Post-talk note:

If you read my ZerOCon abstract, you'll see that | originally intended to finish this talk
with a case study on my IOHIDeous exploit. | overdid it a bit though, and if | had gone
through with everything in the abstract, my talk would've been at least 1.5h, so | had to
cut some bits. | figured since the complete write-up for IOHIDeous was already public
anyway, cutting that part would be the smallest loss. As a consequence, the title "The
HIDeous parts of IOKit" has been deprived its context and doesn't make much sense
anymore, and the talk has turned more into a "how I do iOS analysis and exploitation®.

I hope you'll enjoy it anyway.

The HIDeous parts
of IOKit

whoami

- Hobbyist hacker from Switzerland, 23 years old

- Currently studying for Computer Science
Bachelor @ETH Zurich

- Began messing with code at the age of 11

- Got started with hacking in fall 2016 ("clOver")

- Involved with several jailbreaks since then

- Primarily focused on i0OS/macOS kernel hacking

Siguza ZER(OCON 2018

This talk

1. 1OKit overview

2. Attack surface (& security checks)
3. Bugs (& mitigations)

4. EXxploit strategies

Siguza ZER(OCON 2018

|OKit overview

XNU

BSD Mach

Siguza ZER(OCON 2018

Siguza ZER(CON 2018

What is IOKit?

Apple:
"The I/0 Kit is a collection of system
frameworks, libraries, tools, and other

resources for creating device drivers in OS X."

(You totally know more now, right?)

Siguza ZER(OCON 2018

What is IOKit?

From a developer's perspective:

- A framework for writing kernel extensions
- An official API available to 3rd parties
(at least on macOS)

- Documented ("I/0 Kit fundamentals"):

https://developer.apple.com/library/content/documentation/
DeviceDrivers/Conceptual/lIOKitFundamentals/

Siguza ZER(OCON 2018

https://developer.apple.com/library/content/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/
https://developer.apple.com/library/content/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/

|OKIt architecture

- Written in a subset of C++ (without multiple
inheritance, templates, and exceptions)
- Universal base class: OSObject
- Allocated via kalloc (overloaded new and
delete operators)
- Lifetime managed by reference counting
- Custom RTTI: "OSMetaClass"

Siguza ZER(OCON 2018

Libkern

- Serves as standard library to some extent
- Contains classes and functions for Plist
serialization & deserialization
- Serializability is a core feature that extends
to all classes (::serialize())
- Plist configs are extensively used
(e.g. entitlements, kexts, services, ...)

- A few more core features like OSlterator or
OSKext

Siguza ZER(OCON 2018

Libkern: Plist classes

OSOrderedSet
T
OSSet OSDictionary OSArray
'\ 1 /‘
OSData OSCollection
OSNumber OSSymbol
T

OSBoolean OSString

Siguza ZER(OCON 2018

|IORegistry

- Global lookup tree of

|IORegistryEntry objects I0UserClient
- Has multiple "planes” T
: : .. I0Service
(basically just separate registries) T
- Every entry can have child nodes ORegistryEntry

and a set of "properties” T

- Entries can directly be interacted _
with from userland!

Siguza ZER(OCON 2018

|OKit from userland

- Public API only frameworks like IOSurface,

CoreVideo, Security, ...
- Private API: IOKit.framework

- Even more private API: MIG

Siguza ZER(OCON 2018

|OKit.framework

- Open Source & Documented:
https://opensource.apple.com/tarballs/IOKitUser
https://developer.apple.com/documentation/iokit

- Symbols exported, can be linked against

- Headers not present in iOS SDK (but whatever)

- Bridge between MIG and CoreFoundation
- Handles serialization & deserialization
- Other convenience features

- Stable API

Siguza ZER(OCON 2018

https://opensource.apple.com/tarballs/IOKitUser
https://developer.apple.com/documentation/iokit

|OKit.framework

kern_return_t ret;

10_service_t service = MACH_PORT_NULL;
10_connect_t client = MACH_PORT_NULL;
CFDictionaryRef match = NULL;

match = I0ServiceMatching("IOSurfaceRoot");
service = I0OServiceGetMatchingService(kIOMasterPortDefault, match);
ret = I0ServiceOpen(service, mach_task_self(), 0, &client);

Siguza ZER(OCON 2018

MIG

- Statically compiled into IOKit.framework

- Symbols exist but only exported on 32bit,
cannot be linked against on 64bit

- Can be generated with mig utility and
xnu/osfmk/device/device.defs (or written by hand)

