Hacking from i1OS 8 to 105 9

)

TEAM PANGU

RUXCON 2015 / POC 2015

Agenda

+ 105 Security Overview

+ Security Changes from iOS 8 to iOS 9

+ Kernel Vulnerability Exploited in Pangu 9
+ Kernel Exploit Chain

+ Public Release vs. Bounty Hunting

<+ Conclusion

Who We Are

+ Team Pangu is known for releasing jailbreak tools for
105 7.1, 10S §, and 10S 9

+ We have broad security research interests

+ Qur research was present at BlackHat, CanSecWest,
POC, RuxCon, etc.

+ We also co-organize a mobile security conference
named MOSEC (mosec.org) with POC

http://mosec.org

105 Security Overview

+ Apple usually releases a white paper to
introduce iOS security architecture

<+ Isolations

+ Restricted Sandbox

+ Mandatary Code Signing

+ Exploit Mitigation (ASLR, DEP)
“ Data Protection

*+ Hypervisor

Data Protection
Class

App Sandbox

User Partition
Software (Encrypted)

OS Partition

File System

Kernel

Secure Secure
Enclave Element

lardware and

Firmware

Crypto Engine

Device Key
Group Key
Apple Root Certificate

Timeline of Major Security Features

0 Protection Code Signing ASLR KASLR TouchlD TeamlD KPP
e e e —— | —— ————|—

iPhoneOS 1.x iPhonOS2x i0S4.3 i0OS6 i0S7 iOS 8 i0S 9

Many security features are undocumented

Agenda

% 105 Security Overview

+ Security Changes from iOS 8 to iOS 9

+ Kernel Vulnerability Exploited in Pangu 9
+ Kernel Exploit Chain

% Public Release vs. Bounty Hunting

<+ Conclusion

Improved Team 1D Validation

<+ Team ID was introduced in iOS 8

+ Prevent platform binaries from loading third-party code

+ 10S 9 enforces that a process either is a platform binary
or has a team identifier

prog teamID = csproc get teamid 16(v1l);
prog platform = csproc_get platform binary 16();

v23 = prog teamlID == 0;
if (!prog teamiID)
v23 = prog platform == 0;
if (v23)
{
vl7 = "[deny-mmap] main process has no team identifier in its signature’;

goto LABEL 17;
}

DYL.D Environment Varnables

+ DYLD environment variables affect the dynamic
linker dyld in many ways

+ QOutput debug info (e.g., through DYLD_PRINT_¥)

+ Dylib injection (e.g., through
DYLD_INSERT_LIBRARIES)

+ 108 8.3 starts to ignore DYLD environment variables
unless the main executable has certain entitlements

Released Source Code of dyld

sExecPath = apple([@];
bool ignoreEnvironmentVariables = false;
(sExecPath([0] != '/') {

char cwdbuff [MAXPATHLEN];
(getcwd(cwdbuff, MAXPATHEEM) !'= NULL) {

charkx s = char[strilen
strcpy(s, cwdbuff);
SUrCAL{S R /)5

strcat(s, sExecPath);
sExecPath = s;

}

sExecShortName = ::strrchr(sExecPath, '/');
(sExecShortName != NULL)
++SExecShortName;

sExecShortName = sExecPath;
sProcessIsRestricted = processRestrictegdin
(sProcessIsRestricted) {
SUPPORT_LC_DYLD_ENVIRONMENT will not
checkLoadCommandEnvironmentVariable
SUPPORT_VERSIONED_PATHS
checkVersionedPaths();

pruneEnvironmentVariables(es &apple);

setContext(mainExecutgyfteMH, argc, argv, envp, apple);

checkEnvironmentVariables(envp, ignoreEnvironmentVariables);

dyld on iOS 8.3

+ 1gnoreEnvironmentVariables is set True according to
v108

- i N

ignoreEnvironmentVariables = 0;
v26 = &v115;
LOBYTE (dyld: :sProcessIsRestricted) = 0;
v129 = -1;
if ((v108 & 0x1004) == 4096)
ignoreEnvironmentVariables = 1;
dyld: :checkEnvironmentVariables(envp, igndreEnvironmentVariables);

