
Port(al) to the iOS Core
Introduction to a previously private iOS Kernel Exploitation Technique

March, 2017

| © 2017 by ANTID0TE All rights reserved

Who am I?

• Stefan Esser

• from Germany

• in Information Security since 1998

• SektionEins GmbH from (2007 - 2016)

• Antid0te UG (2013 - now)

2

| © 2017 by ANTID0TE All rights reserved

What is this talk about?

• a “new” (set of) iOS kernel exploitation technique(s)

• previously only discussed in my iOS Kernel Exploitation trainings

• part of teaching material since around 2015

• trainee from Dec 2016 leaked it within one month to developers of Yalu

• who then distributed an iOS 10.2 jailbreak using this technique in Jan 2017

3

| © 2017 by ANTID0TE All rights reserved

Previous iOS Kernel Heap Feng Shui / Exploitation Techniques

• BlackHat 2012 - iOS Kernel Heap Armageddon Revisited
– Author: Stefan Esser
– Idea: Fill kernel heap with C++ objects via OSUnserializeXML() and overwrite them
– Status: Apple mitigated but a slightly modified technique still usable in iOS 10

• Hack In The Box 2012 - iOS 6 Security
– Author(s): Mark Dowd / Tarjei Mandt
– Idea: Fill heap with vm_copy_t structures and get information leaks and extended buffer

overflows from overwriting them
– Status: Apple added mitigations so that technique got less and less valuable

4

| © 2017 by ANTID0TE All rights reserved

Status of public iOS Kernel Exploitation

• everybody is using the public heap feng shui techniques

• bugs are often overflows or UAF

• exploitation often targets vm_map_copy_t or kernel C++ objects

• Apple keeps adding mitigations against the publicly seen techniques

• public techniques become less and less usable

➡ we need a different / new technique

5

| © 2017 by ANTID0TE All rights reserved

Ingredients of our Kernel Exploitation Technique(s)

1. idea for a different / new kernel data structure to attack

2. way to fill the kernel heap with this structure or pointers to it

3. strategy how to continue once overwritten

6

| © 2017 by ANTID0TE All rights reserved

What Kernel Data Structure should we attack?

• there are for sure many data structures in the kernel

• but when you look at the Mach part of the kernel

• one data structure jumps into your face immediately

➡ mach ports!

7

What are Mach Ports?

| © 2017 by ANTID0TE All rights reserved

What are Mach Ports?

• likely the most important data structure in Mach part of kernel

• have multiple purposes
– act like handles to kernel objects / subsystems

– allow sending / receiving messages for IPC

• stored internally in ipc_port_t structure

9

| © 2017 by ANTID0TE All rights reserved

ipc_port_t (I)

IPC ports are internally hold in the following structure

defined in /osfmk/ipc/ipc_port.h

10

struct ipc_port {

 /*
 * Initial sub-structure in common with ipc_pset
 * First element is an ipc_object second is a
 * message queue
 */
 struct ipc_object ip_object;
 struct ipc_mqueue ip_messages;

 union {
 struct ipc_space *receiver;
 struct ipc_port *destination;
 ipc_port_timestamp_t timestamp;
 } data;

 union {
 ipc_kobject_t kobject;
 ipc_importance_task_t imp_task;
 uintptr_t alias;
 } kdata;

 struct ipc_port *ip_nsrequest;
 struct ipc_port *ip_pdrequest;
 struct ipc_port_request *ip_requests;
 struct ipc_kmsg *ip_premsg;

 mach_port_mscount_t ip_mscount;
 mach_port_rights_t ip_srights;
 mach_port_rights_t ip_sorights;

| © 2017 by ANTID0TE All rights reserved

ipc_port_t (II)

IPC ports are internally hold in the following structure

defined in /osfmk/ipc/ipc_port.h

11

 natural_t ip_sprequests:1, /* send-possible requests outstanding */
 ip_spimportant:1, /* ... at least one is importance donating */
 ip_impdonation:1, /* port supports importance donation */
 ip_tempowner:1, /* dont give donations to current receiver */
 ip_guarded:1, /* port guarded (use context value as guard) */
 ip_strict_guard:1, /* Strict guarding; Prevents user manipulation of context values directly */
 ip_reserved:2,
 ip_impcount:24; /* number of importance donations in nested queue */

 mach_vm_address_t ip_context;

