
Through the mach portal
ianbeer

Part I - escaping the iOS app sandbox

● Mach ports and mach port names
● lifetime management of names
● single-send-right rule
● message destruction in userspace
● name allocation and free algorithms
● port rights state transitions

overview
Part II - getting the kernel task port

● kernel port structures
● reference counting
● race conditions
● using no-senders
● zalloc
● finding the kernel task port

A mach port is a kernel-maintained message queue

mach ports in 30 seconds:

A mach port is multiple sender, single receiver

mach ports in 30 seconds:
In userspace
mach port names name rights a process has over a
particular message queue

send right: try to enqueue an unlimited number of messages to a particular message queue

send-once right: try to enqueue a single messages to a particular message queue

receive right: try to dequeue an unlimited number of messages from a particular message queue

dead-name right: do nothing (the queue no longer has a receiver)

portset right: try to dequeue an unlimited number of messages from multiple message queues

I’m using the term message queue but for kernel owned ports for the kernel MIG apis
the messages never get queued; there’s a fast path which turns them into
synchronous syscalls (see ipc_kobject_server)

mach messages

header

optional
descriptors

body

send resources:
● port rights
● memory

send raw inline data

specify destination

the header also contains port rights; the most important one (at least for IPC/RPC)
being the reply port

lsmp - list mach ports

Process (5667) : hello_world
 name ipc-object rights send sonce qlimit msgcount context identifier type
--------- ---------- ---------- ----- ----- ------ -------- ------------------ ----------- ------------
0x00000103 0x25d412b7 send 2 0x00000000 TASK SELF
0x00000203 0x28f58c67 recv 5 0 0x0000000000000000
0x00000307 0x25d404ef send 1 0x00000000 THREAD
0x00000403 0x28f5a35f recv 5 0 0x0000000000000000
0x00000503 0x28f5b517 recv 5 0 0x0000000000000000
0x00000607 0x2604f2b7 recv 5 0 0x0000000000000000
0x00000707 0x2662f0bf send 4 6 0 0x0000000000000000 0x00032603 (1) launchd
0x00000803 0x0d9f55ff send 1 0x00000000 CLOCK
0x00000903 0x2604f0bf send 1 0x00000000 SEMAPHORE
0x00000a03 0x27fb1057 recv,send 1 5 0 0x0000000000000000

This is the output of lsmp for a simple hello_world program on MacOS (the output is
slightly truncated to fit the slide.) Notice that there’s some kind of pattern to the
names.

struct ipc_space* itk_space

...

...

struct task

Where are my ports?

lck_spin_t is_lock_data;

ipc_space_refs_t is_bits;

ipc_entry_num_t is_table_size;

ipc_entry_num_t is_table_free;

ipc_entry_t is_table;

...

struct ipc_space

struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{ mach_port_index_t next;
 ipc_table_index_t request;
} index;

struct ipc_entry

.

.

.

is_table array
allocated via kalloc()

struct task is the processes abstraction for the Mach side of the XNU kernel. See
task_t considered harmful
[https://googleprojectzero.blogspot.com/2016/10/taskt-considered-harmful.html] for
more discussion about task structs.

Each task has it’s own ipc namespace. This is just a way of assigning “names” to
ports

What’s in a name?

struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{ mach_port_index_t next;
 ipc_table_index_t request;
} index;

struct ipc_entry

ipc_entry_t is_table

mach_port_name_t

gentable index
07831

index into is_table array

gen

0

UREFS

1531 24

SRSOD PS

ipc_entry_bits_t

gen must match for
lookup to succeed

ipc_entry_lookup takes the mach_port_name_t from userspace and splits it up into
the table index and generation number fields. Note that XNU doesn’t use c bitfields for
this, it’s all macros and bittwiddling.

That index is checked against the size of the table then used to index the array. Then
the generation number from the mach_port_name_t is compared against the
generation name stored in the ie_bits field. Only if they match is the entry pointer
returned.

Note that it used to be the case that there was a much more complicated tree
structure which held the ipc_entrys which allowed userspace to give ports arbitrary
names (so you could do fun stuff like give a port the same name as a pointer to an
object in your process that was associated with it (...) Now userspace has far less
control over port names.

The generation number should jump out as interesting; why is it there? It’s a
mitigation :) As we’ll see, managing mach port names is complicated and plenty of
code gets is wrong.

What’s in an entry?

struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{ mach_port_index_t next;
 ipc_table_index_t request;
} index;

struct ipc_entry

gen

0

UREFS

1531 24

SRSOD PS

ipc_entry_bits_t

Points to the port or portset
which this entry names. The
ipc_entry holds 1 reference on
ie_object Determine the rights we have

for the ie_object (port/portset)

S: Send
R: Receive
SO: Send Once
PS: Port Set
D: Dead Name

count of
“userspace
references” held
on this name.

Putting a refcount on your refcount

struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{ mach_port_index_t next;
 ipc_table_index_t request;
} index;

struct ipc_entry

ipc_portan ipc_entry holds a
single real reference on
the target ipc_port

the ipc_entry will
drop its reference
on the actual port
when it’s destroyed

gen

0

UREFS

1531 24

SRSOD PS

ipc_entry_bits_t

count of “userspace
references” held on the
send right this entry names

the ipc_entry holds one reference on the target port
UREFS “refcount” that reference :)

Both these reference count implementations had exploitable bugs.

UREFS are a reference count just for the send rights possessed by an ipc_entry. an
ipc_entry can name multiple rights.

It the UREFS go to zero and the entry only names a send right then the entry is freed
and the reference the entry held on the ipc_port is dropped.

