
Fasten your seatbelts:
We are escaping iOS 11 sandbox!

Min(Spark) Zheng & Xiaolong Bai
@ Alibaba Security Lab

Whoami

Alibaba Security

• SparkZheng @ Twitter，蒸米spark @ Weibo

• Alibaba Security Expert

• CUHK PhD, Blue-lotus and Insight-labs

• iOS 9.3.4 & iOS 11.3.1 OverSky Jailbreak (Private)

Alibaba Security

• Xiaolong Bai (bxl1989 @ Twitter&Weibo)

• Alibaba Security Engineer

• Ph.D. graduated from Tsinghua University

• Published papers on S&P, Usenix Security, CCS, NDSS

iOS System Overview

Alibaba Security

• Application
- in sandbox
- few attack surfaces to kernel
- only basic system info
- memory info(e.g., sharedcache)

• Userland
- all system info
- more attack surfaces to kernel

• Kernel
- Control the device

System

System Libs

Kernel

Frameworks

IPC System Services

Sandbox

Alibaba Security

• Apple‘s Sandbox was introduced as “SeatBelt” in MacOS 10.5 which
provides the first full fledged implementation of a MACF policy.

• From its inception, the policy hooked dozens of operations. The number of
hooks has been growing steadily when new system calls or newly discovered
threats appeared (tables from *OS internals):

Version XNU System Version Hook Count

34 1510 macOS 10.6 92

120 1699 macOS 10.7 98

211/220 2107 iOS 6/macOS 10.8 105

300 2422 iOS 7/macOS 10.9 109

358 2782 iOS 8/macOS 10.10 113

459 3216 iOS 9/macOS 10.11 119

592 3789 iOS 10/macOS 10.12 126/124

763 4570 iOS 11/macOS 10.13 132/131

Sandbox Profiles

Alibaba Security

• In MacOS, profiles are visible and stored in /System/Library/Sandbox/Profiles. In iOS, the profiles
were hard-compiled into /usr/libexec/sandboxd. It’s hard to decode the sandbox profiles, but
we can traverse all mach services to get the mach-lookup list according to the return value (e.g.,
through sbtool by Jonathan Levin).

Mach Service Name -> Binary

Alibaba Security

• In order to find vulnerabilities, we need to disassemble and analyze the binaries which contain
the handler functions of related mach services. /System/Library/LaunchDaemons contains the
configuration plist of most mach services. In the plist files, “ProgramArguments” shows the
path of the binary and “MachServices”shows the related mach services.

Mach, XPC and NSXPC

Alibaba Security

• Mach messages contain typed data, which can include port rights and references to large
regions of memory. XPC msg is built on top of Mach msg and NSXPC msg is built on top of
XPC msg.

• Through Mach msg, sandboxed app can communicate with unsandboxed Mach (MIG) services,
XPC services and NSXPC services.

APP
sandbox

Mach Services

XPC services

APP
sandbox

NSXPC
services

XPC: Arbitrary File Move CVE-2015-7037

Alibaba Security

• com.apple.PersistentURLTranslator.Gatekeeper
（/System/Library/Frameworks/AssetsLibrary.framework/Support/assetsd）

• This service has path traversal vulnerability that an app can mv folders outside the
sandbox with mobile privilege (used in Pangu9 for jailbreak).

NSXPC: Arbitrary SQLite File Query Outside the Sandbox

Alibaba Security

• com.apple.medialibraryd.xpc
(/System/Library/PrivateFrameworks/MusicLibrary.framework/Support/medialibra
ryd)

• The sandboxed app can use [[connection remoteObjectProxy]
beginTransactionForDatabaseAtPath] method to connect arbitrary SQLite files on
the system and then use [[connection remoteObjectProxy] executeQuery] to
execute SQL commands.

POC:

NSXPC: Code Execution Through fts3_tokenizer()

Alibaba Security

• Medialibraryd service has SQLite fts3_tokenizer vulnerability.

• Use fts3_tokenizer('simple') to leak information:

• Use fts3_tokenizer('simple’, addr) to register a callback address for the tokenizer:

NSXPC: Code Execution Through fts3_tokenizer()

Alibaba Security

• Use ``PRAGMA soft_heap_limit=0x4141414141414141”to control PC:

• This vulnerability is used in our private iOS 9.3.4 jailbreak.