<+ Where is v108 from?

dyld on iOS 8.3

+ v108 indicates the code signing status of the program

+ CSOPS is used to query the code signing attributes

if (csops(0, 0, &csStatus, (void *)4))

v1i29 = <1;

dyld::throwf ((dyld *)"failed to get code signing flags", (const char *)OxFFFFFFFF);
}
vl5 = (char *)dword 1FE26464;
vl08 = *(DWORD *)&csStatus;

dyld on iOS 8.3

* v108 & 0x1004 == 4096

+* 0x0004 means that the program has get-task-allow

entitlement

/* code
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

signing attributes of a process */

CS_VALID 0x0000001 /* dynamically valid =/
CS_ADHOC 0x0000002 /* ad hoc signed */
CS_GET_TASK_ALLOW 0x0000004 /x has get-task-allow entitlement */
CS_INSTALLER 0x0000008 /* has installer entitlement */

CS_HARD
CS_KILL
CS_CHECK_EXPIRATION
CS_RESTRICT

0x0000100 /x don't load invalid pages */

0x0000200 /* kill process if it becomes invalid */
0x0000400 /x force expiration checking */
0x0000800 /* tell dyld to treat restricted =/
CS_ENFORCEMENT 0x0001000 /* require enforcement =/

CS_REQUIRE_LV 0x0002000 /x require library validation %/
CS_ENTITLEMENTS_VALIDATED ©x0004000

+ In other words, DYLD environment variables only work
for binaries that have the get-task-allow entitlement

DYL.D Environment Variables

+ Consequence:

+ neagent is the only program on iOS that is allowed to
load third party signed libraries (ignoring the TeamID
validation because of the com.apple.private.skip-
library-validation entitlement)

+ The trick to force neagent load an enterprise license
signed library through the DYLD_INSERT_LIBRARIES
no longer works

enable-dylibs-to-override-cache

+ The present of this file was used to force loading of
dynamic libraries from filesystem instead of the
shared cache

+ It was widely used by previous jailbreak tools to
override the libmis library

+ dyld in iOS 8.3 starts to ignore this flag

enable-dylibs-to-override-cache

+ The kernel disallows to check the present of the flag

v97 = 0;
if (1v96)
{

vos = 0;
if (v134 < 0x400
v98 = 1; |
if ((signed int)v135 0)
v97 = 1;
if (1v135)
v97 = v98;
}
LOBYTE (dyld: :sDylibsOverrideCac
}

e ——————————— This value is read from OxFFFF4084, an address

in the kernel and read only in userspace

Reduced TOCTOU Time Window
ni10S 9

+ dyld 1s responsible for loading dynamic libraries and
probing to test if the libraries are signed correctly

ImagelLoaderMachOCompressed* ImageloaderMachOCompressed::instantiateFro
uint64 : _ P :
unsig segCount, unsigned int libCount,
ruct linkedit data command* codeSiqCmd, LinkContext& context)

ImagelLoaderMachOCompressed* image = ImageloaderMac@@ipressed::inst Map Segments Of the dy11b]_ntO
{

{

image->setFileInfo(info.st_dev, gfito.st_ino, info.st_mtime); memory

image->loadCodeSignature(codeSigCmd, fd " __iurat, context);

image->mapSegments(fd, offsetInFat, lenInFat, info.st_size, cont

image->crashIfInvalidCodeSignature();

Reduced TOCTOU Time Window
ni10S 9

+ dyld 1s responsible for loading dynamic libraries and
probing to test if the libraries are signed correctly

ImagelLoaderMachOCompressed* ImageloaderMachOCompressed::instantiateFron
uint64_t of 1 . . k
woes 0 Many segment overlapping tricks
struc

{

ImagelLoaderMachOCompressed* image = ImageloaderMachOCompressed::ins Were used lIl the paSt tO bypaSS the
subsequent code signing checks