Managing ipc_entry lifetime

ipc_entry will be freed when it no longer names any rights

Managing ipc_entry lifetime (userspace)

mach_port_mod_refs(
 ipc_space_t task,
 mach_port_name_t name,
 mach_port_right_t right,
 mach_port_delta_t delta);

mach_port_deallocate(
 ipc_space_t task,
 mach_port_name_t name);

mach_port_destroy(
 ipc_space_t task,
 mach_port_name_t name);

if right is MACH_PORT_RIGHT_SEND and name names a
send right:
 then: add the signed delta value to the name’s UREFS

else if right is MACH_PORT_RIGHT_RECEIVE and name
names a receive right and delta is -1:
 then: destroy the receive right

if name names a send right:
 then: drop one UREF

destroy all rights held by name

It’s actually a very complicated web of APIs and conventions.

These are the three userspace APIs which code can use to manipulate mach port
names.
They all have subtly different meanings and as we’ll see later the kernel has
mitigations (but only mitigations) against their incorrect usage.

An interesting comment when manipulating UREFS
case MACH_MSG_TYPE_PORT_SEND:

 assert(port->ip_srights > 0);

 if (bits & MACH_PORT_TYPE_SEND) {

 mach_port_urefs_t urefs = IE_BITS_UREFS(bits);

 assert(port->ip_srights > 1);

 assert(urefs > 0);

 assert(urefs < MACH_PORT_UREFS_MAX);

 if (urefs+1 == MACH_PORT_UREFS_MAX) {

 if (overflow) {

 /* leave urefs pegged to maximum */

 port->ip_srights--;

 ip_unlock(port);

 ip_release(port);

 return KERN_SUCCESS;

 }

both userspace and the kernel can
manipulate the UREFS count

/* leave urefs pegged to maximum */

This code is called when the kernel is copying out any rights contained in a message
to the receive

This means that UREFS are capped at MACH_PORT_UREFS_MAX
note that if overflow is true (which is was) then the copyout succeeds and the name
will still be given to userspace

Is this an exploitable bug though?

An interesting comment when manipulating UREFS
case MACH_MSG_TYPE_PORT_SEND:

 assert(port->ip_srights > 0);

 if (bits & MACH_PORT_TYPE_SEND) {

 mach_port_urefs_t urefs = IE_BITS_UREFS(bits);

 assert(port->ip_srights > 1);

 assert(urefs > 0);

 assert(urefs < MACH_PORT_UREFS_MAX);

 if (urefs+1 == MACH_PORT_UREFS_MAX) {

 if (overflow) {

 /* leave urefs pegged to maximum */

 port->ip_srights--;

 ip_unlock(port);

 ip_release(port);

 return KERN_SUCCESS;

 }

what does pegged mean?

The bug is that the comment which says that this leaves urefs pegged to maximum is
wrong!

Let’s look at the mach_port_deallocate case:

ipc_right_dealloc
case MACH_PORT_TYPE_SEND: {

 port = (ipc_port_t) entry->ie_object;

 ... // handle dead names

 if (IE_BITS_UREFS(bits) == 1) {

 ... // handle dropping the last UREF

 } else {

 ip_unlock(port);

 entry->ie_bits = bits-1; /* decrement urefs */

 ipc_entry_modified(space, name, entry);

 is_write_unlock(space);

 }

This method should be
the inverse of the
previous function but it
has no mention of
“pegged UREFS”

CVE-2016-7637

How is that bug relevant?

Can we actually exploit it to do
anything useful?

was that those two things didn’t match up.

The interesting part is how we can turn this into a privilege escalation

single send right rule:

kernel

userspace

2

1

1

ipc_entry_t

typedef struct {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_port_descriptor_t port;

} port_msg_send_t;

ipc_port

If we can send a mach message to another process then we have a LOT of control
over it; this is how we will exploit the bug.

Whilst the bug is technically in the kernel it really just creates exploitable situations in
userspace.

Our exploit will use a fundamental invariant of mach ports namespaces: you will only
ever have one name for a send right to a particular mach port. If you ever get sent
another send right for that port then you won’t get a new name but instead the kernel
will bump up the UREF of that name for you.

single send right rule:

2

1

1

kernel

userspace

ipc_entry_t

typedef struct {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_port_descriptor_t port;

} port_msg_send_t;

ipc_port

The sender puts the
name of the right to be
sent in the message

(The name is the
index into the
process’s ports table)

single send right rule:

2

1

1

kernel

userspace

ipc_entry_t

The in-transit message holds a
reference on the actual port for
which a right is being sent

ipc_port

the in-transit port hold a reference on the port being sent
it also contains the rights which are being transferred. The rights were checked when
the sender sent the message.

single send right rule:

2

1

1

4

1

5

UREFS

kernel

userspace

ipc_entry_t

typedef struct {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_port_descriptor_t port;

 mach_msg_trailer_t trailer;

} port_msg_rcv_t;

ipc_port

On the receive side the kernel will do a reverse lookup from the target ipc_port to see
if that receiving process already has a name for that port (if it’s being sent a send
right)

single send right rule:

2

1

1

6

4

1

UREFS

kernel

userspace

ipc_entry_t

typedef struct {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_port_descriptor_t port;

 mach_msg_trailer_t trailer;

} port_msg_rcv_t;

ipc_port

In the recipient’s message the port field will
contain the name for the right which was
received.

In this case the process already had a name
for the send right it received so the message
will contain that name, and the kernel will bump
up the UREFS

single send right rule:
Allows us to manipulate the UREFS of ipc_entries in remote processes

Requirements:

● we have a send right to the remote process

● we have a send right to the same port in the remote process that we want to
manipulate

Couple more tricks to build a useful primitive...

mach_port_ool_descriptor_t:

2

1

1

6

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

struct ool_ports_msg {

 mach_msg_header_t hdr;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports; };

We can fill one of
these with an
unlimited number of
port rights!