#if MACH_ASSERT
#define IP_NSPARES 4
#define IP_CALLSTACK_MAX 16
 queue_chain_t ip_port_links; /* all allocated ports */
 thread_t ip_thread; /* who made me? thread context */
 unsigned long ip_timetrack; /* give an idea of "when" created */
 uintptr_t ip_callstack[IP_CALLSTACK_MAX]; /* stack trace */
 unsigned long ip_spares[IP_NSPARES]; /* for debugging */
#endif /* MACH_ASSERT */
};

| © 2017 by ANTID0TE All rights reserved

ipc_object_t (I)

common data structure for IPC objects like ports

defined in /osfmk/ipc/ipc_object.h

12

/*
 * The ipc_object is used to both tag and reference count these two data
 * structures, and (Noto Bene!) pointers to either of these or the
 * ipc_object at the head of these are freely cast back and forth; hence
 * the ipc_object MUST BE FIRST in the ipc_common_data.
 *
 * If the RPC implementation enabled user-mode code to use kernel-level
 * data structures (as ours used to), this peculiar structuring would
 * avoid having anything in user code depend on the kernel configuration
 * (with which lock size varies).
 */
struct ipc_object {
 ipc_object_bits_t io_bits;
 ipc_object_refs_t io_references;
 lck_spin_t io_lock_data;
};

| © 2017 by ANTID0TE All rights reserved

Ports as Handles to Kernel Objects / Data Structures

• io_bits field filled with kobject type

• receiver field points to ipc_space_kernel

• kobject field points to kernel data structure

13

| © 2017 by ANTID0TE All rights reserved

Possible Kobject Types

IPC Kobject types are defined in

/osfmk/ipc/ipc_kobject.h

14

#define IKOT_NONE 0
#define IKOT_THREAD 1
#define IKOT_TASK 2
#define IKOT_HOST 3
#define IKOT_HOST_PRIV 4
#define IKOT_PROCESSOR 5
#define IKOT_PSET 6
#define IKOT_PSET_NAME 7
#define IKOT_TIMER 8
#define IKOT_PAGING_REQUEST 9
#define IKOT_MIG 10
#define IKOT_MEMORY_OBJECT 11
#define IKOT_XMM_PAGER 12
#define IKOT_XMM_KERNEL 13
#define IKOT_XMM_REPLY 14
#define IKOT_UND_REPLY 15
#define IKOT_HOST_NOTIFY 16
#define IKOT_HOST_SECURITY 17
#define IKOT_LEDGER 18
#define IKOT_MASTER_DEVICE 19

#define IKOT_TASK_NAME 20
#define IKOT_SUBSYSTEM 21
#define IKOT_IO_DONE_QUEUE 22
#define IKOT_SEMAPHORE 23
#define IKOT_LOCK_SET 24
#define IKOT_CLOCK 25
#define IKOT_CLOCK_CTRL 26
#define IKOT_IOKIT_SPARE 27
#define IKOT_NAMED_ENTRY 28
#define IKOT_IOKIT_CONNECT 29
#define IKOT_IOKIT_OBJECT 30
#define IKOT_UPL 31
#define IKOT_MEM_OBJ_CONTROL 32
#define IKOT_AU_SESSIONPORT 33
#define IKOT_FILEPORT 34
#define IKOT_LABELH 35
#define IKOT_TASK_RESUME 36
#define IKOT_VOUCHER 37
#define IKOT_VOUCHER_ATTR_CONTROL 38

| © 2017 by ANTID0TE All rights reserved

Examples

• kobject always points to an IKOT specified data structure

15

What are Mach Messages?

| © 2017 by ANTID0TE All rights reserved

What are Mach Messages?

• data structures sent to or received from Mach Ports
– header with routing information for kernel

– optionally descriptors for COMPLEX messages

– data that is only between sender and receiver

• used for IPC and the Mach API

• sent to kernel via mach traps

17

| © 2017 by ANTID0TE All rights reserved

Simple vs. Complex Messages

• simple messages are just data blobs

• complex messages contain descriptors with special meaning for kernel
– MACH_MSG_PORT_DESCRIPTOR - embedding a port in a message