{

image->setFileInfo(info.st_dev, info.st_ino, info.st_mtime);

image->loadCodeSignature(codeSigCmd, fd _..anrat, context);

image->mapSegments(fd, offsetInFat, lenInFat, info.st_size, context);

image->crashIfInvalidCodeSignature();

Reduced TOCTOU Time Window
mni10S 9

+ dyld on iOS 9 now validates the mach-o header (first
pages) before mapping segments into the memory

ImageLoader: :setFileInfo(v46, v24, v23, v25);

vag = 2;
ImageLoaderMachO: : loadCodeSignature((int)v46, al2, v45, a5, a6, ald);
vadg = 3;
v37 = v43;
v38 = a5;
v39 = ab;
ImageLoaderMachO valxdaterrstPages(v46 al2, v45, v42);
L
vag = 4;
v3il = a7
v38 = a8,
*(_QWORD *)&v39 = v26;
vdl = al4;
ImageLoaderMachO: :mapSegments(v46, v45, a5, a6);
vdg = 5;
ImageLoaderMachOCompressed: :registerEncryption(v46, al3, ald);
vag = 6;

ImageLoaderMachO: :crashIfInvalidCodeSignature(v46);

Changes in Loading L.aunchd

Daemons

+ xpcd_cache.dylib is used to store plist files of launchd
daemons

+ All plist files are encoded in the dylib and thus
protected by signatures

+ Before i0S 9, by using a fake xpcd_cache.dylib (e.g.,
masking the _ xpcd_cache segment as readonly),
jailbreak tools can easily customize the launchd
daemons

Changes 1n Loading Launchd

Daemons

+ For example, launchd on iOS 8.4 loads the bplist in
following way. Masking the _ xpcd_cache segment
readonly does not cause any problem

if ? lstzt("/Syétem/LIbrafj?éaches/com.apple.xpcd/xpcd_cache.dylib", &v27))

{
v26 = 0;
v3 = dlopen("/System/Library/Caches/com.apple.xpcd/xpcd cache.dylib", 2);
if (v3)
{
vd = dlsym(v3, " xpcd cache");
if (v)
{
if (dladdr(v4, &v25))
{
v5 = getsectiondata(v25.dli_fbase, " TEXT", " xpcd cache", &v26);
if (v5)
vl = xpc_create_from plist(v5, v26, v6);
else
v]l = xpc_dictionary create(0, 0, 0);
dword 36C54 = v7;
}
}
}
}

Changes 1n Loading Launchd

Daemons

+ Launchd on iOS 9 will first invoke a trivial API in
xpcd_cache.dylib to ensure the present of executable
permission

if 2 lstzt("/Syétem/LIbrary?éaches/com.apple.xpcd/xpcd_cache.dylib", &v29))

{
v28 = 0;
v3 = dlopen("/System/Library/Caches/com.apple.xpcd/xpcd cache.dylib", 2);
if (. v3)

vd = dlsym(v3, " xpcd cache");
vh = vi;

if (ve)

if (((int (__cdecl *)(void *, int *, int))v4)(v4, vl, v2) I= 1)

ABEL_38:
v26 = os_assert log(0, 0);
_os_crash(v26);
__debugbreak();

}
if (dladdr(v5, &v27))
{
v6 = getsectiondata(v27.dli_fbase, " TEXT", " xpcd cache", &v28);
if (ve)
v8 = xpc_create_from plist(v6, v28, v7);
else
v8 = xpc_dictionary create(0, 0, 0);

L e —

Changes 1n Loading Launchd

Daemons

+ Launchd on iOS 9 only loads platform binaries

+ Launchd uses csops to query the status of code
signing attributes of the process

Changes 1n loading launchd

daemons

+ Non-platform binary cannot be launched

if (csops(v26, 0, &v45, 4))

result = (int *)*_ error();
if (result != (int *)3)
{
if (*_ _error())
{
v30 = _os_assumes_log();
_os_avoid_tail_call(v30);
}
goto LABEL_83;
}
}
else
{
result = v45;
if (!((unsigned int)v45 & 0x4000000))

8L_83:
sub_223C4((int)"unexpected exec of non-platform binary");
goto LABEL 84;

