target

Forcing neagent to load our
library

• Solution: leverage idevicedebug in the
libimobiledevice package to communicate with
debugserver in the iOS device

Apple’s fix in iOS 8.1.2
• Apple only allows debugserver to launch

executables with debug-mode

Conclusion
• Developing an untethered jailbreak requires a lot of

effort

• Apple made similar mistakes again and again

• Next jailbreak?

Thanks
• Thank all of you

• Thanks Apple for bringing us such great devices

• Thanks the jailbreak community

• special thanks goes to evad3rs, saurik and
iH8sn0w

• Thanks for open source project libimobiledevice
and Duilib

Q & A

