
A Look at Modern iOS Exploit Mitigation
Techniques

MOSEC 2017

Luca Todesco @ qwertyoruiopz

whoami

•security researcher by hobby and trade

•contributed to several public iOS jailbreaks

•make private jailbreaks in my spare time

•both iOS and PS4 on latest version :)
•i got some german guy on twitter super angry

•i was featured in a mixtape or two

Typical iOS Exploit Chain

•Entry point

•WebKit

•Privilege Escalation

•Kernel

•Sandbox escape may be required to trigger

prehistory of iOS security

• iPhone os 1.0: everything ran as root and without code sign or sandbox

• Encrypted OS images (security by obscurity)

• iPhone OS 2 introduces code sign and sandbox

• To this day the biggest contributors to iOS's security is sandbox

• iOS 5: usermode ASLR

• iOS 6: kernel mode ASLR + kernel address space isolation

• iOS 7: let's casually forget about isolation in the transition to 64 bit(???) -
iPhone 7 fixed this

• Strongest defense mechanism is the widespread use of sandboxing

• It is important to note the Apple's security fame mainly comes from their
(somewhat) strong use of sandboxing

• However the rest of the industry is catching up

• Apple's strategy used to be hitting post-exploitation

• Gaining remote code execution on iOS was just as easy as finding
some WebCore UaF and applying generic exploitation strategies

• Escalating privileges on the other hand is quite tricky from a sandboxed
context

• Many would use chains of bugs to first escape sandbox then LPE to
kernel

Moder iOS Security

• Prevalent defense strategy is *still* go against post-exploitation

• Hardening the big targets: kernel and webkit

• Kernel Patch Protection and Bulletproof JIT

• Some exploit technique mitigation strategies also got implemented

• Some heap hardening got rid of the ' zone confusion ‘/wrong kfree
attack: possibly single biggest iOS 10 security win

• Reality is: it appears Apple does not actually proactively push exploit
mitigations; they merely wait for Ian Beer to show his new nifty exploit
strategies then make minor changes to make them slightly less useful

• Not the best strategy

Moder iOS Security

• Increase attacker cost

• Cheapest defense strategy is to go against post-exploitation

• Some exploit technique mitigation strategies also got implemented,
but they are rather ineffective

• Some are working out OK, e.g. at last, mapping NULL is
disallowed!

• Aim for the "usual suspects”: kernel and webkit

• Defending the entirety of user mode is a lost battle to begin with

• Sandbox is getting tightened nonetheless

Code Integrity
• Kernel

• Kernel Patch Protection

• Enforced with TrustZone / EL3 pre-i7 (WatchTower)

• Hardware enforced on iPhone 7 (incorrectly called AMCC,
rumored to actually to called "SiDP")

• WebKit

• JIT memory is not writeable directly since iOS 10

• "Bulletproof JIT"

• Separate RW map from RX one and hardcode RW address in
fuction living in executable-only memory

• Still one function call with 3 arguments away (JOP/ROP)

The cold, hard truth

• All these security strategies are ultimately useless

• Kernel post-exploitation is largely unneeded

• Only attackers affected are jailbreakers

• Malware only cares about things userland has access to anyway

• Define data only task_for_pid equivalent (comex's
host_get_special_port patch for instance)

• Alter usermode processes

• Alter physical memory directly

The cold, hard truth

• All these security strategies are ultimately useless

• "Bulletproof JIT" is probably the best mitigation out of the bunch

• Even if currently useless, it will make more sense then KPP in the
future

• Secure Enclave is probably the best design decision ever

• Attacker cost skyrocketed

• But:

Attacks
WatchTower

WatchTower

• "Hypervisor" of sorts running in EL3

• Trap IRQS and writes to CPACR_EL1

• CPACR_EL1 gets periodically set in EL3 mode to disable floating point
execution

• Kernel then re-enables it trapping into hypervisor

• Const (__Text / __DATA_CONST) segment are integrity checked

• Pagetables also checked

• A bunch of system registers are also checked

• TTBR1_EL1 among others

TOCTOU

• Altering TTBR1_EL1 allows us to alter the virtual layout

• The thing that is actually "used"

• We can remap checked pages in non-checked area

• Including the page containing the write to CPACR_EL1 (the integrity
check trigger)

