
Post-talk note:

If you read my Zer0Con abstract, you'll see that I originally intended to finish this talk
with a case study on my IOHIDeous exploit. I overdid it a bit though, and if I had gone
through with everything in the abstract, my talk would've been at least 1.5h, so I had to
cut some bits. I figured since the complete write-up for IOHIDeous was already public
anyway, cutting that part would be the smallest loss. As a consequence, the title "The
HIDeous parts of IOKit" has been deprived its context and doesn't make much sense
anymore, and the talk has turned more into a "how I do iOS analysis and exploitation".

I hope you'll enjoy it anyway.

The HIDeous parts
of IOKit

Siguza

whoami
- Hobbyist hacker from Switzerland, 23 years old
- Currently studying for Computer Science

Bachelor @ETH Zürich
- Began messing with code at the age of 11
- Got started with hacking in fall 2016 ("cl0ver")
- Involved with several jailbreaks since then
- Primarily focused on iOS/macOS kernel hacking

Siguza

This talk

1. IOKit overview
2. Attack surface (& security checks)
3. Bugs (& mitigations)
4. Exploit strategies

IOKit overview

Siguza

MachBSD

XNU

Siguza

MachBSD

XNU

IOKit

Siguza

What is IOKit?
Apple:

"The I/O Kit is a collection of system
frameworks, libraries, tools, and other
resources for creating device drivers in OS X."

(You totally know more now, right?)

Siguza

What is IOKit?
From a developer's perspective:

- A framework for writing kernel extensions
- An official API available to 3rd parties 

(at least on macOS)
- Documented ("I/O Kit fundamentals"): 

https://developer.apple.com/library/content/documentation/
DeviceDrivers/Conceptual/IOKitFundamentals/

https://developer.apple.com/library/content/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/
https://developer.apple.com/library/content/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/

Siguza

IOKit architecture
- Written in a subset of C++ (without multiple

inheritance, templates, and exceptions)
- Universal base class: OSObject

- Allocated via kalloc (overloaded new and
delete operators)

- Lifetime managed by reference counting
- Custom RTTI: "OSMetaClass"

Siguza

- Serves as standard library to some extent
- Contains classes and functions for Plist

serialization & deserialization
- Serializability is a core feature that extends

to all classes (::serialize())
- Plist configs are extensively used  

(e.g. entitlements, kexts, services, ...)
- A few more core features like OSIterator or

OSKext

Libkern

Siguza

Libkern: Plist classes

OSObject

OSNumber OSSymbol

OSString

OSData OSCollection

OSArrayOSSet OSDictionary

OSOrderedSet

OSBoolean

Siguza

IORegistry
- Global lookup tree of

IORegistryEntry objects
- Has multiple "planes" 

(basically just separate registries)
- Every entry can have child nodes

and a set of "properties"
- Entries can directly be interacted

with from userland!
OSObject

IORegistryEntry

IOService

IOUserClient

Siguza

IOKit from userland

- Public API only frameworks like IOSurface,
CoreVideo, Security, ...

- Private API: IOKit.framework
- Even more private API: MIG

Siguza

IOKit.framework
- Open Source & Documented: 

https://opensource.apple.com/tarballs/IOKitUser 
https://developer.apple.com/documentation/iokit

- Symbols exported, can be linked against
- Headers not present in iOS SDK (but whatever)
- Bridge between MIG and CoreFoundation

- Handles serialization & deserialization
- Other convenience features

- Stable API

https://opensource.apple.com/tarballs/IOKitUser
https://developer.apple.com/documentation/iokit

Siguza

IOKit.framework

kern_return_t ret;
io_service_t service = MACH_PORT_NULL;
io_connect_t client = MACH_PORT_NULL;
CFDictionaryRef match = NULL;

match = IOServiceMatching("IOSurfaceRoot");
service = IOServiceGetMatchingService(kIOMasterPortDefault, match);
ret = IOServiceOpen(service, mach_task_self(), 0, &client);

Siguza

MIG
- Statically compiled into IOKit.framework
- Symbols exist but only exported on 32bit, 

cannot be linked against on 64bit
- Can be generated with mig utility and 

xnu/osfmk/device/device.defs (or written by hand)
- Verbose, not really fun to deal with
- Unstable API, major releases almost always break

compatibility
- Higher performance (no CF type overhead)
- Full control over serialized (binary) data

Siguza

MIG

Just two function calls to
IOConnectCallMethod().

Siguza

Mach ports

IORegistry based on 3 types:

- IKOT_MASTER_DEVICE
- IKOT_IOKIT_OBJECT
- IKOT_IOKIT_CONNECT

Siguza

IKOT_MASTER_DEVICE

- Exactly one instance: master_device_port
- Can be obtained via host_get_io_master()
- Used to look up registry entries
- Also offers info queries like API version, 

class hierarchy, ...