We don’t just have to send one send right; we can send a lot at once in one message!

Note that now there is a sensible but still quite high limit imposed on the number of
ports you can send like this.

We’ll revisit exactly what that envelope looks like later because it gives you a very
nice heap grooming/control primitive

mach_port_ool_descriptor_t:

2

1

1

6

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

struct ool_ports_msg {

 mach_msg_header_t hdr;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports; };

We can fill one of
these with an
unlimited number of
port rights!

We don’t just have to send one send right; we can send a lot at once in one message!

Note that now there is a sensible but still quite high limit imposed on the number of
ports you can send like this.

We’ll revisit exactly what that envelope looks like later because it gives you a very
nice heap grooming/control primitive

mach_port_ool_descriptor_t:

2

1

1

6

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

lots of
references :)

mach_port_ool_descriptor_t:

2

1

1

6

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

mach_port_ool_descriptor_t:

2

1

1

6

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

On receipt of the message each of those port references contained in the message
will be converted to a UREF because we already have a name for the port (and that
name names a send right and the message contains send rights)

mach_port_ool_descriptor_t:

2

1

1

7

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

The name for that right again gets
copied into the recipients
message

This time into dedicated OOL
pages pointed to by the message

mach_port_ool_descriptor_t:

2

1

1

7

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

mach_port_ool_descriptor_t:

2

1

1

8

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

mach_port_ool_descriptor_t:

2

1

1

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

FFFD

struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

mach_port_ool_descriptor_t:

2

1

1

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

FFFD#define MACH_PORT_UREFS_MAX

((mach_port_urefs_t) ((1 << 16) - 1))

if (urefs+1 == MACH_PORT_UREFS_MAX) {

 if (overflow) {

 /* leave urefs pegged to maximum */

 port->ip_srights--;

 ip_unlock(port);

 ip_release(port);

 return KERN_SUCCESS;

 } struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

what happens when the UREFS approaches MACH_PORT_UREFS_MAX?

mach_port_ool_descriptor_t:

2

1

1

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

FFFE#define MACH_PORT_UREFS_MAX

((mach_port_urefs_t) ((1 << 16) - 1))

if (urefs+1 == MACH_PORT_UREFS_MAX) {

 if (overflow) {

 /* leave urefs pegged to maximum */

 port->ip_srights--;

 ip_unlock(port);

 ip_release(port);

 return KERN_SUCCESS;

 } struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

mach_port_ool_descriptor_t:

2

1

1

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

FFFE#define MACH_PORT_UREFS_MAX

((mach_port_urefs_t) ((1 << 16) - 1))

if (urefs+1 == MACH_PORT_UREFS_MAX) {

 if (overflow) {

 /* leave urefs pegged to maximum */

 port->ip_srights--;

 ip_unlock(port);

 ip_release(port);

 return KERN_SUCCESS;

 } struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

mach_port_ool_descriptor_t:

2

1

1

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

FFFE#define MACH_PORT_UREFS_MAX

((mach_port_urefs_t) ((1 << 16) - 1))

if (urefs+1 == MACH_PORT_UREFS_MAX) {

 if (overflow) {

 /* leave urefs pegged to maximum */

 port->ip_srights--;

 ip_unlock(port);

 ip_release(port);

 return KERN_SUCCESS;

 } struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

mach_port_ool_descriptor_t:

2

1

1

4

1

UREFS

kernel

userspace

ipc_entry_t

ipc_port

FFFE#define MACH_PORT_UREFS_MAX

((mach_port_urefs_t) ((1 << 16) - 1))

if (urefs+1 == MACH_PORT_UREFS_MAX) {

 if (overflow) {

 /* leave urefs pegged to maximum */

 port->ip_srights--;

 ip_unlock(port);

 ip_release(port);

 return KERN_SUCCESS;

 } struct ool_ports_rcv_msg {

 mach_msg_header_t header;

 mach_msg_body_t body;

 mach_msg_ool_ports_descriptor_t

 ool_ports;

 mach_msg_trailer_t trailer;}

These last two port rights in the
message will still result in a name being
copied into the ool descriptor in the
recipient process, but the UREFS for
that name will no longer increase

Implications:
Nothing bad has actually happened yet!

But the UREFS count is now out-of-sync with the number of actual user
references the process believes it has

An observation:
The sender of the message was able to define the
format of the message they sent.

The kernel does not enforce any particular format or
schema on mach messages; only that they are valid

The mere act of receiving a message gives your
process all the rights contained in it, wanted or not

mach_msg_destroy:
/*

 * Routine: mach_msg_destroy

 * Purpose:

 * mach_msg_destroy is useful in two contexts.

 *

 * First, it can deallocate all port rights and

 * out-of-line memory in a received message.

 * When a server receives a request it doesn't want,

 * it needs this functionality.

 *

 * Second, it can mimic the side-effects of a msg-send

 * operation. The effect is as if the message were sent

 * and then destroyed inside the kernel. When a server

 * can't send a reply (because the client died),

 * it needs this functionality.