• Hook it and branch into shellcode

• Fix up TTBR1_EL1 back to valid value, enter hypervisor to our
magic value

• shellcode can be in original pagetables at executable

• Only PTEs of checked virtual addresses are enforced

Setting TTBR1_EL1

• Rewrite first level PTEs, and remap page containing CPACR_EL1 acces

• Can now hook CPACR_EL1

• Call gadget to set TTBR1_EL1

• Works for a few milliseconds

• Reverts back to original pagetables

Setting TTBR1_EL1

• A reason for TTBR1_EL1 to be altered would be reset, since it resets as
0

• Cores actually reset fairly frequently

• Two causes

• Idle sleep

• Used for saving power when CPU is idle

• Deep sleep

• Triggered when phone screen has been off for ~30 seconds
and no AC power

• Winocm's kloader hooked into the deep sleep wakeup handler
to re-enter boot loader

Setting TTBR1_EL1

• After reset, core jumps in RVBAR_EL1

• MMU is not operating (everything RWX and addressed as phys)

• Branch is taken to initialization routine

• TTBR1_EL1 is set mirroring the page containing this routine to let
code run when enabling translation

• TTBR1_EL1 is then set, and a pc relative branch jumps by
gVirtBase-gPhysBase

• Jump from "physical" PC to virtual counterpart

• execution is then resumed

Setting TTBR1_EL1

• After reset, core jumps in RVBAR_EL1

• MMU is not operating (everything RWX and addressed as phys)

• Branch is taken to initialization routine

• Branch target not validated pre-i7

• on i7, this is privileged code (SiDP not enable yet)

• Can override to branch to shellcode

Setting TTBR1_EL1

• After reset, core jumps in RVBAR_EL1

• Branch is taken to initialization routine

• Branch target not validated pre-i7

• Once in shellcode, overwrite return address of initialization routine

• Can now execute code after TTBR1_EL1 is set, but before
execution is resumed

• Change TTBR1_EL1

• Now completely bypass kernel integrity check

• Implemented in Yalu102

Attacks
iPhone 7 memory protection

i7 memory protection/"AMCC"/"SIDP"

• Got rid of the hypervisor

• They actually got rid of EL3 altogether (iBoot is EL1!)

• KPP performance hit maybe ?

• Code integrity is now enforced by hardware

• Find a design flaw and it will never be patchable in theory…

• Doesn't hold well in practice

i7 memory protection/"AMCC"/"SIDP"

• The security guarantees are different than KPP's

• You are guaranteed to be unable to write to a range of memory

• Write-once system registers; access will trigger illegal instruction
fault if already written to

• You are guaranteed that EL1 instruction fetches outside the protected
areas will fail

• Guarantees on system register state

• TBR1_EL1? :D

i7 memory protection/"AMCC"/"SIDP"

• You can actually set TTBR1_EL1 just fine

• Sort of. More on this later

• Do copy-on-write again

• Cannot however insert new code

"Data Only" kernel patching

• Previous so-called "Data Only" patches (i.e. pangu9, pangu9.3.3) only
attacked sections that were left unprotected by hypervisor

• Patches weren't data only, shell code was used

• Security guarantees of i7 memory protection disallow this

• We need truly data only patches

• At most, we can ROP

Patching strategy

• Function calls from a kext to main kernel functions will pass thru the
global offset table

• Overwrite pointers to redefine functions

• MAC function pointer tables will be used to enforce policies

• Overwrite with NULL to skip the check

• Used in Pangu9

AMFI

• Two patches required

• Bypass codesign

• Control csflags

• MobileSubstrate

AMFI

• Redefining GOT functions to subvert logic

• memcmp -> return 0

• CDHash will always be considered part of platform binary
TrustCache

• Redefine a function called early on by the exec hook

• ROP and return back to the function skipping prolog and fuction call
to avoid recursion

• Run code after function returns but before control is passed back to
caller

• Can use ROP to alter csflags

Sandbox

• Need to disable enforcement

• Signle MAC hooks were nulled

• Pangu9 also did this, but used shellcode to partially disable
enforcement for security concerns

• PE_I_can_has_debugger -> return 1

• Need to run platform binaries from /var as root

LightweightVolumeManager

• _mapForIO will fail on write to root partition

• A flag on the partition object will mark it as locked

• Partition object in heap, remove flag

• Used in Pangu9

• Additional check since 9.3

• If writing on root partition and PE_I_can_has_kernel_configuration
returns 0, fail before even checking the flag