- Verbose, not really fun to deal with

- Unstable API, major releases almost always break
compatibility

- Higher performance (no CF type overhead)

- Full control over serialized (binary) data

Siguza ZER(OCON 2018

static kern_return_t reallocate buf(io_comnect_t client, uint32_t surfaceld, uimt32_t propertyld,
{

#pragaa pack

{
mach_nsg_header,_t Head;
WOR_record_t NOR;
wint32 ¢t selector;
mach_nsg_type_nusber_t scalar_inputCnt;
mach_nsg_type_musber_t inband_inputCnt;
wint32 ¢t inband_inpat[);
mach_vm_sddress_t ool_inpu
mach_wm_size_t ool_input_size;
mach_nsg_type_nusber.t inband_outputCnt;
mach_nsq_type_musber_t scalar_outputCnt
mach_wm_sddress_t ool_output;
mach_vm_size_t ool outpet_size;
} DeleteRequest;
{
mach_nsg_header,_t Head;
WOR_record_t NOR;
wint32 ¢t selector;
mach_nsg_type_musber_t scalar,_inpetCnt;
mach_nsg_type_musber_t inband_inpetCnt;
mach_vm_sddress_t ool_input;
mach_wm_size_t ool_input_size;
mach_nsg_type_musber_t inband_outputCnt;
mach_nsg_type_musber_t scalar_outputCnt;
mach_vm_address_t ool_output;
mach_wm_size_t ool_output,_size;
} SetRequest;

{
mach_msg_header_t Head;
WOR_record_t NOR;
kern_return_t RetCode;
mach_msg_type_musber_t inband_outputCnt;

inband_output [40541
mach_msg_type_nusber_t scalar_outputCnt;
winté4_t scalar_output[1:];
mach_ve_size_t ool_output_size;
mach_msg_trailer_t trailer;

} Reply,
#pragma pack

{
DeleteRequest In;
Reply Out;

} OMess;

DeleteRequ: OInP
Reply +00utP DMess.
DInP->NOR = NOR_record;
ector TOSURFACE_DELETE_VALUE;

t(0] = surfaceld;
t12] = transpose(propertyld);
0 -

(DInP->i

(wint32_t);

DInP->«

DXnP-sHcod b MACH_MSGH_BITS(19, MACH_MSG_TYPE_MAKE_SEND_ONCE) ;
. client;
nig_get_reply_port();

Reply +S0utP

SInP->NOR = NOR_record;
SInP->select TOSURFACE_SET_VALUE;
SInP- t

(uint32_t);

MACH_MSGH_BITS(', MACH_MSG_TYPE_MAKE_SEND_ONCE);
t = client;
nig_get_reply_port();

sched_yield();

kern_return_t ret - mach_ssg(-DInf->
if(ret = KERN_SUCCESS)
{

ret = DOutP
}
if(ret KERN_SUCCESS)
{

return ret;
}
ret - mach, e
if(ret KERN_SUCCESS)
{

d, MACH_SEND_MSG |MACH_RCV_MSG [MACH_MSG_OPTION_NONE,

ret = SQutP->fet

return ret;

, MACH_SEND_MSG | MACH_RCV_MSG | MACH_MSG_OPTION_NONE,

(Deleteficquest

(Sethequest), (mach_msg_size_t)

buf, mach_vm_size_t len)

(mach_nsg_size_t)

(Reply), DInP->Heo:

(Reply), SInP->Hesd

4 MACH_MSG_TIMEOUT_NONE,

MACH_MSG_TIMEQUT_NONE, MACH_PORT_NULL);

MACH_PORT_NULL)

Just two function calls to
|OConnectCallMethod().

ZER(OCON 2018

Mach ports

|ORegistry based on 3 types:

- IKOT_MASTER_DEVICE
- IKOT_IOKIT_OBJECT
- IKOT_IOKIT_CONNECT

Siguza ZER(OCON 2018

IKOT_MASTER_DEVICE

- Exactly one instance: master_device_port

- Can be obtained via host_get_io_master()

- Used to look up registry entries

- Also offers info queries like API version,
class hierarchy, ...

Siguza ZER(OCON 2018

IKOT_IOKIT_OBJECT

- Represents a single |IORegistryEntry object

- Can be obtained for every registry entry

- Mostly used in a readonly manner like
traversing the tree, querying info, ...
- Notable exception: setting properties

- Also used for things like OSlterator,
|OUserNotification...