 */

void

mach_msg_destroy(mach_msg_header_t *msg);

part of libsyscall

pretty much every
service uses this to
handle unrecognised
messages (including
every XPC + MIG
service)

There’s an equivalent
implementation in the
kernel

performs the inverse operation of receiving an arbitrary message

mach_msg_destroy:
case MACH_MSG_OOL_PORTS_DESCRIPTOR: {

 mach_port_t *ports;

 mach_msg_ool_ports_descriptor_t *dsc;

 mach_msg_type_number_t j;

 /* Destroy port rights carried in the message */

 dsc = &daddr->ool_ports;

 ports = (mach_port_t *) dsc->address;

 for (j = 0; j < dsc->count; j++, ports++) {

 mach_msg_destroy_port(*ports, dsc->disposition);

 }

 /* Destroy memory carried in the message */

 if (dsc->deallocate) {

 mach_msg_destroy_memory((vm_offset_t)dsc->address,

 dsc->count * sizeof(mach_port_t));

 }

if this port is a send right,
each destroy call will drop
a UREF

Here’s the implementation of mach_msg_destroy when it destroys an OOL_PORTS
descriptor

freeing port names
UREFS hit an upper limit of 0xFFFE

What if we send a message with 0xFFFE copies of the same send right?

If we send a mach message with 0xFFFE copies of the same send right; it
will reach the limit, regardless of how many UREFS the name had to begin
with

mach_msg_destroy will call mach_port_deallocate 0xFFFE times; the last
time will free the name, again regardless of how many UREFS the name
had to begin with!

doing something useful with that:
● need a target tuple (target_process, target_send_right) where freeing

target_send_right would be interesting

● probably need to get the exact name reused in a controlled way

recall the mitigation:
/*
 * For kernel-selected [assigned] port names, the name is
 * comprised of two parts: a generation number and an index.
 * This approach keeps the exact same name from being generated
 * and reused too quickly [to catch right/reference counting bugs].
 */

How quickly is too quickly?

Let’s look at how names are
allocated...

This mitigation was probably added not as a security mitigation but to improved
stability.

port name allocation struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

ie_next field forms a 0-terminated
linked-list of free names

ie_next value is the index of the
next entry, not a pointer to it

The first ipc_entry in the array
cannot be used as a name and
holds the head of the freelist.

task->itk_space->is_table

allocation is LIFO; the most
recently freed name will be
reused for the next allocation

look at it like a weird heap. The generation number is a uaf mitigation. We can defeat
that mitigation.
We have a *lot* of control by being able to send mach messages.

ipc_entry_claim struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

follow the first entry’s ie_next to
get the actual free name

ipc_entry_claim will actually do the allocation of a new name.
Follow the first ie_next value to get the actual first_free name

ipc_entry_claim struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

unlink the entry from the freelist

ipc_entry_claim will actually do the allocation of a new name.
Follow the first ie_next value to get the actual first_free name

ipc_entry_claim struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

update the entry’s generation number:
IE_BITS_NEW_GEN(entry->ie_bits)

ipc_entry_claim will actually do the allocation of a new name.
Follow the first ie_next value to get the actual first_free name

Generation numbers

#define IE_BITS_GEN_MASK 0xff000000 /* 8 bits for generation */
#define IE_BITS_GEN(bits) ((bits) & IE_BITS_GEN_MASK)
#define IE_BITS_GEN_ONE 0x04000000 /* low bit of generation */
#define IE_BITS_NEW_GEN(old) (((old) + IE_BITS_GEN_ONE) & IE_BITS_GEN_MASK)

table[i].ie_bits = IE_BITS_GEN_MASK;

The generation number is
initialized by setting it to the
mask; not using the mask to
clear the right bits to 0. Hence
the first generation number is
3, not 4 :)

generation number of an entry is incremented each time it’s reallocated (on allocation, not free)

gives 6 bits for the generation number -> 64 generations before overflow

These generation numbers are checked on the userspace/kernel boundary when
doing the conversion between names and ports

ipc_entry_dealloc struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

want to free this name

this function is responsible for freeing a name; we want to free this name.

The generation number has already been checked by the caller

ipc_entry_dealloc struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

link in to head of freelist

ipc_entry_dealloc struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

old head becomes our ie_next

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

There’s only one more thing to look at and then we’ve covered *all* of the behaviour
of the port name table; what happens when the table grows?

Before calling ipc_entry_claim callers have to call ipc_entry_hold which actually
ensures that the table has enough free entries and tries to grow the table if not.

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

The actual behaviour of the linked list is simple though.

It just reallocates to a bigger heap chunk so we get more ipc_entry structures on the
end.

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

Then they’re linked in to the freelist in order

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

growing the table struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{mach_port_index_t ie_next;
 ipc_table_index_t ie_request;
} index;

task->itk_space->is_table

looping port names
As soon as we send our port_free message the target name will be freed and become
the head of the freelist

We need that name to be reallocated and freed exactly 63 times

Then reallocated a 64th time as the target in order to get a replacement with exactly the
same name (including generation number)

Needs to be exactly the 64th time otherwise generation number won’t match

Don’t want to assume that no other process sends mach messages

what primitives can we build to reliably get a name reallocated:
moving a name into the middle of the freelist
looping round
reallocating

freelist behavior

freelist behavior

use UREFS bug
to free this name

will become head
of the freelist;
reused by next
name allocation

freelist behavior

Allocation (by the kernel) and freeing (by mach_msg_destroy in
userspace) of OOL port descriptors allocate and free in the same order

the freelist is LIFO

This gives us a primitive to reverse parts of the freelist which will allow us
to move our target name within it

freelist behavior

sending a message with 5 ports in an OOL descriptor

freelist behavior

1

sending a message with 5 ports in an OOL descriptor

freelist behavior

1 2

sending a message with 5 ports in an OOL descriptor

freelist behavior

1 2 3

sending a message with 5 ports in an OOL descriptor

freelist behavior

1 2 3 4

sending a message with 5 ports in an OOL descriptor

freelist behavior

1 2 3 4 5

sending a message with 5 ports in an OOL descriptor

freelist behavior

1 2 3 4 5

if the message was invalid it will be passed to mach_msg_destroy which
will free the names in the same order as they appear in the message
(which was also the order they were allocated.