• Redirect function entry in GOT to return 1 gadget

mac_mount
• Will prevent remounting the root partition as R/W

• Pangu9 raced the hypervisor to do this patch

• New security guarantees prevent this strategy

• Partition object in heap, remove flag

• Used in Pangu9

• Checks a flag in the vnode you're trying to mount on

• If vnode is marked as being root, fail

• Remove flag, remount reapply -> bypass check

Changing TTBR1_EL1

• So far, it seems to all be quite easy

• But we can assuming that changing TTBR1_EL1 is easy

• In practice, it is

• In theory, it shouldn't be

• System registers are not protected by new security guarantees

• Apple obviously knew so tried to do something to mitigate this

Changing TTBR1_EL1

•Practice is, from my ROP chain running just after SIDP is
enabled, i can still call these and change TTBR1_EL1

•Unsure why. Either a off-by-one or a cache issue

Hijacking code execution on reset
• Code execution on reset has to be achieved somehow

• The method used on 64-bit devices on yalu102 cannot be used here

• From WatchTower slides:

• TTBR1_EL1 is then set, and a pc relative branch jumps by gVirtBase-
gPhysBase

• Jump from "physical" PC to virtual counterpart

• In theory, it shouldn't be

• gVirtBase and gPhysBase are overwriteable

• Change gVirtBase to gPhysBase - branch target + gadget

• Remap secure area page containing a pc-relative ref out of page bounds
and a indirect branch based on dereferences from it into
TTBR0_EL1(writeable memory)

ARM64 ROP

• Can now control the program counter and one register

• ROP

• ROP is actually quite tricky herre

• No debugging whatsoever

• Changing gVirtBase and gPhysBase will corrupt the interrupt handler
base

• Our chain must be atomic since multiple cores may run it at the same time,
and chain has to be able to get re-run without issues at unpredictable times

• Stack pivoting on a64 can be difficult if you're not creative enough

ARM64 JOP

• We start with JOP

• Take a function with a indirect branch based on a dereference from 1st
argument close to prolog

• C++ does this a lot

• Take a gadget the dereferences X0 = *(X0+off) then does an indirect
branch

• Can now build a sort of “linked list" that lets me call the function
prolog repeatedly

ARM64 JROP
• We call a function prolog multiple times, but never return from out indirect

branch

• Every time we call it we push a bunch of registers to stack

• We push many redundant stack frames

• Set x0 = SP + 8, x1 = controlled imm, x2 = controlled imm

• jump into memcpy skipping the prolog

• Overwrite stack frames (except one set, kept for clean return) creating
an artificial stack overflow

• We can now run ROP, then call matching function epllog to pop fake
frame back to register

• Fully atomic, reusable, and function calling convertion compliant
ROP chain

ARM64 ROP Tips

• Many gadget candidates will not pop from stack

• e.g. MSR TTBR1_EL1, X0; RET

• Will continue recursing on themselves since they're the last x30 value

• Need to use JOP shim

• BLR xN; LDP x29, x30, [SP], #16; RET etc.

ARM64 ROP Tips

• Many gadget candidates will not ret at all

• Many gadget candidates will have an indirect branch to X8

• e.g. mov x0, x29; blr x8

• Set X8 to LDP x29, x30, [SP], #16; RET

• These are now ROP gadgets

• (there's plenty on iOS kernels!)

Future Attacks
Outlining strategies to bypass a theoretical future CFI implementation

Assumptions

• Assuming CFI is coarse-grained

• No typing enforcement

• Assuming ARMv8.3 “Authenticated Pointers” are used

• Assuming ability to leak authenticated pointers for valid functions

My magic 8ball is better than yours

• We can speculate that Apple will add control flow integrity in one or two
years at most

• Bulletproof JIT is an early warning for attackers :)

• Let's attack Bulletproof JIT without ROP

• Writing to JIT is out of CFI security guarantees scope (e.g. do it and
your arbitrary code will happily run without any CFI interference)

• Since we don't have CFI yet all of this is purely theoretical

• Assuming R/W primitives as starting point

Attacking Bulletproof JIT

• The strength of Bulletproof JIT is that the writable map for JIT is at an
unknown place in the address space

• Bulletproof JIT is an early warning for attackers :)

