
Technical Keynote:
iOS War Stories

Marco Grassi - @marcograss
Liang Chen - @chenliang0817

About Us

• Members of Tencent KEEN Security Lab (formerly known as KeenTeam)

• Marco (@marcograss):
• My main focus is iOS/Android/macOS and sandboxes. But recently shifted to hypervisors, basebands, firmwares etc.

• pwn2own 2016 Mac OS X Team

• Mobile pwn2own 2016 iOS team

• pwn2own 2017 VMWare escape team

• Mobile pwn2own 2017 iOS Wifi + baseband team

• Liang (@chenliang0817):
• Lead Pwn2Own team in KeenLab (Co-founder of KeenTeam/KeenLab)

• Browser exploiting, iOS/MacOS sandbox bypassing and privilege escalation

• Winner of Mobile Pwn2Own 2013 iOS category

• Winner of Pwn2Own 2014 OSX category

About Tencent Keen Security Lab
• Previously known as KeenTeam
• White Hat Security Researchers
• Several times pwn2own winners
• We are based in Shanghai, China
• Our blog is

https://keenlab.tencent.com/en/
• Twitter @keen_lab

http://keenlab.tencent.com/en/

About Tencent Keen Security Lab

• Security Research Team based in Shanghai
• Research area:

• PC security: Browser, Sandbox, Kernel (Windows,
Linux, MacOS)

• Mobile security: Mobile Browser, Mobile sandbox,
Mobile kernel (Android, iOS)

• Basebands and firmwares
• Virtualization: VMWare, Hyper-v, XEN, QEMU
• Car research: Tesla
• App security

• “Master of Pwn” three times:
• Pwn2Own 2016 (with Tencent PC Manager team)
• Mobile Pwn2Own 2016
• Mobile Pwn2Own 2017

About Tencent Keen Security Lab

• The reality is: You have to divide that number roughly by 100…
• We are around 40 people including management, all based in Shanghai

Agenda

• Introduction and Mobile Pwn2own details
• Mobile Pwn2Own 2017, WiFi compromise
• Mobile Pwn2Own 2017, Browser compromise
• New Mitigations
• The Unreleased Jailbreak
• Conclusions

Introduction and Mobile Pwn2own details

• In 2017 there were 4 categories depending on the entry point:
• Browsers (open a URL)
• Short distance and Wi-Fi (Bluetooth, NFC, WiFi) (interact with hostile network)
• Messaging (SMS/MMS)
• Baseband (interact with rogue base station)

• We successfully pwned 3 of those categories and we won the “Master
of Pwn” Title again:
• iOS Browser + sandbox bypass + persistence (app installation)
• iOS Wifi (app installation)
• Huawei Baseband (RCE on the baseband, we cannot pop calc.exe, we changed

the IMEI as a visual demonstration of code execution)

Typical exploit chain (mobile Pwn2Own) 1/2

In-sandbox code
execution

Sandbox bypass

Code execution
out of sandbox

Remote entry
On the Application

Processor
Code signing bypass

Code execution
out of sandbox

Limited info
leak(cookie)

Kernel privilege
escalation

Sensitive data
leakage Install rogue app

Run code in
kernel land

Jailbreak

Typical exploit chain (mobile Pwn2Own) 2/2

Chip code
execution

Escape to device
kernel

Code execution
in the AP Kernel

WiFi chip RCE Code signing bypass

Monitor traffic,
modify traffic

Total
compromise of

the device

Install rogue app

Baseband processor
RCE

Modify or monitor
traffic/calls/SMS/

MMS

Escape the
Baseband

processor to AP
processor

Code execution
on the AP

The Orange boxes are not strictly required by
the competition

The iOS Remote compromise via WiFi

• Our original plan was pretty straightforward in 2017:
1. Find a decent bug in the iPhone WiFi Broadcom chip
2. Exploit it
3. Escape the chip to kernel, install the app and steal photos
4. Pwn2own WiFi done !✅

• NOT SO SIMPLE UNFORTUNATELY #
• Between step 1 and 2, after we got 2 decent bugs:
• At the end of September, great blog and findings by Gal of P0:

The iOS Remote compromise via WiFi

• The 2 initial bugs are wiped by collision with P0 and not many days
left for Mobile pwn2own 2017
• We need a WiFi pwn.
• Luckily we had a backup plan (as always).

OT Detour: pwn2own strategies

• We mentioned we had a backup plan, this is a common strategy
• A optimal strategy, after doing pwn2own many times, it’s to try to

have 2 chains for everything.
• Mitigates late fixes.
• Lately all vendors patch their software the night before pwn2own
• At Mobile pwn2own they released iOS 11.1 at 1am, so we didn’t

really sleep.
• Your exploit chain can be literally killed hours before the competition.

The iOS Remote compromise via WiFi Backup
Plan
• We already did something

similar in the past at the
end of 2015, and we even
presented it at BH Asia
2017.
• Let’s try to salvage as much

as possible and use it at
Mobile Pwn2Own

WebSheet

1. When you join a WiFi network, your device will
make a request to a predefined URL, to see if it’s
reachable: http://captive.apple.com/hotspot-
detect.html

2. This server if it’s reachable it will reply normally
<HTML><HEAD><TITLE>Success</TITLE></HEA
D><BODY>Success</BODY></HTML>

3. If anything else happen, such as a redirect, or if
different html content is returned, then
WebSheet is prompted to the user, showing the
html content, to allow a login on the captive
portal.

http://captive.apple.com/hotspot-detect.html

Initial RCE vector

• Still Works. It’s a FEATURE.
• With the right responses on our

WiFi network, we can pop up
WebSheet.app without any user
interaction, and render content
in webkit that we control!
• We use a WebKit bug to get

initial RCE.