Let see the effect this has on the freelist

freelist behavior

1 2 3 4 5

if the message was invalid it will be passed to mach_msg_destroy which
will free the names in the same order as they appear in the message
(which was also the order they were allocated.

Let see the effect this has on the freelist

freelist behavior

1 2 3 4 5

if the message was invalid it will be passed to mach_msg_destroy which
will free the names in the same order as they appear in the message
(which was also the order they were allocated.

Let see the effect this has on the freelist

freelist behavior

1 2 3 4 5

if the message was invalid it will be passed to mach_msg_destroy which
will free the names in the same order as they appear in the message
(which was also the order they were allocated.

Let see the effect this has on the freelist

freelist behavior

1 2 3 4 5

if the message was invalid it will be passed to mach_msg_destroy which
will free the names in the same order as they appear in the message
(which was also the order they were allocated.

Let see the effect this has on the freelist

freelist behavior

1 2 3 4 5

if the message was invalid it will be passed to mach_msg_destroy which
will free the names in the same order as they appear in the message
(which was also the order they were allocated.

Let see the effect this has on the freelist

freelist behavior

1 2 3 4 5

We’ve moved our target name into the middle of the freelist!

If we ensure that this freelist is long enough then this gives us a good
chance to control the reuse

freelist behavior

1 2 3 4 5

moving the name into the middle of the freelist used 1 generation number

need to send another 62 invalid messages

send double the number of (different) send rights each as the depth of
the target name in the freelist to keep it halfway along

64th time lucky
The next time the target name is allocated it will have the same generation number

This time we don’t want to just bump the generation number; we want the port to be permanently
replaced

● Find a way to get the message leaked (pretty common bug)
● Focus on application specific behaviour use a valid message

finding an interesting target
● We have to be able to get a send right to the target service
● We have to be able to get a send right to the same port we want to target in the target

service

The target service needs to rely on using a cached copy of the name

This means most kernel-owned ports are off the table; generally they’re looked up each time

(eg IOService ports)

launchd
service manager

every process has a send right to launchd

orchestrates mapping from human-readable service names (“com.apple.iohideventsystem”) to
mach port send right

enforces service sandbox
idea:

free the name launchd has for a service

loop the freed name

register a local restricted service (can do this from iOS app
sandbox)

mitm traffic to real service!

what’s a task port?

each task has a task port

send rights to the task port == full control over the task

● create a thread
● read/write memory
● manipulate mach port namespace

Don’t send other processes your task port!

lsmp shows us who has done this!

it’s possible that those tasks have acquired those task ports via task_for_pid but that’s
a very restricted kernel API. There’s no way to restrict processes voluntarily sending
each other their task ports.

lsmp - task ports
lsmp tool doesn’t show who the task port belongs to; they all show up as TASK_SELF

single send right rule means they can’t be the same process; they’re actually other task’s task ports

0x00007803 0x24341e5f send 0x00000000 TASK SELF (143) hidd
0x00007a13 0x28ce0b17 send 0x00000000 TASK SELF (143) hidd
0x00007c03 0x2427924f send 0x00000000 TASK SELF (143) hidd
...

clients of "com.apple.iohideventsystem" send their task ports to it! How convenient!

building the primitives for launchd exploit
● get send right to service to MITM
● get send right to launchd
● send UREF_OVERFLOW message freeing service name in launchd
● send freelist_reverse message to move name down the freelist
● send 62 looper messages to bump generation number
● register lots of new (restricted) services reusing the target service’s name
● crash a client of the target service
● receive task port!

multiplexing services is dangerous
boolean_t pm_mig_demux(mach_msg_header_t * request, mach_msg_header_t * reply) {

 mach_dead_name_notification_t *deadRequest = (mach_dead_name_notification_t *)request;

 boolean_t processed = powermanagement_server(request, reply);

 if (processed)

 return true;

 if (MACH_NOTIFY_DEAD_NAME == request->msgh_id) {

 PMConnectionHandleDeadName(deadRequest->not_port);

 mach_port_deallocate(mach_task_self(), deadRequest->not_port);

 reply->msgh_bits = 0;

 reply->msgh_remote_port = MACH_PORT_NULL;

 return TRUE;

 }

is the request handled by
powermanagement
subsystem?

if not, assume it must be a
notification message

drop a UREF on a
controlled port name!

What’s wrong here? This code is actually implementing the server for *two* services;
the powermanagement_server and also the notify_server generated from notify.defs.

The client of the notification server is the kernel but there’s nothing stopping a
process with a send right to the powermanagement server sending messages with
the msgh_id’s for the notification server. It’s much safer to request those notifications
on a seperate, dedicated port.

multiplexing services is dangerous
Gives a similar primitive to the UREFS bug, except now targeting an arbitrary mach
port name

No longer need send right to the same port to target it’s name in the process, but
do need to be able to guess the name

Made a simple crasher by targeting _mach_task_self, the cached name of the
task’s own task port.

PART II.

We have root.

Well, we have a send right to a task port for a process running with uid 0, no need to
actually execute code as root.

We’ll now move to the kernel and look at the mach port abstractions there.

