
Revisiting the Kernel Security Enhancements in iOS 10

MOSEC 2017

Liang Chen @ Tencent Keen Lab

Last year in iOS 10

• 2016.6.13 first iOS 10.0 beta was released
• 2016.7 Pangu team released iOS 9.3.3 jailbreak. Why?
• 2016.8 First iOS APT, Pegasus, was observed

• 2016.9.13 first release version of iOS 10 was out

• 2016.10.24 iOS 10.1 was released
• 2016.10.25, Keen Lab pwned iOS 10.1 twice in

Pwn2Own(remotely stealing photos, remotely install bogus app

Last year in iOS 10 (cont.)

• 2016.12.12 iOS 10.2 was released
• Ian Beer of Google Project Zero released mach_portal exploit with a nice write-up
• Luca Todesco released Yalu + mach_portal, Jailbreak on iOS 10.1.1 (including iPhone 7

AMCC bypass)
• Yalu102 (by Luca Todesco and Marco Grassi)

• 2017.3.27 iOS 10.3 was released
• Everything became quite after that

• Question: What happened in this year?

Agenda

•Vulnerability

•Mechanism

•Exploitation

•Summary

Part I: Vulnerability

Begin with Pangu 9.3.3…

• CVE-2016-4654: Heap overflow in
IOMobileFramebufferUserClient

• In the 5th methodCall of
IOMobileFramebufferUserClient(IOMobil
eFramebuffer::swap_submit)

CVE-2016-4654: the fix

• Fixed in iOS 10.0 beta 2
• someCount cannot exceed 4
• We can get conclusion:

• Before iOS 10.0.1 release, Apple
made strict audit on iOS 9 code

• Several unfixed bugs were patched
in iOS 10 beta

someCount not exceed 4

XNU case: CVE-2017-2370
• Discovered by Marco Grassi of Keen Lab, bug collision with Ian Beer later on
• Heap overflow in mach_voucher_extract_attr_recipe

args->recipe_size is a userland pointer pointing
to the size value

args->recipe_size is used as size value here

CVE-2017-2370: the fix
• Fixed in iOS 10.2.1
• Lesson learned

• Newly added interfaces or features are
more likely to be vulnerable

Length of copyout is changed to sz (correct
value)

Part II: Mechanism

Story of OSNumber: From Pegasus

• CVE-2016-4655 kernel stack info leak
• OSUnserializeXML receives data from userland, and deserialize into basic data structure in

kernelland (E.g OSDictionary, OSArray)
• OSUnserializeXML receives two kind of XML data

• Binary mode
• XML mode

Story of OSNumber: CVE-2016-4655 details

• When binary mode is used, OSUnserializeBinary is called to parse the data

len is user controllable
value is 64bit in max

Story of OSNumber: CVE-2016-4655 details

newNumberOfBits is user controllable

Size can be set to arbitrary value, but value
is 64bit in max (8 bytes)

Story of OSNumber: CVE-2016-4655 details

offsetBytes takes 8 byte memory on stack

• How to leak?
• is_io_registry_entry_get_property_bytes

Len is user controllable

OOB read arbitrary bytes
of memory on stack

CVE-2016-4655: the fix

• Fixed in iOS 10.0.1

• In OSUnserializeBinary, only numbers of 8 bits, 16 bits, 32 bits and 64 bits are valid

• Apparently not the standard approach to fix. But for iOS , it might be enough

Only allow numbers of 4 modes

OSNumber: any more problems
• OSUnserializeXML receives two kind of XML data…

• Binary mode fixed

• Try XML mode
• <integer size="100">0X41414141</integer>

• Conclusion: iOS 10.0.1 was once again successfully leaked!

OSNumber bug 2: XML mode of OSUnserializeXML

• Seems apple noticed the issue very soon, and fixed in iOS 10.1

• This time they decided to fix the issue in OSNumber implementation

During OSNumber initialization,
newNumberOfBits cannot exceed 64

OSNumber bug 2: additional fix

• Add check in is_io_registry_entry_get_property_bytes, dual protection!

len cannot exceed 8 bytes

OSNumber bugs: all sorted?
• In XML mode, if size > 64, panic will occur

• Null pointer dereference
After the leak was fixed,
OSNumber::withNumber returns Null for
invalid len

In following array initialization, its element
object is traversed and object->release is
called, causing null pointer dereference

Final fix of OSNumber problem

• Thoroughly fixed in iOS 10.2

Check if OSNumber is created successfully

OOL Race Condition issue
• Discovered by Qidan He of Keen Lab

• Several drivers have the issue
• CVE-2016-7624
• CVE-2016-7625
• CVE-2016-7714
• CVE-2016-7620

• Apple found 20+ bugs caused by this mechnism

• When inputStruct length exceed 4096 in IOKit API IOConnectCallMethod will map the user
mode buffer into kernel as the user input data:
• Both userland and kernelland virtual memory share the same physical memory
• Changing the content of the userlane buffer will change the kernel buffer content immediatel
• Causing race condition problems

OOL Race Condition issue: the fix
• Fixed in iOS 10.2

• For all user supplied OOL buffer, map the kernel memory via Copy-On-Write

Part III: Exploitation

Object creation number limitation
• Within sandbox several kernel objects can be created

• With various size, in various kalloc zone
• Perfect for heap fengshui

• iOS 10 limits quite some kernel objects

• E.g IOAccelResource2

Simplify some "dangerous" interface

• Famous API is_io_service_open_extended
• Accepts serialized user data and call

OSUnserializeXML, pefect for heap
fengshui

• Simplified in iOS 10.2

Enhanced KPP/AMCC
• From iOS 10.0 beta 2 got table is protected by KPP/AMCC

• The approach in Pangu 9.3.3 to modify got table was prohibited
• PE_i_can_has_debugger

• Luca iOS 10.1.1 AMCC bypass approach was fixed
• Can refer to Luca's talk: A Look at Modern iOS Exploit Mitigation Techniques

Neutering task_for_pid 0
• Obtaining kernel task port has become a standard for Jailbreaks

• Ian Beer mach_portal uses a very neat way to get tfp0

• iOS 10.3 limits the use of tpf0
• Prohibit any usermode process to read/write kernel memory using tfp0
• Ian Beer's mach_portal approach is mitigated

• iOS 11 extended the limit to the use of all task ports for app processes
• Ian Beer's userland port hijack approach is mitigated

SMAP on 64bit platform(iPhone 7 only)
• Early in iOS 6, userland and kernelland address space are isolated

• Accessing userland memory in kernelland is prohibited

• But on ARM64, only SMEP is present
• Disallow executing userland code in kernelland
• Kernelland can still access userland memory

• Provide convenience on ARM64 kernel exploitation
• Leaking kernel heap address is not necessary
• E.g Both Pangu 9.3.3 jailbreak and Yalu102 attempt to access userland memory in kernelland

• iPhone 7 prohibits userland memory access in kernelland
• Higher requirement on kernel info leak bug

Part IV: Summary

Summary

• This year in iOS 10, Apple enhanced iOS kernel security a lot

• Bus within container sandbox are almost extinct
• future jailbreaks need to chain exploits on sandbox bypass + out-of-sandbox kernel

bugs

• For some typical bugs, Apple tend to fix via mechanism instead of bug itself, to
eliminate the whole set of problems

• Apple actively mitigates some common exploit techniques, making kernel exploitation
harder

One more thing…

Thank you!