- Access Is deemed non-privileged

Siguza ZER(OCON 2018

IKOT_IOKIT_CONNECT

- Represents a single I0UserClient object
- Can only be obtained by actually creating a
new user client via |0ServiceOpen
- Allows access to the "real” functionality:
- Calling "external methods"
- Mapping kernel-user shared memory

- Registering callback ports

- Access Is usually considered privileged

Siguza ZER(OCON 2018

|OKit ecosystem

IORegistry / ,

Libkern

Kernel MIG

Userland (xnu/osfmk/device/device.defs)

!
OKameerk 4——

ZER(OCON 2018

What is IOKit?

From a hacker's perspective:

- An official and thus very stable API
- An easily queryable interface

- Much more flexible than C code

- A gateway to a ton of kexts

- Amess:P

Siguza ZER(OCON 2018

Attack surface

Dynamic analysis: enumeration

- Getting all available services is trivial:
Just match against |0OService

- Registry tree can be visualised with Apple's
own ioreg utility

- Can explore other aspects with my iokit-utils:
https://qgithub.com/Siguza/iokit-utils

- List of all classes can be obtained from
registry root's properties (ioprint -d Root)

Siguza ZER(OCON 2018

https://github.com/Siguza/iokit-utils

loreg

Tells you which 10Service a certain
|OUserClient belongs to.

Siguza ZER(OCON 2018

loKit-utils

- loclass:

- Query class hierarchy and origin (kext ID)
- loprint:

- Filter registry entries by type

- Optionally get/set properties
- loscan:

- Spawning user clients

Siguza ZER(OCON 2018

Dynamic analysis: debugging

- Class list also contains number of instances
of each class

- 10_object_get_retain_count()

- Syslog often has useful information

Siguza ZER(OCON 2018

Dynamic analysis: downsides

- Anything that requires input:
- User client type: usually 0, but not always:
- IONetworkUserClient: OxTT000001
- What properties can be set
- What methods are overridden
- External methods
- Kernel internals (e.g. object size)
- Anything not reachable from the sandbox

Siguza ZER(OCON 2018

Restricted access

Three MACF checks in IOKit APls:
- Setting properties

- Getting properties

- Spawning user clients

Most other checks are specific to a single
service, and check for root or entitlement.

Siguza ZER(OCON 2018

Properties

- Outside the sandbox: entirely unrestricted
- Inside the sandbox:
- Setting only allowed on a single class:
|IOHIDEventServiceFastPathUserClient
- Getting allowed on a few more classes,
but restricted to individual properties

Siguza ZER(OCON 2018

Spawning user clients

- Outside the sandbox: very few restrictions,
only with highly critical services (e.g. SEP)

- Inside the sandbox: rather few whitelisted,
but could be worse:

AGXDevice
AppleJPEGDriverUserClient
AppleKeyStoreUserClient
IOAccelContext
IOAccelContext2
IOAccelDevice
IOAccelDevice2
IOAccelSharedUserClient
IOAccelSharedUserClient2

Siguza ZER(OCON 2018

IOAccelSubmitter2
IOHIDEventServiceFastPathUserClient
IOHIDLibUserClient
IOMobileFramebufferUserClient
IOSurfaceAcceleratorClient
I0SurfaceRootUserClient
I0SurfaceSendRight
RootDomainUserClient

Static analysis

On macOS:
Trivial, just run: nm -U kext | c++filt

Siguza ZER(OCON 2018

Static analysis

On iOS:

Kexts have no symbol table, only the kernel does
- Can find all calls to OSMetaClass constructor
- OSMetaClass::alloc reveals vtable

- Not perfect, but can reconstruct class

hierarchy, object size and all overridden
methods!

Siguza ZER(OCON 2018

lometa

https://github.com/Siguza/iometa

Siguza ZER(OCON 2018

https://github.com/Siguza/iometa

Static analysis

Benefits:

- Find every possible code path

- Can be done without root access/shell

- Usually not even hard to do manually,
thanks to RTTI and verbose logging

Downside:
- Hard to automate

Siguza ZER(OCON 2018

A few numbers

N° of kexts: 179

N° of kexts with no classes: 10

N° of classes: 1559

N° extending 10Service (w/o IOUC): 752
N° extending IOUserClient: 111

N° spawnable from sandbox: 17

N° spawnable by fuzzing: 36

Siguza ZER(OCON 2018

Attack surface conclusion

- Inside the sandbox:
- Limited attack surface
- Accessible parts very well tested
- Outside the sandbox:
- Huge attack surface
- Some kexts were written like shit
- => Big potential :P

Siguza ZER(OCON 2018

How to find bugs?