} |
}

L e — -

Changes in Loading Main

Executable

+ The iOS kernel is responsible for parsing and loading
the main executable while creating a new process

Kernel

Userland

Changes in Loading Main

Executable

+ Before iOS 8.3, the kernel does not directly validate the
signature of the Mach-O header of the main executable

+ Kernel only ensures that the main executable has a correct
code signature segment (i.e., the segment is signed correctly)

+ Instead, the kernel leaves the validation to dyld

+ dyld will access the Mach-O header of the main executable
and thus trigger page faults, leading to final SHA1
comparison

A Persistent Vector for Code signing
Bypass before 105 8.5

+ Modify the Mach-O header of a platform binary

+ Change the LC_LOAD_DYLINKER of main executable
to trick the kernel to load our fake dyld

+ Modify LC_UNIXTHREAD of our fake dyld which

enables us to control all register values and point the
PC value to a ROP gadget

hanges in L.oading Main
xeculable

In iOS 8.3, the kernel proactively compares the SHAT1 of the
Mach-O header with the SHA1 in corresponding cs_blob

if i(got_code_signatures) |
unsigned tainted = CS_VALIDATE TAINTED;

boolean t walid = FALSE;
struct cs_blob *blobs;
vm_size t off = 0;

if (cs_debug = 10)
printf("wvalidating initial pages of %s\n", vp->v_name);

blobs = ubc_get_cs blobsivp);
== LOAD SUCCESS) {

while (o0ff < size && ret _
tainted = CS_VALIDATE TAINTED;

valid = cs_validate page(blobs,
NULL,

file offset + off,
addr + off o
dtainted) ;

CEVET: G Lo E_TAINTED)) {

if {(cs_debug)
invalid initial page at offset %1ld validated:%*d tainted:%d csflags:0xix\n",

print£("CODE SIGNING: %s[%d]:
{long long) (file offset + off), walid, tainted, result->csflags);

vp->v_name, p-*p pid,

if (cs_enforcement (NULL) ||

(result->csflags & (CS _HARD|CS KILL|CS ENFORCEMENT))) {
ret = LOAD FATILURE;

}
result->csflags &= ~CE_VALID;

}
off += PAGE_ SIZE;
} ? end while off<size&&ret==LOAD_S...
} ? end if got_code_signatures ?
R — _ . - o =

More Changes i lL.oading Main

Executable

+ Actually in i0OS 9, Apple adds more check for picking
up an already registered cs_blob

if (v53->csb_cpu_type == v183)
{
if (v53->csb_base_offset == file offset)
if (v53->csb_mem size == *(DWORD *)(v205 + v48))
lck_mtx_lock(v224);
if (v224)
if (*(WORD *)(v224 + 68) == 1)
{
v55 = *(_DWORD *)(v224 + 76);
if (v55)
if (*(_DWORD *)(v55 + 28) == dword 8040AFF4)
lck_mtx _unlock(v224);
goto LABEL_126; // success
}
}
}

}

Kernel Patch Protection (KPP

+ Apple introduced KPP in iOS 9 for 64bit devices
+ Implementation details are unclear

“+ Jt's believed that it is related to the Secure Enclave

Processor (SEP), an alternative of TrustZone on iOS
devices

+ Unfortunately, the SEP firmware is encrypted

KPP Observations

+ KPP randomly checks the integrity of RX pages of the kernel-cache and
page table

+ Persistent code patch is not feasible, because it would trigger random
kernel panic

+ Panic when RX page is modified
panic(cpu 1 caller Oxffffff80098fde28): SError esr: 0xbf575401 far: Oxfftff£8009898000

+ Panic when Page table is modified

panic(cpu 0 caller Oxffffff80214fde28): SError esr: Oxbf575407 far: Oxfffftf8021498000

Agenda

% 105 Security Overview

+ Security Changes from iOS 8 to iOS 9

+ Kernel Vulnerability Exploited in Pangu 9
+ Kernel Exploit Chain

% Public Release vs. Bounty Hunting

<+ Conclusion

Use-after-free in

TOHIDResourceUserChent

+ We found it by auditing IOHIDFamily source code
+ The bug was also independently discovered by other researchers
+ @qwertyoruiop, Cererdlong, etc