Siguza

IKOT_IOKIT_OBJECT
- Represents a single IORegistryEntry object
- Can be obtained for every registry entry
- Mostly used in a readonly manner like

traversing the tree, querying info, ...
- Notable exception: setting properties

- Also used for things like OSIterator,
IOUserNotification...

- Access is deemed non-privileged

Siguza

IKOT_IOKIT_CONNECT
- Represents a single IOUserClient object
- Can only be obtained by actually creating a

new user client via IOServiceOpen
- Allows access to the "real" functionality:

- Calling "external methods"
- Mapping kernel-user shared memory
- Registering callback ports
- ...

- Access is usually considered privileged

Siguza

IOKit ecosystem

Kernel

Userland

IORegistry

MIG
(xnu/osfmk/device/device.defs)

IOKit.framework

Libkern

Kexts

IOSurface.framework 
Security.framework 

CoreVideo.framework 
...

Siguza

What is IOKit?
From a hacker's perspective:

- An official and thus very stable API
- An easily queryable interface
- Much more flexible than C code
- A gateway to a ton of kexts
- A mess :P

Attack surface

Siguza

Dynamic analysis: enumeration

- Getting all available services is trivial: 
Just match against IOService

- Registry tree can be visualised with Apple's
own ioreg utility

- Can explore other aspects with my iokit-utils: 
https://github.com/Siguza/iokit-utils

- List of all classes can be obtained from
registry root's properties (ioprint -d Root)

https://github.com/Siguza/iokit-utils

Siguza

ioreg

Tells you which IOService a certain
IOUserClient belongs to.

Siguza

iokit-utils
- ioclass:

- Query class hierarchy and origin (kext ID)
- ioprint:

- Filter registry entries by type
- Optionally get/set properties

- ioscan:
- Spawning user clients

Siguza

Dynamic analysis: debugging

- Class list also contains number of instances
of each class

- io_object_get_retain_count()
- Syslog often has useful information

Siguza

Dynamic analysis: downsides
- Anything that requires input:

- User client type: usually 0, but not always:
- IONetworkUserClient: 0xff000001

- What properties can be set
- What methods are overridden
- External methods

- Kernel internals (e.g. object size)
- Anything not reachable from the sandbox

Siguza

Restricted access
Three MACF checks in IOKit APIs:
- Setting properties
- Getting properties
- Spawning user clients

Most other checks are specific to a single
service, and check for root or entitlement.

Siguza

Properties

- Outside the sandbox: entirely unrestricted
- Inside the sandbox:

- Setting only allowed on a single class:  
IOHIDEventServiceFastPathUserClient

- Getting allowed on a few more classes,
but restricted to individual properties

Siguza

Spawning user clients
- Outside the sandbox: very few restrictions,

only with highly critical services (e.g. SEP)
- Inside the sandbox: rather few whitelisted,

but could be worse:
AGXDevice
AppleJPEGDriverUserClient
AppleKeyStoreUserClient
IOAccelContext
IOAccelContext2
IOAccelDevice
IOAccelDevice2
IOAccelSharedUserClient
IOAccelSharedUserClient2

IOAccelSubmitter2
IOHIDEventServiceFastPathUserClient
IOHIDLibUserClient
IOMobileFramebufferUserClient
IOSurfaceAcceleratorClient
IOSurfaceRootUserClient
IOSurfaceSendRight
RootDomainUserClient

Siguza

Static analysis

On macOS:
Trivial, just run: nm -U kext | c++filt

Siguza

Static analysis
On iOS:
Kexts have no symbol table, only the kernel does
- Can find all calls to OSMetaClass constructor
- OSMetaClass::alloc reveals vtable
- Not perfect, but can reconstruct class

hierarchy, object size and all overridden
methods!

Siguza

https://github.com/Siguza/iometa

iometa

https://github.com/Siguza/iometa

Siguza

Static analysis
Benefits:
- Find every possible code path
- Can be done without root access/shell
- Usually not even hard to do manually,

thanks to RTTI and verbose logging

Downside:
- Hard to automate

Siguza

A few numbers
N° of kexts: 179
N° of kexts with no classes: 10
N° of classes: 1559
N° extending IOService (w/o IOUC): 752
N° extending IOUserClient: 111
N° spawnable from sandbox: 17
N° spawnable by fuzzing: 36

Siguza

Attack surface conclusion

- Inside the sandbox:
- Limited attack surface
- Accessible parts very well tested

- Outside the sandbox:
- Huge attack surface
- Some kexts were written like shit
- => Big potential :P

How to find bugs?