Fuzzing?

- Easy and tempting
- Good to find missing input validation
- but only if input is directly used
- hardly ever happens in IOKit
- Apple is fuzzing too, especially services
reachable from the sandbox

Siguza ZER(OCON 2018

Fuzzing?

- Easy and tempting
- Good to find missing input validation
- but only if input is directly used
- hardly ever happens in IOKit
- Apple is fuzzing too, especially services
reachable from the sandbox

=> | don't believe in fuzzing

Siguza ZER(OCON 2018

Stack overread
"PEGASUS OSNumber bug" (CVE-2016-4655)

IORegistryEntry
attacy '

OSNumber
f

create with
too large size

first syscall

Siguza ZER(OCON 2018

Stack overread
"PEGASUS OSNumber bug" (CVE-2016-4655)

IORegistryEntry
attacy : \ook up

OSNumber , OSNumber
t : !
create with ! value extracted
too large size : to stack
\ 4
size came from
kernel => trusted

first syscall , second syscall

Siguza ZER(OCON 2018

Stack overread
"PEGASUS OSNumber bug" (CVE-2016-4655)

fuzzable?

Siguza ZER(OCON 2018

Common bugs

Use after free:

- Dangling pointer (no reference taken)

- Bad reference counting
- Usually only happens on error conditions
- Quite common with MIG ownership rules

Siguza ZER(OCON 2018

Dangling pointers

"task t considered harmful"” by lan Beer

- Multiple CVEs, vulns all over the place

- Objects assumed their lifetime was tied to
the task creating them and took no ref

- Took Apple multiple rounds to fix

- Object lifetime now actually bound to
creating task

Siguza ZER(OCON 2018

https://googleprojectzero.blogspot.ch/2016/10/taskt-considered-harmful.html

Dangling pointers

PEGASUS kernel bug (CVE-2016-4656)

- OSUnserializeXML supports referencing
already parsed objects

- Reference array didn't retain objects

- Usually fine since newly parsed objects
have a reference & are added to a container

- Objects could be converted or replaced,
which dropped the ref

Siguza ZER(OCON 2018

MIG ownership

- MIG retains all objects on translation
- Clients must either
- return success, and consume all refs

- return failure, and consume no refs
- CVE-2017-13861 (async wake/vOrtex)

Siguza ZER(OCON 2018

https://bugs.chromium.org/p/project-zero/issues/detail?id=1417
https://siguza.github.io/v0rtex/

Race conditions

- Libkern containers

- A method with itself on the same clients
- Two methods with each other

- Objects/data shared by multiple clients
- Kernel/user shared memory

Siguza ZER(OCON 2018

Race conditions

- Libkern containers

- A method with itself on the same clients
- Two methods with each other

- Objects/data shared by multiple clients
- Kernel/user shared memory

(most of my Odays are race conditions :P)

Siguza ZER(OCON 2018

Libkern containers

- OSDictionary, OSArray and OSSet are not
thread safe!

- Especially OSDictionary::setObject can
nicely drop two refs on replaced object

- Racing buffer expansions usually panics

Siguza ZER(OCON 2018

Racing for one

AppleEmbedded0SSupportHostClient: : registerNotificationPort(
mach_port_t port,
UInt32 type,
UInt32 refCon)

mach_port_t old = this->fPort;
if(old)
{
I0OUserClient:: releaseNotificationPort(old);
}
this->fPort port;
return

Siguza ZER(OCON 2018

Racing for one

- Can drop two references on the old port,
leading to controlled UaF

- Reported by lan Beer as Issue 1430 on
Project Zero's bug tracker

- Fixed by Apple in macOS 10.13.3

- No CVE assigned?

Siguza ZER(OCON 2018

https://bugs.chromium.org/p/project-zero/issues/detail?id=1430

Apple's fix?