– MACH_MSG_OOL_DESCRIPTOR - attaching OOL data to message

– MACH_MSG_OOL_PORTS_DESCRIPTOR - attaching OOL ports array to message

18

typedef struct
{
 mach_msg_header_t header;
 char body[];
} mach_msg_simple_t;

typedef struct
{
 mach_msg_header_t header;
 mach_msg_body_t body;
 mach_msg_descriptor_t desc[x];
 char data[];
} mach_msg_complex_t;

| © 2017 by ANTID0TE All rights reserved

Mach Message Header

19

typedef struct
{
 mach_msg_bits_t msgh_bits;
 mach_msg_size_t msgh_size;
 mach_port_t msgh_remote_port;
 mach_port_t msgh_local_port;
 mach_port_name_t msgh_voucher_port;
 mach_msg_id_t msgh_id;
} mach_msg_header_t;

where to send to

where to get reply from

id between sender and receiver

| © 2017 by ANTID0TE All rights reserved

Sending and Receiving Messages

• Mach messages are sent via mach traps

20

mach_msg_return_t
mach_msg(msg, option, send_size, rcv_size, rcv_name, timeout, notify)
 mach_msg_header_t *msg;
 mach_msg_option_t option;
 mach_msg_size_t send_size;
 mach_msg_size_t rcv_size;
 mach_port_t rcv_name;
 mach_msg_timeout_t timeout;
 mach_port_t notify;

mach_msg_return_t
mach_msg_overwrite(msg, option, send_size, rcv_limit, rcv_name, timeout,
 notify, rcv_msg, rcv_scatter_size)
 mach_msg_header_t *msg;
 mach_msg_option_t option;
 mach_msg_size_t send_size;
 mach_msg_size_t rcv_limit;
 mach_port_t rcv_name;
 mach_msg_timeout_t timeout;
 mach_port_t notify;
 mach_msg_header_t *rcv_msg;
 mach_msg_size_t rcv_scatter_size;

| © 2017 by ANTID0TE All rights reserved

Sending Mach Messages (Function Overview)

21

| © 2017 by ANTID0TE All rights reserved

What is the Mach API?

• programming interface offering huge number of functions

• internally converts C style function calls into messages

• first parameter is always the kernel object port to send message to

• usually they manipulate the objects behind the kernel object ports

• special code path detects if receiver=ipc_space_kernel

• header’s id field selects what API is called

22

| © 2017 by ANTID0TE All rights reserved

Mach API Example: vm_write()

• C level call to vm_write() automatically converted into Mach message
– target_task set as remote port

– id set to 3807

23

 typedef struct {
 mach_msg_header_t Head;
 /* start of the kernel processed data */
 mach_msg_body_t msgh_body;
 mach_msg_ool_descriptor_t data;
 /* end of the kernel processed data */
 NDR_record_t NDR;
 vm_address_t address;
 mach_msg_type_number_t dataCnt;
 } __Request__vm_write_t;

kern_return_t vm_write
 (vm_task_t target_task,
 vm_address_t address,
 pointer_t data,
 mach_msg_type_number_t data_count);

Heap-Feng-Shui for Ports?

| © 2017 by ANTID0TE All rights reserved

Ports as Target

• kernel object ports point to kernel data structures

• overwriting/replacing them would allow calling APIs on fake data structures

• wide variety of IKOT types means many types to choose from

– IKOT_FILEPORT - fileglob structure has function pointer list

– IKOT_IOKIT_CONNECT - C++ object with vtable pointer

– …

25

| © 2017 by ANTID0TE All rights reserved

Filling the Heap with Ports?

• so should we create a lot of ports to fill the heap?

• would be possible but ports are stored in their own memory zone

• memory corruptions usually involve other memory zones

• cross zone attacks are possible but not KISS

➡ let’s add a level of indirection

26

| © 2017 by ANTID0TE All rights reserved

Filling the Heap with Pointers to Ports?

• instead of filling the heap with ipc_port_t structures fill it with pointers

• overwriting a pointer to an ipc_port_t still allows to create a fake port

• idea is that pointers are likely allocated in same memory zones as buffers

• when in same memory zone exploitation gets a lot easier

27

| © 2017 by ANTID0TE All rights reserved

How to fill the memory with Port pointers?