Siguza

Fuzzing?
- Easy and tempting
- Good to find missing input validation

- but only if input is directly used
- hardly ever happens in IOKit
- Apple is fuzzing too, especially services

reachable from the sandbox

Siguza

Fuzzing?
- Easy and tempting
- Good to find missing input validation

- but only if input is directly used
- hardly ever happens in IOKit
- Apple is fuzzing too, especially services

reachable from the sandbox

=> I don't believe in fuzzing

Siguza

Stack overread
"PEGASUS OSNumber bug" (CVE-2016-4655)

OSNumber

IORegistryEntry

OSNumber

attach

OSUnserializeXML

create with 
too large size

first syscall

Siguza

Stack overread
"PEGASUS OSNumber bug" (CVE-2016-4655)

OSNumber

IORegistryEntry

OSNumberOSNumber

attach look up

OSUnserializeXML

create with 
too large size

first syscall

value extracted 
to stack

size came from
kernel => trusted

second syscall

Siguza

Stack overread
"PEGASUS OSNumber bug" (CVE-2016-4655)

OSNumber

IORegistryEntry

OSNumberOSNumber

attach look up

OSUnserializeXML

create with 
too large size

first syscall

value extracted 
to stack

size came from
kernel => trusted

second syscall

fuzzable?

Siguza

Common bugs

Use after free:
- Dangling pointer (no reference taken)
- Bad reference counting

- Usually only happens on error conditions
- Quite common with MIG ownership rules

Siguza

Dangling pointers
"task_t considered harmful" by Ian Beer
- Multiple CVEs, vulns all over the place
- Objects assumed their lifetime was tied to

the task creating them and took no ref
- Took Apple multiple rounds to fix
- Object lifetime now actually bound to

creating task

https://googleprojectzero.blogspot.ch/2016/10/taskt-considered-harmful.html

Siguza

Dangling pointers
PEGASUS kernel bug (CVE-2016-4656)
- OSUnserializeXML supports referencing

already parsed objects
- Reference array didn't retain objects
- Usually fine since newly parsed objects

have a reference & are added to a container
- Objects could be converted or replaced,

which dropped the ref

Siguza

MIG ownership

- MIG retains all objects on translation
- Clients must either

- return success, and consume all refs
- return failure, and consume no refs

- CVE-2017-13861 (async_wake/v0rtex)

https://bugs.chromium.org/p/project-zero/issues/detail?id=1417
https://siguza.github.io/v0rtex/

Siguza

Race conditions
- Libkern containers
- A method with itself on the same clients
- Two methods with each other
- Objects/data shared by multiple clients
- Kernel/user shared memory

Siguza

Race conditions
- Libkern containers
- A method with itself on the same clients
- Two methods with each other
- Objects/data shared by multiple clients
- Kernel/user shared memory

(most of my 0days are race conditions :P)

Siguza

Libkern containers

- OSDictionary, OSArray and OSSet are not
thread safe!

- Especially OSDictionary::setObject can
nicely drop two refs on replaced object

- Racing buffer expansions usually panics

Siguza

Racing for one

Siguza

Racing for one

- Can drop two references on the old port,
leading to controlled UaF

- Reported by Ian Beer as Issue 1430 on
Project Zero's bug tracker

- Fixed by Apple in macOS 10.13.3
- No CVE assigned?

https://bugs.chromium.org/p/project-zero/issues/detail?id=1430

Siguza

Apple's fix?

Siguza

Apple's fix?

Can still race ::registerNotificationPort with
other methods :P

Siguza

Racing for two
CVE-2017-13847 by Ian Beer:
- IOTimeSyncClockManagerUserClient

overrides ::clientClose() and destroys fields
- Two wrong assumptions:

- clientClose() is not a destructor, and can
be called from userland

- clientClose() cannot be raced with itself,
but with external methods!

https://bugs.chromium.org/p/project-zero/issues/detail?id=1377

Siguza

Racing for two

dispatchMessage() could be called on freed port
=> Just locking registerNotificationPort() not enough

::registerNotificationPort() ::externalMethod()

IOHIDLibUserClient

Siguza

Apple's fix?

Siguza

IOCommandGate
- Just a fancy lock
- Usually covers all exported methods of a

service or client

Siguza

IOCommandGate
- Just a fancy lock
- Usually covers all exported methods of a

service or client
- This can still happen:

IOService

IOUserClientIOUserClient
Lock A Lock B

Race

Siguza

Apple's fix?
IOService

IOUserClientIOUserClient
Lock A Lock B

Lock C

Siguza

Apple's fix?