/#* Routine io_connect_set_notification_port *x/ /#* Routine io_connect_set_notification_port *x/
kern_return_t is_io_connect_set_notification_port(kern_return_t is_io_connect_set_notification_port(
io_object_t connection, io_object_t connection,
uint32_t notification_type, uint32_t notification_type,
mach_port_t port, mach_port_t port,
uint32_t reference) uint32_t reference)
{ {
CHECK(IOUserClient, connection, client); —lL-" kern_return_t ret;

CHECK(IOUserClient, connection, client);
I0StatisticsClientCall();

return(client->registerNotificationPort(port, notification_type, I0StatisticsClientCall();
(io_user_reference_t) reference)); 8 I0LockLock(client->1lock);
} — ret = client->registerNotificationPort(port, notification_type,

(io_user_reference_t) reference);
I0LockUnlock(client->1lock);
return (ret);

ZER(OCON 2018

Apple's fix?

/#* Routine io_connect_set_notification_port *x/ /#* Routine io_connect_set_notification_port *x/
kern_return_t is_io_connect_set_notification_port(kern_return_t is_io_connect_set_notification_port(
io_object_t connection, io_object_t connection,
uint32_t notification_type, uint32_t notification_type,
mach_port_t port, mach_port_t port,
uint32_t reference) uint32_t reference)
{ {
CHECK(IOUserClient, connection, client); ‘jL—" kern_return_t ret;

CHECK(IOUserClient, connection, client);
I0StatisticsClientCall();

return(client->registerNotificationPort(port, notification_type, I0StatisticsClientCall();
(io_user_reference_t) reference)); 8 I0LockLock(client->1lock);
} — ret = client->registerNotificationPort(port, notification_type,

(io_user_reference_t) reference);
I0LockUnlock(client->1lock);
return (ret);

Can still race ::registerNotificationPort with
other methods :P

ZER(OCON 2018

Racing for two

CVE-2017-13847 by lan Beer:
- |OTimeSyncClockManagerUserClient
overrides ::clientClose() and destroys fields
- Two wrong assumptions:
- clientClose() is not a destructor, and can
be called from userland

- clientClose() cannot be raced with itself,
but with external methods!

Siguza ZER(OCON 2018

https://bugs.chromium.org/p/project-zero/issues/detail?id=1377

Racing for two

IOHIDLIibUserClient

.:registerNotificationPort() ::externalMethod()

if(fValidPort MACH_PORT_NULL)

{
ipc_port_release_send(fValidPort);
fValidPort MACH_PORT_NULL;

}
fValidPort port;

dispatchMessage(fValidMessage);

notifyMsg+)fValidMessage)->h.msgh_remote_port fValidPort;

dispatchMessage() could be called on freed port
=> Just locking registerNotificationPort() not enough

Siguza ZER(OCON 2018

Apple's fix?

I0OReturn IOHIDLibUserClient::externalMethod(
uint32_t selector,
I0ExternalMethodArguments #*arguments,
I0ExternalMethodDispatch #*dispatch,
0SObject *target,

reference)

IOReturn status

if(fGate)
{

HIDCommandGateArgs args;

args.selector selector;

args.arguments arguments;

args.dispatch dispatch;

args.target target;

args.reference reference;

if(!isInactive())

status fGate->runAction(0SMemberFunctionCast(I0OCommandGate: :Action, target, &IOHIDLibUserClient::externalMethodGated), ()iargs);

}
return status;

}

I0OReturn IOHIDLibUserClient::registerNotificationPort(mach_port_t port, UInt32 type, UInt32 refCon)
{

if(fGate)
{

return fGate->runAction(0SMemberFunctionCast(I0OCommandGate::Action, this, &IOHIDLibUserClient::registerNotificationPortGated),
(Jport, () (intptr_t)type, () (intptr_t) refCon);
}

else

{

return

Siguza ZER(OCON 2018

|OCommandGate

- Just a fancy lock
- Usually covers all exported methods of a
service or client

Siguza ZER(OCON 2018

|OCommandGate

- Just a fancy lock

- Usually covers all exported methods of a
service or client

- This can still happen:

Race

Lock A Lock B
IOUserClient IOUserClient

Siguza ZER(OCON 2018

Apple's fix?

Lock A /I I\ Lock B

IOUserClient IOUserClient

Siguza ZER(OCON 2018

Apple's fix?

Lock A Lock B
IOUserClient IOUserClient

What about shared memory?