• we can fill the memory with pointers to ports by Mach messages

• we use MACH_MSG_OOL_PORTS_DESCRIPTOR for this

• kernel will allocate memory via kalloc() to store pointers in memory

• arbitrary sized allocations by sending right amount of ports

28

 /* calculate length of data in bytes, rounding up */
 ports_length = count * sizeof(mach_port_t);
 names_length = count * sizeof(mach_port_name_t);

 if (ports_length == 0) {
 return user_dsc;
 }

 data = kalloc(ports_length);

| © 2017 by ANTID0TE All rights reserved

How to fill the memory with Port pointers? (II)

• sending enough messages will fill up the heap pretty quickly

• we can send MACH_PORT_NULL or MACH_PORT_DEAD

29

| © 2017 by ANTID0TE All rights reserved

Poking holes…

• poking holes in the allocation is done by receiving selected messages

• kernel code will free the previously allocated memory

• deallocation is fine grained because we select what messages to receive

• keep in mind the heap randomization since iOS 9.2

30

/* copyout to memory allocated above */
void *data = dsc->address;
if (copyoutmap(map, data, rcv_addr, names_length) != KERN_SUCCESS)
 *mr |= MACH_MSG_VM_SPACE;
kfree(data, ports_length);

| © 2017 by ANTID0TE All rights reserved

Corrupting Port Pointers

• when messages are received all ports within are registered in IPC space

• corrupting any of the allocated pointer lists allows injecting a fake port

• user space can access the fake port

31

/* copyout port rights carried in the message */

for (i = 0; i < count ; i++) {
 ipc_object_t object = (ipc_object_t)objects[i];

 *mr |= ipc_kmsg_copyout_object(space, object,
 disp, &names[i]);
}

Faking Ports

| © 2017 by ANTID0TE All rights reserved

How to fake a port? (I)

• fake pointer must point to something that looks like a port

• we need to setup a number of fields for our port to work
– io_bits - select one of the possible types and make it active

– io_references - better give it some references

– io_lock_data - must be valid lock data

– kobject - pointer to a fake data structure

– receiver - we cannot fill out because we don’t know ipc_space_kernel

33

| © 2017 by ANTID0TE All rights reserved

How to fake a port? (II)

• fake port and fake data must be in attacker controlled memory

• it is required to know address of that memory

• easy to do for 64 bit devices (except iPhone 7) because of user land
dereferences

• requires additional information leaks for iPhone 7 and 32 bit devices  
(unless already privileged outside the sandbox)

34

| © 2017 by ANTID0TE All rights reserved

What can we do with such a faked port?

• because we cannot fill in receiver not a fully usable port

• it works fine when used as argument to
– syscalls

– mach traps

– as additional parameter Mach API (not 1st argument)

• but it will NOT work as first argument to a MachAPI 
(for this we need the receiver to be ipc_space_kernel)

35

| © 2017 by ANTID0TE All rights reserved

Some Examples

• some examples of ports we can fake
– IKOT_IOKIT_CONNECT - driver connection to a IOUserClient derived object

– IKOT_CLOCK - clock object

– IKOT_TASK - task object

36

| © 2017 by ANTID0TE All rights reserved

Faking IOKit Driver Connection Ports

• ports of type IKOT_IOKIT_CONNECT can be used via iokit_user_client_trap()
• kobject pointer points to a C++ object

• good target because it allows control of the method table
• see “HITB2013 - Tales from iOS 6 Exploitation” for example

37

| © 2017 by ANTID0TE All rights reserved

Faking Clock Ports (I)

• ports of type IKOT_CLOCK can be used via clock_sleep_trap()
• kobject pointer points to a struct clock

• looks like a good target because there is a function pointer list

38

/*
 * Actual clock object data structure. Contains the machine
 * dependent operations list and clock operation ports.
 */
struct clock {
 clock_ops_t cl_ops; /* operations list */
 struct ipc_port *cl_service; /* service port */
 struct ipc_port *cl_control; /* control port */
};

pointer to list of
function pointers

| © 2017 by ANTID0TE All rights reserved

Faking Clock Ports (II)

• code of clock_sleep_internal() will not allow a fake clock struct
• only the valid SYSTEM_CLOCK pointer is accepted

• otherwise function errors out - triggering code execution not possible

39

validation against our
fake clock struct pointer

 if (clock == CLOCK_NULL)
 return (KERN_INVALID_ARGUMENT);

 if (clock != &clock_list[SYSTEM_CLOCK])
 return (KERN_FAILURE);

 /*
 * Check sleep parameters. If parameters are invalid
 * return an error, otherwise post alarm request.
 */
 (*clock->cl_ops->c_gettime)(&clock_time);

 chkstat = check_time(sleep_type, sleep_time, &clock_time);
 if (chkstat < 0)
 return (KERN_INVALID_VALUE);

| © 2017 by ANTID0TE All rights reserved

 if (clock == CLOCK_NULL)
 return (KERN_INVALID_ARGUMENT);

 if (clock != &clock_list[SYSTEM_CLOCK])
 return (KERN_FAILURE);

 /*
 * Check sleep parameters. If parameters are invalid
 * return an error, otherwise post alarm request.
 */
 (*clock->cl_ops->c_gettime)(&clock_time);

 chkstat = check_time(sleep_type, sleep_time, &clock_time);
 if (chkstat < 0)
 return (KERN_INVALID_VALUE);

Faking Clock Ports (III)

• wait a second!