• Multiple avenues to figure the address out

• Mach APIS

• Brute force

• We know where executable area is, so we can predict contents

• Look at every page

Address Space Oracles

• My previous WebKit exploits have always used the 'dyld_start' technique to
re-execute the dynamic linker on a new memory-mapped Mach-O

• Allows in-memory execution of unsigned code by relying on JIT

• Need to find dyld base in the easiest possible way

• Using libdyld was possible but had to parse shared cache and am lazy

• Used shell code in order to do many write() syscalls on a pipe, starting
from unslid dyld base, until return value is non-error

• Using copyin() as read access oracle to determine wether page is
mapped or not

• Essentially what we need to do to bypass bulletproof JIT

• However writeable map is more randomized than dyld

Search Space

• All AArch64 iOS devices will have a 0x4000 pagesize in usermode

• Address space usually starts at 0x100000000 due to __PAGEZERO

• We're in the webkit renderer, a platform binary, so __PAGEZERO will be
'standard'

• Had never seen it reach higher than 0x200000000 on iOS 9

• But I did in 10

• Worst case nr. of operations:~524288

• We can do better than that.

Reducing the search space

• JIT region is 32MB on AArch64

• We can do 1 read every 32MB and be guaranteed to eventually hit the JIT
region mapping

• 32MB = 0x2000000 *

• Just 256 tries worst-case-scenario needed to scan 0x100000000-
0x300000000

Finding writeable map

• Exclude executable area from valid search space

• For each mapping found, calculate size

• Candidates have to be 32 MB minus one page in size

• First page of JIT region not present in writeable map: this contains
the execute-only special memcpy

• Then look at contents to validate that this is indeed the right map

• Can now write arbitrary opcodes

• Bulletproof JIT bypassed

CFI-easy Address Space Oracle

• We must find a function pointer we can arbitrarily replace

• And it must be used to perform a function call with a controlled
argument at an arbitrary point in time

• Additionally we must find a syscall that will copyin/out from/to it's first
argument and return success / failure

• And we must be able to detect success / failure conditions

• The write() syscall was used in a non-CFI environment to do this by using
simple J/ROP to control multiple arguments; under CFI we need to have
the least possible arguments to simplify exploitation

CFI-easy Address Space Oracle

• Let's look at syscalls.master and look out for user_addr_t

• First candidate in the list is 'chdir'

• Should work just fine as long as we are able to get an authenticated
pointer for it

• We can detect failure by looking at it’ errno

• EFAULT means X0 points to an unreadable address

• All we need now is a pointer to replace for our one-controlled-argument
function call

• Place to look for: C++ objects, GOT, function pointers in __DATA, stack

CFI-easy Address Space Oracle

• Finding a function call with a controlled argument reachable from JS
should not be too difficult but it can be time consuming

• I did't have the time to find one in time for this talk, but I'm sure there's
plenty around

• A way to simplify this might be to play with stack frames

• Call some native function that allows reentrance, then upon reentering
alter stack frame of caller with r/w primitive

• Change local variables to control values that would't otherwise be
controllable with javascript

One More Thing
Mach and CFI

Mach and CFI

• Sending a Mach message gives a lot of control over your process, the
kernel and other processes too

• The mach_msg function is used for this

• 'mach_msg' requires multiple arguments

• With a function call with single controlled argument primitive it'd be
tricky to call it

• Fortunately, mach_msg_send and mach_msg_receive just take
one argument and will put together the arguments based on data
read from that argument

Mach and CFI

• Another interesting attack relying on Mach involves the functioning of
mach_msg_server

• Many apps and daemons are built around this

• And if they aren't, theres a good chance some frameworks they use
will create threads that use this

• Will receive a message, call a callback, then send a reply

• Reply is vm_allocated at beginning of function and sent after
callback returns

• Reply can be overwritten and upon callback return a controlled
mach message can be sent

Mach and CFI

• mach_task_self can usually be easily guessed / hardcoded

• Sending a mach message to the task self port can do a lot!

• Thread context to directly control registers

• Leak address space layout to bypass bulletproof JIT

• Reorder address space

• Collect one authenticated pointer for a given address, then put
another page in there

Takeaways

• Sandboxing and in general post-exploitation mitigation strategies is what
made Apple security great

• Greatness has been Stagnating

• Apple security needs to become great again to stay ahead of the curve

All fusing is beautiful.
End the impossible standards.

All iPhones deserve JTAG1

Thank you!