Mach Service: Bluetoothd

Alibaba Security

• There are 132 functions (start from 0xFA300) in the “com.apple.server.bluetooth”
Mach service of bluetoothd.

• Bluetoothd communicate with sandboxed apps and other unsandboxed processes
(e.g., SpringBoard) through “com.apple.server.Bluetooth”.

Bluetoothd

Apps

SpringBoard

sharingd

Mach Service: Bluetoothd

Alibaba Security

• A process can use BTSessionAttach to create a session_token for bluetoothd and
then use BTLocalDeviceAddCallbacks to register a callback for event notification.

Bluetoothd Apps SpringBoard

ses_token_1

0xFA300 BTSessionAttach

0xFA303 BTLocalDeviceAddCallbacks
with ses_token_1 and callback1 addr

invoke callback1

ses_token_2

0xFA300 BTSessionAttach

0xFA303 BTLocalDeviceAddCallbacks
with ses_token_2 and callback2 addr

invoke callback2

Mach Service: Bluetoothd CVE-2018-4087 by @raniXCH

Alibaba Security

• However, Bluetoothd only uses the session token to identify the process which
means we can use a sandboxed app to hijack a communication between bluetoothd
and unsandboxed processes through the session token.

Bluetoothd Apps SpringBoard

0xFA303 BTLocalDeviceAddCallbacks
with ses_token_2 and callback2 addr

ses_token_2

0xFA300 BTSessionAttach

0xFA303 BTLocalDeviceAddCallbacks
with ses_token_2 and callback2 addr

invoke callback2 PC control!

Mach Service: Bluetoothd CVE-2018-4087

Alibaba Security

• The problem is the ses_token is too easy to be brute forced. It only has 0x10000
(0x0000 - 0xFFFF) possible values.

• Apple fixed this problem by adding a user_id (=arc4random()) to each session,
only the process knows the user_id and bluetoothd will check the map[ses_token]
== user_id.

Bluetoothd SpringBoard

ses_token_1

0xFA300 BTSessionAttach with user_id

0xFA303 BTLocalDeviceAddCallbacks
with ses_token_1 , user_id and callback1 addr

invoke callback1

User_id?

Mach Service: Bluetoothd 0-day bugs

Alibaba Security

• As we mentioned before, a user_id = arc4random() = [0x00000000-0xFFFFFFFF]. If
we know the session_token, we can still hijack the communication through the
user_id brute force.

• But it takes a very long long time (about 12 hours) …

• Wait…what if there are other callback registration functions without a user_id?

• Bingo! 0xFA365 BTAccessoryManagerAddCallbacks()!

Mach Service: Bluetoothd 0-day bugs

Alibaba Security

• However, after sending message to bluetoothd through
BTAccessoryManagerAddCallbacks(), nothing happened!

• Finally, I found the problem. The callback event can be triggered only when the iOS
device connects to a new device which means we need to trigger the callback by
click the Bluetooth device manually.

Click!

Mach Service: Bluetoothd 0-day bugs

Alibaba Security

• CallBacks 1(a long long time), CallBacks 2(hard to trigger), CallBacks 3 Again! Yes,
we found a new function with callbacks and it’s easy to trigger!

• 0xFA329 BTDiscoveryAgentCreate() can create a callback for the discovery agent
and then we can use 0xFA32B BTDiscoveryAgentStartScan() to trigger the callback
without manual click!

PC Control -> Control the Process in a Classic Way

Alibaba Security

• The goal is not only control the PC pointer but the process as well.

• Next step is to create a ROP chain and do a heap spray for the target process.

ROP ROP ROP ROP

ROP ROP ROP ROP

ROP ROP ROP ROP

ROP ROP ROP ROP

ROP ROP ROP ROP

ROP ROP ROP ROP

PC

Memory

• In this case, we use
MACH_MSGH_BITS_COMPLEX Mach
msg with
MACH_MSG_OOL_DESCRIPTOR memory.

• If we send the msg and don’t receive
the msg, the ROP chain will stay in the
target’s memory space persistently.

• After several tests, we can find a
MAGIC_ADDR which is 0x105400000.

PC Control -> Control the Process in a Classic Way

Alibaba Security

• Controlled registers: X3,X4,X5,X19,X20. And last BR is X4:

• Until now, we can only do BOP (JOP). But it’s hard for us to control the program
flow. So, we need a stack pivot to control the stack and change BOP -> ROP.

Stack pivot ?