+ The interesting thing is this bug also affects Mac OS, but is only
triggerable with root on Mac OS

+ We almost missed the bug

+ Thanks @qwertyoruiop for pointing out that it is triggerable with
mobile on i0S

Use-after-free in

TOHIDResourceUserChent

+ _device is allocated in method 0

<+ createDevice -> create AndStartDevice

IOReturn IOHIDResourceDeviceUserClient::createAndStartDevice ()
{

IOReturn result;
OSNumber * number = NULL;

number = OSDynamicCast(OSNumber, properties->getObject(kIOHIDRequestTimeoutKey)):;
if (number)
_maxClientTimeoutUS = number->unsigned32BitValue();

- ol= nwrapping we have a di Tele¥: ot ' reate the device
IOHIDUserDevice: :withProperties(_properties);

regulre d 0 aev 2, eX y LEeSU =RLILUOKetTurnNorKkesour

Use-after-free in

TOHIDResourceUserChent

2+ device is released in method 1

<+ terminateDevice -> OSSafeRelease

IOReturn IOHIDResourceDeviceUserClient::terminateDevice()

{
if (_device) {
_device->terminate();

OSSafeRelease(_device);

return kIOReturnSuccess:;

Use-after-free in

TOHIDResourceUserChent

2+ (OSSafeRelease is NOT safe

+ #define OSSafeRelease(inst) do { if (inst) (inst)-
>release(); } while (0)

+ It does not nullify the pointer after releasing it!

Use-after-free in

TOHIDResourceUserChent

+ _device i1s used again in many functions

+ E.g. method 2 takes 1 input scalar and an input struct,
also the the return value is directly passed to user space

+ IOHIDResourceDeviceUserClient::_handleReport

if (arguments->scalarInput[@])

AbsoluteTime_to_scalar(×tamp) = arguments->scalarInput([@];
else

clock_get_uptime(×tamp);

Agenda

% 105 Security Overview

+ Security Changes from iOS 8 to iOS 9

+ Kernel Vulnerability Exploited in Pangu 9
+ Kernel Exploit Chain

% Public Release vs. Bounty Hunting

<+ Conclusion

Context of the UAF

+ 32bit
+ The UAF object is in the kalloc.192 zone

<+ Both R1 and R2 are under control when the UAF is
triggered

LDR.W RO, [R4,#0x80] ; RO= device

LDR Rl, [SP,#0x60+var 40]

LDR R2, [SP,#0x60+var 3C] ; R1l,R2=scalar[0]
LDR R3, [RO]

LDR.W R6, [R3,#0x3B4] ; vtable+0x3B4

MOVS R3, #0

STR R3, [SP,#0x60+var 60]

STR R3, [SP,#0x60+var 5C]

MOV R3, RS

BLX R6 ; trigger

Context of the UAF

+ 64bit
+ The UAF object is in the kalloc.256 zone

+ Only X1 is under control when the UAF is triggered

LDR X0, [X19,#0xE8] ; XO0= device
LDR X8, [X0]

LDR X8, [X8,#0x630] ; vtable+0x630
LDR X1, [SP,#0x28] ; Xl=scalar[O0]
MOV w3, #0

MOV W4, #0

MOV W5, #0

ADD X6, SP, #0x10

MOV X2, X20

BLR X8 ; trigger

Transter UAK to lType Confusion

+ The UAF object zone can be easily filled with variety IOUserClient
objects via calling IOServiceOpen

+ Check vtable offsets of all possible IOUserClient classes to see what
functions we may call

2+ OSMetaClass::serialize(OSSerialize *)
+ OSMetaClass::getMetaClass(void)
= OSMetaClass::release(void)

+ OSMetaClassBase::isEqualTo(OSMetaClassBase const®)

Exploit'lype Confusion to lL.eak
Kernel Shde

+ OSMetaClass::getMetaClass(void)