What’s in a port?
ipc_port

io_bits

lck_spin_t io_lock_data;

struct ipc_port

io_references

struct ipc_mqueue ip_messages;

natural_t bits

(actually has way more fields than this)

struct ipc_space *receiver;

ipc_kobject_t kobject;

...

mach_vm_address_t ip_context;

ip_srights ip_srights

...

follow the refs
let’s take as a base case a freshly
allocated user-owned port:

mach_port_t port_name = MACH_PORT_NULL;
mach_port_allocate(mach_task_self(),
 MACH_PORT_RIGHT_RECEIVE,
 &port_name);

struct ipc_object *ie_object;

ipc_entry_bits_t ie_bits;

mach_port_index_t ie_index;

union{ mach_port_index_t next;
 ipc_table_index_t request;
} index;

struct ipc_entry

remember we get one of these in
our array of ipc_entry structs for
that port_name:

struct ipc_portie_object is holding the
only reference on the
struct ipc_port at this
point.

io_bits

lck_spin_t io_lock_data;

io_references

struct ipc_mqueue ip_messages;

natural_t bits

struct ipc_space *receiver;

ipc_kobject_t kobject;

...

mach_vm_address_t ip_context;

ip_srights ip_srights

...We can follow the path of a mach port, tracing who has pointers and hold references.
When we pass that mach port name to the kernel we see a ref being taken then if that
kernel API holds on to that pointer we’ll see it return success from the MIG method;
the reference has now been transferred to that API and it’s responsible for exactly
one reference.

MIG semantics:
kern_return_t set_dp_control_port(host_priv_t host_priv,

 ipc_port_t control_port)

{

 if (host_priv == HOST_PRIV_NULL)

 return (KERN_INVALID_HOST);

 if (IP_VALID(dynamic_pager_control_port))

 ipc_port_release_send(dynamic_pager_control_port);

 dynamic_pager_control_port = control_port;

 return KERN_SUCCESS;

}

mach port send code converted the
name provided by the sender to a port
pointer and took a ref on the port

MIG code parsed the message and
extracted the port; passed to this
method with the extra ref

port pointer assigned to global
dynamic_pager_control_port

returning KERN_SUCCESS implies
the reference is passed to
dynamic_pager_control_port

This is a MIG method; we can call it directly from userspace via kobject_server - the
hook inserted in the message receive path.

From examining the semantics of MIG code we can see that this method is
transferring a reference from the sender to the dynamic_pager_control_port pointer.
The previous value of dynamic_pager_control_port is released.

ipc_port_release_send really just drops a reference on the port and adjusts the count
of send rights (subtlely but completely different to UREFS.)

ipc_port_release_send drops the reference atomically; that is each port object
provides a lock and the reference dropping code will take that lock to ensure that its
update is atomic.

But remember the dynamic_pager_control_port pointer only holds one reference on
the old value of control port yet there are no locks surrounding the replacement of
dynamic_pager_control_port. That means that two threads
of control can both call this method and both see the same value for
dynamic_pager_control_port even though there’s only one reference. If we can get
the threads to align correctly we can get two reference dropped where only
one is held.

unlocked atomics
kern_return_t set_dp_control_port(host_priv_t host_priv,

 ipc_port_t control_port)

{

 if (host_priv == HOST_PRIV_NULL)

 return (KERN_INVALID_HOST);

 if (IP_VALID(dynamic_pager_control_port))

 ipc_port_release_send(dynamic_pager_control_port);

 dynamic_pager_control_port = control_port;

 return KERN_SUCCESS;

}

this will atomically drop
one reference using a lock
provided by the port

dynamic_pager_control_port
only holds one reference on the
port it points to.

The update of
dynamic_page_control_port isn’t
atomic!

why did we need the sandbox escape?
kern_return_t set_dp_control_port(host_priv_t host_priv,

 ipc_port_t control_port)

{

 if (host_priv == HOST_PRIV_NULL)

 return (KERN_INVALID_HOST);

 if (IP_VALID(dynamic_pager_control_port))

 ipc_port_release_send(dynamic_pager_control_port);

 dynamic_pager_control_port = control_port;

 return KERN_SUCCESS;

}

this will atomically drop
one reference using a lock
provided by the port

dynamic_pager_control_port only
holds one reference on the port it
points to.

The update of
dynamic_page_control_port isn’t
atomic!

need a valid send right to the
host_priv port to pass this
check!

All the UREFS exploit was used for was to gain access to a mach port namespace
with a send right to the host_priv port then give the attacking process that send right

analyzing the race

● How easily can you get threads to align properly?
● What happens when you lose the race?
● How do you know when you won?
● Do you have to completely set up the next step of the exploit each time you

try?

Exploiting race conditions can be tricky:
How easily can you get threads to align properly?
What happens when you lose the race?
How do you know when you won?
Do you have to completely set up the next step each time you try?

The last one especially can be quite a burden; we don’t want to have to do a complete
heap groom each time.

We want to build a primitive that gets around all of those points.

Aligning threads
avoid having to care too much about doing this accurately by ensuring:

● nothing bad happens if we lose the race
● we know when we won the race and don’t try again

How easily can you get threads to align properly?
 Focus on making sure nothing bad happens if you lose. Then just try a lot :)

What happens when you lose the race?
 if the two racing threads set the new control port to be NULL then nothing bad will
happen no matter what the interleaving

How do you know when you won?
Do you have to completely set up the next step each time you try?