PC Control -> Control the Process in a Classic Way

Alibaba Security

• A great stack pivot gadget can be found at libsystem_platform.dylib:

• If we can control x0, then we can control sp.

Control X0 -> x19 & x20

Control X0 -> x2 & x29

Control X2 -> SP

RET!

PC Control -> Control the Process in an Elegant Way

Alibaba Security

• Now we can ROP (e.g., steal files, open a sandboxed IOKit userclient)!

• But ROP is not elegant. We want the task port to control everything!

Task port?

Mach Port 101

Alibaba Security

• A port provides an endpoint for IPC. Messages can be sent to a port or received
from it:

• Ports can contain rights and port rights can be passed in messages.

• The most important port for one process is mach_task_self(). One can control the
memory and all registers of the process through its task port.

Mach Port 101

Alibaba Security

• We can use mach_vm_allocate(target_task_port,
&remote_addr, remote_size, 1) to allocate memory
in a remote process.

• mach_vm_write(target_task_port, remote_address,
local_address, length) can be used to copy data into
a remote process.

• thread_create_running(target_task_port,
ARM_THREAD_STATE64, &thread_state, stateCnt,
&thread_port) can be use to create a new thread in
a remote process.

• Therefore, if we can get one process’s task port.
We can easily control the whole process through
mach msg.

task_port

mach_msg

process

Get the task port!

Alibaba Security

• Let’s try to get the task port of the remote process.

Pwn app Bluetoothd

Control the target process through its task port

Send 0x1000 ports with pwn apps’s send right

Launchd
BTd port

Use vulnerability to control the pc of BTd

Use ROP to send mach msgs contain mach_task_self()

Send ROP through heap spray

Get the task port!

Alibaba Security

Some tricks learn from Mach_portal:

• We can use mach_port_insert_right(mach_task_self(), port, port,
MACH_MSG_TYPE_MAKE_SEND) to insert a send right to the port. And this
port can be send by OOL message with MACH_MSG_PORT_DESCRIPTOR
type.

• In most time, mach_task_self() returns 0x103, so we can just use 0x103
without ROP (to call mach_task_self()).

• In order to send the task port to our pwn app, we need to know the port
number of our pwn app. But we cannot use launchd to help us. Luckily, the
port number can be guessed by (0x103+0x100*N). That’s why we send
0x1000 ports to the remote process (in order to increase the successful rate).

DEMO

Alibaba Security

Remotely malloc memory in the target process:

Remotely execute functions in the target process:

iOS 11 mitigation

Alibaba Security

iOS 11 (not in macOS 10.13) extended the limit to the use of all task ports for
app processes:

But ROPs always work in user mode.

Function Call Primitive

Alibaba Security

A generic primitive for function calls with arbitrary parameters in CoreFoundation:

0-N parameters :
X0-X7 and stack

X8->Function Call

Return to X30

DEMO

Alibaba Security

• Attack iOS kernel through unsandboxed IOKit userclient on iOS 11.3：

• Break Kernel slide and gain arbitrary kernel R/W ability on iOS 11.3:

DEMO

Alibaba Security

• Achieve root shell and jailbreak on iOS 11.3:
https://www.youtube.com/watch?v=Kt5JXBvRJ5o

https://www.youtube.com/watch?v=Kt5JXBvRJ5o

Conclusion

Alibaba Security

• We introduce the basic conception of iOS sandbox and summarize
several classic ways to escape the iOS sandbox.

• Based on an old bluetoothd vulnerability, we find two new zero-day
sandbox escape vulnerabilities on the latest iOS version.

• We present a classic way to do heap spray , stack pivot and ROP in the
iOS userland.

• We show how to get and control the task port of the remote process
during the exploit.

Reference

Alibaba Security

• *OS Internals & Jtool: http://newosxbook.com/

• Pangu 9 Internals: https://www.blackhat.com/docs/us-16/materials/us-
16-Wang-Pangu-9-Internals.pdf

• triple_fetch by IanBeer: https://bugs.chromium.org/p/project-
zero/issues/detail?id=1247

• CVE-2018-4087: https://blog.zimperium.com/cve-2018-4087-poc-
escaping-sandbox-misleading-bluetoothd/

http://newosxbook.com/
https://www.blackhat.com/docs/us-16/materials/us-16-Wang-Pangu-9-Internals.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=1247
https://blog.zimperium.com/cve-2018-4087-poc-escaping-sandbox-misleading-bluetoothd/

Thanks