• a wrong clock pointer will lead to KERN_FAILURE

• a good pointer with bad other arguments leads to KERN_INVALID_VALUE

40

error if our pointer is not
pointing to the SYSTEM_CLOCK

error if our pointer was okay
but other arguments bad

| © 2017 by ANTID0TE All rights reserved

Faking Clock Ports (IV)

• if we can change kobject we can bruteforce the SYSTEM_CLOCK address

• userland dereference makes this easy on 64 bit pre iPhone 7

• this reveals pointer inside kernel image and therefore breaks KASLR

41

 our_fake_port->io_bits = IKOT_CLOCK | IO_BITS_ACTIVE;
 our_fake_port->kobject = low_kernel_address;

 while (1) {
 our_fake_port->kobject+= 8;
 kret = clock_sleep_trap(magicport, 0x12345, 0, 0, NULL);

 if (kret != KERN_FAILURE) {
 break;
 }
 }

| © 2017 by ANTID0TE All rights reserved

Faking Task Ports (I)

• ports of type IKOT_TASK have kobject pointer pointing to a task struct
• unfortunately cannot be used directly in task Mach API functions

• but there are other usages like  
 
pid_for_task() - return the pid for a given task

42

 t1 = port_name_to_task(t);

 if (t1 == TASK_NULL) {
 err = KERN_FAILURE;
 goto pftout;
 } else {
 p = get_bsdtask_info(t1);
 if (p) {
 pid = proc_pid(p);

reads pointer to struct proc
from our fake struct task

returns pid from
without struct proc

| © 2017 by ANTID0TE All rights reserved

Faking Task Ports (II)

• our fake IKOT_TASK port points to a fake task struct
• the bsd_info fields points anywhere in memory

• pid_for_task() will read back at offset 0x10

• allows to read from anywhere in kernel memory

43

| © 2017 by ANTID0TE All rights reserved

Faking Task Ports (III)

• if we can change kobject we can read everything

• userland dereference makes this easy on 64 bit pre iPhone 7

• this allows to read important variables like ipc_space_kernel
• this means afterwards we can use Mach API with our fake port

44

Our Port(al) to the Core
Kernel Task Port

| © 2017 by ANTID0TE All rights reserved

Kernel Task Port

• among all the ports in an iOS system the kernel task port is the holy grail

• with access to the kernel task port we can manipulate the kernel memory
– vm_read - allows reading kernel memory

– vm_write - allows writing kernel memory

– vm_allocate - allows allocating memory inside the kernel address space

– …

• whoever has access to the kernel task port more or less controls the system

• to turn out fake task port into a kernel task port we need to know
kernel_task and ipc_space kernel

46

| © 2017 by ANTID0TE All rights reserved

Attack Plan for 64 bit devices (except iPhone 7)

• Corruption Phase
- perform heap feng shui with OOL_PORTS_DESCRIPTORS

- corrupt any of the “sprayed” port pointers

- receive all messages to get access to port

• Post Corruption Phase
- fake a CLOCK port to break KASLR - via bruteforce of clock address

- fake a TASK port and TASK struct to have arbitrary kernel read

- read ipc_space_kernel and kernel_task

- fake a kernel TASK port

47

| © 2017 by ANTID0TE All rights reserved

Faking the KERNEL TASK Port (I)

• with ipc_space_kernel our fake ports can be used in Mach API

• with kernel_task we can fake a kernel task port

• mach API gives us read/write access to kernel memory

• Game Over!

48

Conclusion

| © 2017 by ANTID0TE All rights reserved

Conclusion

• overwriting port pointers
– allows to gain code execution

– or full read write access to kernel memory

• heap feng shui with mach messages and OOL_PORTS_DESCRIPTOR
– gives fine grained control over heap

– fills heap with port pointers that when corrupted

• post corruption code is fully reusable for different corruptions (64bit before i7)

50

Questions ?
www.antid0te.com

stefan@antid0te.com
© 2017 by ANTID0TE. All rights reserved