We can use some nice features of mach ports to help us with this

safe racing kern_return_t set_dp_control_port(host_priv_t host_priv,

 ipc_port_t control_port)

{

 if (IP_VALID(dynamic_pager_control_port))

 ipc_port_release_send(dynamic_pager_control_port);

 dynamic_pager_control_port = control_port;

}

set_dp_control_port(host_priv, target_port);

set_dp_control_port(host_priv, MACH_PORT_NULL);

thread_a thread_b

pause_thread(thread_b);

resume_thread(thread_b);

pause_thread(thread_b);

set_dp_control_port(host_priv, MACH_PORT_NULL);

if (won_race(target_port)) {break;}

detecting the win

insight: don’t use the bug to free the port!

instead use it to drop an extra ref so we can
create a dangling port later under much more
controlled circumstances

rather than detecting that the port was freed we
can exactly control the number of send rights and
use no-senders notifications

no senders
void ipc_port_release_send(ipc_port_t port) {

 ipc_port_t nsrequest = IP_NULL;

 mach_port_mscount_t mscount;

 if (!IP_VALID(port)) {return;}

 ip_lock(port);

 port->ip_srights--;

 if (port->ip_srights == 0 && port->ip_nsrequest != IP_NULL) {

 nsrequest = port->ip_nsrequest;

 port->ip_nsrequest = IP_NULL;

 mscount = port->ip_mscount;

 ip_unlock(port);

 ip_release(port);

 ipc_notify_no_senders(nsrequest, mscount);

 } else {

 ip_unlock(port);

 ip_release(port); } }

Each ipc_port object does keep a total count of the number of senders - a 32 bit
counter ip_srights

ipc_port_release_send as well as dropping a reference also decrements this total
count of senders.

whenever ip_srights hits zero ipc_notify_no_senders will be called on the nsrequest
port which hangs off of the port.

no-senders setup

allocate a target
port - only
reference is held by
our ipc_entry

ipc_entry_t

io_references: 1
ip_srights: 0

no-senders setup send ourselves a
send right to the
target port, but don’t
receive itipc_entry_t

io_references: 2
ip_srights: 1

no-senders setup

ipc_entry_t

io_references: 2
ip_srights: 1

allocate another port on
which to receive a
no-senders notification
for the target port and
arm it

no-senders

no-senders setup

ipc_entry_t

io_references: 3
ip_srights: 2

no-senders

set_dp_control_port(host_priv, target_port);
...
dynamic_pager_control_port = control_port;

set the target port as the
dynamic_pager_control_port

no-senders setup

ipc_entry_t

io_references: 3
ip_srights: 2

no-senders

set_dp_control_port(host_priv, target_port);
...
dynamic_pager_control_port = control_port;

trigger the race and lose:

dynamic_pager_control_port no
longer holds a ref or send right✘

no-senders setup

ipc_entry_t

io_references: 2
ip_srights: 1

no-senders

trigger the race and lose:

dynamic_pager_control_port no
longer holds a ref or send right

no-senders setup

ipc_entry_t

io_references: 3
ip_srights: 2

no-senders

set_dp_control_port(host_priv, target_port);
...
dynamic_pager_control_port = control_port;

set the target port as the
dynamic_pager_control_port

no-senders setup

ipc_entry_t

io_references: 3
ip_srights: 2

no-senders

set_dp_control_port(host_priv, target_port);
...
dynamic_pager_control_port = control_port;

trigger the race and win:

dynamic_pager_control_port’s
send right is dropped twice

no-senders setup

ipc_entry_t

io_references: 2
ip_srights: 1

no-senders

set_dp_control_port(host_priv, target_port);
...
dynamic_pager_control_port = control_port;

trigger the race and win:

dynamic_pager_control_port’s
send right is dropped twice

no-senders setup

ipc_entry_t

io_references: 1
ip_srights: 0

no-senders

trigger the race and win:

dynamic_pager_control_port’s
send right is dropped twice

no-senders setup

ipc_entry_t

io_references: 1
ip_srights: 0

can peek into the port’s
queue to see if
no-senders has been
received and break out
of the race loop

no-senders

ip_srights drops to 0
triggering the sending of the
no-senders notification

create a dangling pointer:

ipc_entry_t

io_references: 1
ip_srights: 0

Destroy this message
without receiving it!

create a dangling pointer:

ipc_entry_t

io_references: 1
ip_srights: 0

Destroy this message
without receiving it!

create a dangling pointer:

ipc_entry_t

io_references: 0
ip_srights: 0

✘

create a dangling pointer:

ipc_entry_t

✘
now have an ipc_entry with
receive rights with a dangling
ie_object pointer

Abstraction
alloc_port()
Allocate a new port

prepare_port()
stash an extra reference with the kernel and trigger the bug

free_port()
drop the extra stashed reference leaving us with a dangling receive right

kernel task port
The goal of all iOS kernel exploitation :)

a send right to the kernel task port == kernel memory read/write

by design

Let’s just go directly for this; no fiddly ROP or shellcode!

It’s always useful to have a goal in mind. Generally iOS kernel exploitation has one
goal in mind: get a send right to the kernel task port.

Often they achieve this by first getting code execution in the kernel. But we don’t need
to do that :)

Keep in mind that the kernel task port is the ultimate goal and we’ll try to take some
shortcuts to get there

I’ve heard this exploitation strategy has been mitigated in iOS 10.3 but I haven’t had a
chance to investigate that yet.

mach_port_{set,get}_context

io_bits

lck_spin_t io_lock_data;

struct ipc_port

io_references

struct ipc_mqueue ip_messages;

natural_t bits

struct ipc_space *receiver;

ipc_kobject_t kobject;

...

mach_vm_address_t ip_context;

ip_srights ip_srights

...

can get and set ip_context freely from userspace

doesn’t manipulate io_references, only takes and
drops port’s lock

Let’s use that to read and write in-transit mach port
pointers!

if you hold a receive right for a port you can set and retrieve a “context” value. This is
simply a 64-bit integer value which is stored in the port object. It’s used to for example
associate a userspace pointer with a port. You can see this with lsmp (libdispatch
associates a heap pointer with dispatch sources for example)

zalloc

lower level allocator:
● best fit
● grows linearly upwards

see iOS 10 - Kernel Heap Revisited by Stefan Esser for far more detail

ipc.ports kalloc.4096 kalloc.1024

zalloc zones request pages from lower
level allocator and build page-local
randomized freelists

all-free pages in a zone will be returned
to lower-level allocator under memory
pressure or forced-gc

pages will actually get split
up to fit maximum number of
zone elements per page

The one problem with that exploitation path is that we need to be able to reallocate
the free’d memory with memory representing a different type.