Siguza ZER(OCON 2018

Racing for everyone

CVE-2016-7620/4/5 by Qidan He from Keen Lab

- "Racing for everyone: descriptor describes
TOCTOU"

- OOL memory for external method calls could be
modified from userland, which services did not
expect

Siguza ZER(OCON 2018

https://keenlab.tencent.com/en/2017/01/09/Racing-for-everyone-descriptor-describes-TOCTOU-in-Apple-s-core/

args.scalarInput = scalar_input;
args.scalarInputCount = scalar_inputCnt;
args.structurelInput = inband_input;
args.structureInputSize = inband_inputCnt;

if (ool_input)
inputMD = IOMemoryDescriptor::withAddressRange(ool_input, ool _input_size,

Apple's fix?

args.scalarInput = scalar_input;
args.scalarInputCount = scalar_inputCnt;
args.structurelInput = inband_input;
args.structureInputSize = inband_inputCnt;

if (ool_input)
inputMD = IOMemoryDescriptor::withAddressRange(ool_input, ool input_size,

kIODirectionOut, current task());:

args.structureInputDescriptor = inputMD;

args.scalarOutput = scalar_output;

args.scalarOutputCount = *scalar_outputCnt;

bzero(&scalar_output[@], *scalar_outputCnt * sizeof(scalar_output[@]));
args.structureQutput = inband_output;

args.structureQutputSize = *xinband_outputCnt;

if (ool_output && ool_output_size)

{

outputMD = IOMemoryDescriptor::withAddressRange(ool_output, #ool_output_size,
kIODirectionIn, current_task());

}

kIODirectionOut | kIOMemoryMapCopyOnWrite,
current_task());

args.structurelInputDescriptor = inputMD;

args.scalarOutput = scalar_output;

args.scalarOutputCount = *scalar_outputCnt;

bzero(&scalar_output[@], *scalar_outputCnt * sizeof(scalar_output[@]));
args.structureQutput = inband_output;

args.structureQutputSize = *xinband_outputCnt;

if (ool_output && ool_output_size)

{

outputMD = IOMemoryDescriptor::withAddressRange(ool_output, =#ool_output_size,
kIODirectionIn, current_task());

}

ZER(OCON 2018

args.scalarInput = scalar_input;
args.scalarInputCount = scalar_inputCnt;
args.structurelnput = inband_input;
args.structureInputSize = inband_inputCnt;

if (ool_input)
inputMD = IOMemoryDescriptor::withAddressRange(ool input, ool _input_size,

Apple's fix?

args.scalarInput = scalar_input;
args.scalarInputCount = scalar_inputCnt;
args.structurelnput = inband_input;
args.structureInputSize = inband_inputCnt;

if (ool_input)
inputMD = IOMemoryDescriptor::withAddressRange(ool input, ool _input_size,

kIODirectionOut, current task());:

args.structureInputDescriptor = inputMD;

args.scalarOutput = scalar_output;

args.scalarOutputCount = *scalar_outputCnt;

bzero(&scalar_output[@], *scalar_outputCnt * sizeof(scalar_output[@]));
args.structureQutput = inband_output;

args.structureQutputSize = *xinband_outputCnt;

if (ool_output && ool_output_size)

{

outputMD = IOMemoryDescriptor::withAddressRange(ool_output, #ool_output_size,
kIODirectionIn, current_task());

}

kIODirectionOut | kIOMemoryMapCopyOnWrite,
current_task());

args.structurelInputDescriptor = inputMD;

args.scalarOutput = scalar_output;

args.scalarOutputCount = *scalar_outputCnt;

bzero(&scalar_output[@], *scalar_outputCnt * sizeof(scalar_output([@]));
args.structureQutput = inband_output;

args.structureQutputSize = *xinband_outputCnt;

if (ool_output && ool_output_size)

{

outputMD = IOMemoryDescriptor::withAddressRange(ool_output, =#ool_output_size,
kIODirectionIn, current_task());

}

Only helps with OOL memory, services can still
create their own memory descriptors

ZER(OCON 2018

|JOHIDeous

IOHIDSystem: : initShmem(clean)

EvOffsets *eop;

eop = (EvOffsets+*)shmem_addr;

eop->evGlobalsOffset (EvOffsets);

eop->evShmemQffset = eop->evGlobalsOffset (EvGlobals);

evg = (EvGlobals#*) (()shmem_addr + eop->evGlobalsOffset);
evs =) (()shmem_addr + eop->evShmemOffset);

Siguza ZER(OCON 2018

|JOHIDeous

- CVE-2018-4098 by me
(https://siguza.github.io/IOHIDeous/)

- Writes an offset to shared memory and
reads It back to initialise a pointer

- But memory can already be mapped in
client

Siguza ZER(OCON 2018

https://siguza.github.io/IOHIDeous/

Apple's fix?