What about shared memory?

IOService

IOUserClientIOUserClient
Lock A Lock B

Lock C

Siguza

Racing for everyone

CVE-2016-7620/4/5 by Qidan He from Keen Lab
- "Racing for everyone: descriptor describes

TOCTOU"
- OOL memory for external method calls could be

modified from userland, which services did not
expect

https://keenlab.tencent.com/en/2017/01/09/Racing-for-everyone-descriptor-describes-TOCTOU-in-Apple-s-core/

Siguza

Apple's fix?

Siguza

Apple's fix?

Only helps with OOL memory, services can still
create their own memory descriptors

Siguza

IOHIDeous

Siguza

IOHIDeous

- CVE-2018-4098 by me  
(https://siguza.github.io/IOHIDeous/)

- Writes an offset to shared memory and
reads it back to initialise a pointer

- But memory can already be mapped in
client

https://siguza.github.io/IOHIDeous/

Siguza

Apple's fix?

There is no generic fix.

Siguza

Other bugs

- This list is incomplete, bugs can take any
shape or form

- The best bugs are "one of a kind" ;)

Siguza

Picking a target
Look at imported symbols:
- OSUnserializeXML => configurability,

complexity, high-level data
- IOMemoryDescriptor => shared memory

Look at usage:
- Checking return values? (IOMalloc, ...)

Exploitation

Siguza

C++ UaF: straightforward
Bug: dangling pointer to OSObject
Exploit: reallocate with binary data

Advantages:
- Extremely simple, directly yields PC control

Disadvantages:
- Requires knowledge of kernel slide and buffer

address
- Requires ROP chain

Siguza

C++ UaF: elaborate
Bug: dangling pointer to OSObject
Exploit: reallocate as new object, leading to
type confusion

Advantages:
- Need no knowledge of kernel addresses
- Reallocation with different size could lead to

heap overflow

Siguza

C++ UaF: elaborate
Bug: dangling pointer to OSObject
Exploit: reallocate as new object, leading to
type confusion

Disadvantages:
- Requires further exploitation
- Reallocation with different size is possible,

but hard due to zalloc freelist

Siguza

IOUSBDeviceFamily
- Not to be confused with IOUSBFamily
- Not reachable from sandbox
- Basically does this (external methods 9, 13,

14, 21, 22):

Siguza

C++ UaF: freelist

next ptrfreed OSObject

2nd in freelist next ptr

freelist head

(old data)

controlled data

(old data)

interpreted as vtab pointer

interpreted as vtab data

Siguza

C++ UaF: freelist
Bug: dangling pointer to OSObject
Exploit: abuse freelist next pointer as vtab

Advantages:
- Requires no reallocation

Disadvantages:
- Requires knowledge of kernel slide
- Only for allocations > cacheline size
- Mitigated in iOS 10 by XOR'ing next pointer

Siguza

IOUSBDeviceFamily

- Bug still exists today
- Not exploitable anymore :(

Siguza

Type confusions
- Can arise from various bugs (bad cast, OOB

pointer read, pointer corruption, ...)
- Can be constructed from C++ UaF's

Advantages:
- Require no info leak by themselves
- Can lead to various exploit primitives

Siguza

Type confusions
- Can arise from various bugs (bad cast, OOB

pointer read, pointer corruption, ...)
- Can be constructed from C++ UaF's

Disadvantages:
- Cannot form a universal exploitation

strategy due to variable nature
- Might be too fragile to exploit

Siguza

Useful type confusions

- Out of bounds r/w
- Usually happens when a small object is

assumed to be big, and non-virtual methods
are called on it

- Pointer dereferences
- Happens with fields, can be exploited like UaF

Siguza

OSUnserializeXML

- Best heap primitive EVER
- Can allocate arbitrary-sized buffer with

either binary data or kernel pointers
- Allows bulk allocation (good to win a race)
- Can even be read back if done right

(IOSurface)

Siguza

Mach messages
- ikm header has size as first field

- can be overflown without knowing pointers
- ikm header contains pointer to msg header

- reading mach msg reveals its own address
- descriptor count = excellent target

- single bit flip changes message meaning
- 1 to 0 leaks kernel address
- 0 to 1 treats user data like kernel pointers

Siguza

Mach port construction

Extremely popular:
- Phœnix
- Yalu102
- async_wake
- IOHIDeous

Siguza

Mach port construction
Extremely powerful:
- Can brute-force KASLR
- Knowing any kernel buffer address gives

you a read primitive
- Knowing a few pointers gives you RWX:

- R/W through mach_vm_* API
- X through iokit_user_client_trap

Kernel RWX

Questions?