+ Return a static object inside kernel -> leak kernel base

+ 32bit return value is enough for armé64 also

+ High 32bit value is always Oxffffff80

___ZNKl1llO0SMetaClassl2getMetaClassEv

MOV RO, #(unk_ 8045FF20 - 0x8030BD34)
ADD RO, PC ; unk 8045FF20
ADDS RO, #0x30
BX LR
___ZNK11lO0SMetaClassl2getMetaClassEv
ADRP X8, #unk FFFFFF800BDAOO40@PAGE

ADD X8, X8, #unk FFFFFF800BDAO040@PAGEOFF
ADD X0, X8, #0x340
RET

Exploit'lype Confusion to lL.eak
Heap Address

2+ OSMetaClass::release(void)

+ RO/ X0=self pointer -> leak low 32bit of the object
address

+ Not enough for arm64

+ High 32bit value is Oxffffff80 or Oxffffff81

__ZNKllOSMetaClass7releaseEv
BX LR

__ZNK1l1lO0SMetaClass7releaseEv
RET

Exploit'lype Confusion to lL.eak
Heap Address for ARM64

+ OSMetaClassBase::isEqualTo(OSMetaClassBase
const™)

<+ X1 is under control

+ Calling the function twice can decide the high 32bit
value of the heap address

___ZNK150SMetaClassBase9isEqualToEPKS
CMP X0, X1

CSET W0, EQ

RET

Heap Spray with OSData

+ What we have now - Kernel base / object address

+ 10_service_open_extended -> OSUnserializeXML -> spray
OSData with controlled size and content

+ Set |object address] = vtable = object address - call offset + 8

+ When triggering the bug, function pointer at [object address
+8] will be picked up

+ Set [object address+8] = gadget to call

The Read Gadget

+ 32bit
+ LDR RO, [R1]; BX LR;
+ 64bit

+ LDR X0, [X1,#0x20]; RET:

The Write Gadget

<+ 32bit - R1 and R2 are under control
+ STR R1, [R2]; BXLR;
<+ 64bit - X1 and contents of X0 are controlled

+ LDR X8, [X0,#0x60]; STR X1, [X8,#8]; RET:

Agenda

% 105 Security Overview

+ Security Changes from iOS 8 to iOS 9

+ Kernel Vulnerability Exploited in Pangu 9
+ Kernel Exploit Chain

+ Public Release vs. Bounty Hunting

<+ Conclusion

Pangu 9 Released

+ Pangu 9 for i0S 9 was released at Oct 14, 2015

+ Also we noticed that some people discussed whether
Pangu 9 met the Zerodium bounty requirements

Team Pangu, if it'd developed its exploits further, could have
made as much as $1 million if it’d submitted its findings to
Zerodium, an exploit dealer that had offered that amount to
anyone who found and submitted an iOS 9 jailbreak. But as
security expert Francisco Alonso told me over Twitter, Pangu
would likely not have met Zerodium’s requirements, which
asked for exploits to be fully remote. The 10S 9 jailbreak
requires the phone to be connected to a PC via USB.

Pangu 9 vs. Bounty Requirement

+ We never consider the bounty
+ We release the jailbreak tool for
+ Full control of iOS devices for end users
+ Security research and jailbroken iOS development
+ We think Mobile Safari is NOT a good landing point for jailbreak tools

+ It's too dangerous if the exploits are abused, which violates our purpose of
releasing a jailbreak tool

+ It will also shorten the lifetime of a jailbreak tool, because Apple will (very
likely) release a fix asap

Agenda

% 105 Security Overview

+ Security Changes from iOS 8 to iOS 9

+ Kernel Vulnerability Exploited in Pangu 9
+ Kernel Exploit Chain

% Public Release vs. Bounty Hunting

<+ Conclusion

Conclusion

Apple puts more efforts on improving the whole
security mechanisms rather than fixing individual

bugs

A lot of security features in 10S were undocumented,
which make jailbreaking more and more difficult

KPP introduced in iOS 9 makes people believe that
there may be no jailbreak anymore, what we did
proves that hackers will always find their way in

Thanks for Your Attention