There Is no generic fix.

Siguza ZER(OCON 2018

Other bugs

- This list iIs iIncomplete, bugs can take any
shape or form
- The best bugs are "one of a kind" ;)

Siguza ZER(OCON 2018

Picking a target

Look at imported symbols:

- OSUnserializeXML => configurability,
complexity, high-level data

- |OMemoryDescriptor => shared memory

Look at usage:
- Checking return values? (IOMalloc, ...)

Siguza ZER(OCON 2018

Exploitation

C++ UaF: straightforward

Bug: dangling pointer to OSObject
Exploit: reallocate with binary data

Advantages:
- Extremely simple, directly yields PC control

Disadvantages:

- Requires knowledge of kernel slide and buffer
address

- Requires ROP chain

Siguza ZER(OCON 2018

C++ UaF: elaborate

Bug: dangling pointer to OSObject
Exploit: reallocate as new object, leading to
type confusion

Advantages:

- Need no knowledge of kernel addresses

- Reallocation with different size could lead to
heap overflow

Siguza ZER(OCON 2018

C++ UaF: elaborate

Bug: dangling pointer to OSObject
Exploit: reallocate as new object, leading to
type confusion

Disadvantages:

- Requires further exploitation

- Reallocation with different size is possible,
but hard due to zalloc freelist

Siguza ZER(OCON 2018

|IOUSBDeviceFamily

- Not to be confused with IOUSBFamily

- Not reachable from sandbox
- Basically does this (external methods 9, 13,

14, 21, 22):

IOMemoryMap #map = this->getMappingAtAddr(mapAddr);
IOMemoryDescriptor *desc = map->getMemoryDescriptor();

map->release();
desc->retain():

Siguza ZER(OCON 2018

C++ UaF: freelist

B interpreted as vtab data

2nd in freelist next ptr

|

[

freelist head

interpreted as vtab pointer

Siguza ZER(OCON 2018

C++ UaF: freelist

Bug: dangling pointer to OSObject
Exploit: abuse freelist next pointer as vtab

Advantages:
- Requires no reallocation

Disadvantages:

- Requires knowledge of kernel slide

- Only for allocations > cacheline size

- Mitigated in iI0S 10 by XOR'ing next pointer

Siguza ZER(OCON 2018

|IOUSBDeviceFamily

- Bug still exists today
- Not exploitable anymore :(

Siguza ZER(OCON 2018

Type confusions

- Can arise from various bugs (bad cast, OOB
pointer read, pointer corruption, ...)
- Can be constructed from C++ UaF's

Advantages:

- Require no info leak by themselves
- Can lead to various exploit primitives

Siguza ZER(OCON 2018

Type confusions

- Can arise from various bugs (bad cast, OOB
pointer read, pointer corruption, ...)
- Can be constructed from C++ UaF's

Disadvantages:

- Cannot form a universal exploitation
strategy due to variable nature

- Might be too fragile to exploit

Siguza ZER(OCON 2018

Useful type confusions

- Out of bounds r/w
- Usually happens when a small object is
assumed to be big, and non-virtual methods
are called on it
- Pointer dereferences
- Happens with fields, can be exploited like UaF

Siguza ZER(OCON 2018

OSUnserialize XML

- Best heap primitive EVER

- Can allocate arbitrary-sized buffer with
either binary data or kernel pointers

- Allows bulk allocation (good to win a race)

- Can even be read back if done right
(I0Surface)

Siguza ZER(OCON 2018

Mach messages

- IKm header has size as first field

- can be overflown without knowing pointers
- Ikm header contains pointer to msg header

- reading mach msg reveals its own address
- descriptor count = excellent target

- single bit flip changes message meaning

- 1 to 0 leaks kernel address

- 0 to 1 treats user data like kernel pointers

Siguza ZER(OCON 2018

Mach port construction

Extremely popular:
- Phoenix

- Yalu102

- async_wake

- |IOHIDeous

Siguza ZER(OCON 2018

Mach port construction

Extremely powerful:

- Can brute-force KASLR

- Knowing any kernel buffer address gives
you a read primitive

- Knowing a few pointers gives you RWX;
- R/W through mach_vm_* API
- X through iokit_user_client_trap

Siguza ZER(OCON 2018

Kernel RWX

Questions?