ipc ports are allocated via the zalloc zone allocator and they come from their own
zone, from which only ipc objects are allocated.

http://gsec.hitb.org/materials/sg2016/D2%20-%20Stefan%20Esser%20-%20iOS%2010%20Kernel%20Heap%20Revisited.pdf

zalloc isn’t a security feature
Easy to move pages between zones

Lower level allocator easy to groom

zalloc isn’t a security feature

ipc.ports kalloc.4096 kalloc.1024

✘✘✘✘

get dangling pointers to
all ports on a zone page

zalloc isn’t a security feature

ipc.ports kalloc.4096 kalloc.1024

✘✘✘✘

keep allocating target
page size to exhaust
target zone list and cause
gc

zalloc isn’t a security feature

ipc.ports kalloc.4096 kalloc.1024

✘✘✘✘

dangling pointers
now point into a
different zone

early mach port allocation
ipc_port_alloc_kernel(); function responsible for

kernel-owned port allocation

kernel_bootstrap();
responsible for low-level
kernel bootstrapping including
allocation of kernel task

zalloc semantics mean other
ports allocated shortly before
or after kernel_task will be
close to the kernel_task port: host_port

master_device_port
system clock service
system clock control
calendar clock service
calendar clock control
host_security
host_priv

if we’re looking for the kernel task port then the first step is to know where it might be

Even with zalloc freelist randomization we could still guess pretty well where the
kernel task port would be if we could leak the address of any of these other early
ports.

ool_port descriptors
What does this *actually* look like when it’s in transit?

ipc_kmsg_copyin_ool_ports_descriptor

kalloc’ed array of ipc_port pointers!

0x0000000000000000

0xffffff80123456a8

0xffffff8012345670

0x0000000000000000

0x107

MACH_PORT_NULL

0x30b

0x107

MACH_PORT_NULL

MACH_PORT_NULL

ool_ports page in userspace:

0xffffff8012345670

kalloc allocation in kernelspace:

port names become reference
holding pointers to the ipc_port

0x0000000000000000
NULL port name becomes
NULL pointer

kalloc allocation size
completely controlled

these are used to send a large number of mach ports in a mach message; rather than
using mach_port_descriptor you can instead use an out-of-line port descriptor which
lets you send a (now limited but still large) number of ports in a message.

Again at the user->kernel boundary the kernel gets a reference on each of the ports
and then those pointers are stored in a kalloc buffer which hangs off the message.

When the receiver dequeues the message they get the rights to the ports contained in
the message.

the type confusion first ipc.ports zone page

kernel task port somewhere
near the middle

host_port close by

ipc.ports kalloc.4096

✘✘✘✘

We have a send right to the host port. If we can work out where it is on the heap then
we can start to guess where the kernel task port is.

the type confusion first ipc.ports zone page

kernel task port somewhere
near the middle

host_port close by

ipc.ports kalloc.4096

✘✘✘✘

get the page containing the
freed ipc_ports reused as a
kalloc.4096 page containing a
ool_ports descriptor

the type confusion

MACH_PORT_NULL

MACH_PORT_NULL

MACH_PORT_NULL

host_port

MACH_PORT_NULL

MACH_PORT_NULL

ool_ports descriptor
in userspace:

0x0000000000000000

0x0000000000000000

0x0000000000000000

0xffffff8012345670

0x0000000000000000

0x0000000000000000

ool_ports descriptor
in kernel kalloc:

refs

lock

...

ip_context

flags

...

dangling ipc_port

mach_port_{set,get}_context lets us read and write this :)

doesn’t take or drop a ref;
only uses the lock

The is the fundamental type-confusion primitive built from the ipc_port UaF. We’ve
built a “fake ipc_port” object using the primitives provided by the out-of-line
descriptors. The NULLs are lined up so that they overlap the lock and flags field and
the valid ipc_port pointer overlaps the ip_context field which we can read and write
from userspace via mach_port_get/set_context

rewrite all the ports

MACH_PORT_NULL

MACH_PORT_NULL

MACH_PORT_NULL

host_port

MACH_PORT_NULL

MACH_PORT_NULL

in-transit
ool_ports_desc

many dangling ipc_ports!

refs

lock

...

ip_context

flags

...

read the context of the first
dangling port

guess the base of the page
containing the kernel task port

rewrite the host_port pointers
to send ourselves one of every
port on the first page instead

Since we can easily and reliably trigger the race condition we can just give ourselves
a pretty large number of dangling ipc_port pointers and build a big ool descriptor. We
can then just send ourselves all of the ports near the kernel task port and check
whether one of them is the kernel task port when we receive the descriptor.

that’s it!

receive the message with the OOL ports descriptor

go through all the received ports; one of them is the kernel task port

mach_vm_read/mach_vm_read passing that port give you kernel memory read/write

I’ve heard there’s some hardening against this in iOS 10.3 but I haven’t had a chance
to investigate yet

Links

https://bugs.chromium.org/p/project-zero/issues/detail?id=965#c2

Check out the latest edition of http://www.newosxbook.com/index.php for another writeup of these bugs
with fancier diagrams plus details of @qwertyoruiopz’s KPP bypass

The venerable Mac OS X internals book covers mach ports but some of the code has since been
refactored

https://bugs.chromium.org/p/project-zero/issues/detail?id=965#c2
https://bugs.chromium.org/p/project-zero/issues/detail?id=965#c2
http://www.newosxbook.com/index.php
https://twitter.com/qwertyoruiopz
http://www.osxbook.com/