Wifi With a captive portal

1. The phone asks for
hotspot-detect.html

2. Force a redirect to our
WebKit Exploit inside
WebSheet.app

Captive.apple.com

Never reached

Detour: This is useful also elsewhere!

• This kind of captive portal
functionality it’s implemented
in lot of devices
• Recently I used it on the

Nintendo Switch to pop a
Webkit and get code exec
• A similar approach can be

used (and it is by other people
also)
• It can be a entry point also in

iCloud locked devices (at least
some time ago, I think still is).

Plan of attack

• Create a malicious Wi-Fi Network
• Create a fake captive portal, making us able to control the content

rendered in WebSheet
• Serve a WebKit exploit and make it trigger in WebSheet to gain code

execution
• Escape the Sandbox
• Steal Photos, Install App

Tradeoffs of WebSheet

• No dynamic-codesign entitlement. So NO JIT.
• Bye Bye JIT bugs.
• We ended up using a DOM bug
• The sandbox has been restricted after the BlackHat Asia Talk and the

bug reported. It’s similar to the isolated process of Safari.
• We can ROP our way out with a escape since no JIT rwx region

ROP stuff

• We first need to call some framework APIs to tell the system that the
internet connectivity is ok, otherwise we cannot use the network
freely.

ROP stuff 2

• We then fire another sandbox escape via IPC.
• Since we will cover already 1 sandbox escape we will not cover this

one
• From there we can steal a photo and persist by installing an

application.

Why not a kernel bug?

• It was not strictly required by the pwn2own rules
• We didn’t need it to accomplish the goals of the exploit chain (steal

photos, persist installing a rogue app)
• The additional award for a kernel bug in the chain was only 3 Master

of Pwn points and 20k usd, so we felt it wasn’t worth it
• The sandbox escape was good enough.

App Install Persistence: WebClips to the rescue!

• On iOS to install an application you need a code sign bypass! How?
• iOS offers the possibility of installing html based native applications!
• We can install one from our sandbox escape
• The web content of the app will actually be a exploit for WebKit
• Re exploit the sandbox escape and we have persistent code execution

unsandboxed!

App Install Persistence

• Actually we showed you this trick last year at Infiltrate 2017!
• Apple cannot remove this feature also. Thanks!
• We just install a WebClip (a small web application that looks like a

native app), where we can specify the entry point (our exploit page)
and gain again code execution once opened.
• Our exploit chain is very reliable, so we had no issues in retriggering

the chain so many times J
• Mild new mitigations: apparently you cannot specify a file on disk as

entry point, it must be a http url. Or maybe our testing was wrong.
• Makes no difference actually, still works perfectly.

DEMO of Remote WiFi Malicious Application
Install
1. Use our own software to setup a malicious WiFi. When the iphone

is connected we craft responses to prompt WebSheet to render our

own exploit.

2. Gain code execution inside WebSheet with a WebKit Bug (DOM).

3. Chain a sandbox bypass, a memory corruption issue that gets us

unsandboxed code execution(!)

4. Steal Photos and send them to our laptop

5. Install the rogue application and bypass codesigning

6. Reboot the phone, when the rogue app is used again it will sync to

our laptop the photos again (redo the exploit the chain).

DEMO

CVE-2017-13866: type confusion in polymorphic access

• Discovered by Keen Lab and used at Mobile Pwn2own 2017
• PoC code to trigger:

What is polymorphic access?

• A part of JSC baseline JIT optimization engine
• For fast property access (get and put)
• Considering the following code

Polymorphic access internals
• Step 1: Slow path code generation
• Property access goes to slow path by default
• operationPutByIdNonStrictOptimize exposed by slow path

Slow case

operationPutByIdNonStrictOptimize

Slow path to operationPutByIdNonStrictOptimize

Slot and structure recorded the info for cache

Slot and structure recorded the info for cache

Polymorphic access internals
• Step 2: OSR to polymorphic access code

Patched to

Fast write

When the put operation is a setter?

What is the problem?

• In JSObject::putInlineSlow, it calls the setter function before deciding
to cache the setter

• It is the possible the setter function redefines the property to non-
setter object

What is the problem?

1. Make the o[f] setter

2. Redefine the f property back to non-
setter

What is the problem?

• Redefining the property can make the object into dictionary mode,
causing the setter not cached anymore.

• Easy to change it back to non-dictionary mode, by three lines of code:
var p;
p.__proto___ = this;
p.toString();

What is the problem?

1. Make the o[f] setter

2. Redefine the f property back to non-
setter

3. Make the object non-dictionary mode

4. Trigger type confusion(confuse setter
with non-setter object)

The fix

• Decide whether to cache the property before calling the setter.

Sandbox bypass: CVE-2017-13861

• Discovered by Ian Beer of Google Project Zero team

• Luckily not a bug collision with our Mobile Pwn2Own 2017 bug

• Kernel bug in IOSurface

• Caused by IOSurface developer not fully understand lower layer XNU

CVE-2017-13861 overview

• In IOSurfaceRoot::setSurfaceNotify
• If the port exists in IOSurface’s notification list, release it and return

0xE00002C9

CVE-2017-13861 overview
• Rule of IPC port related

messages:
• If the routine handler returns

error, XNU is responsible for msg
destroy (port will be destroyed
also)

• If the routine handler returns
success, routine handler and the
upper level driver take ownership
of port (XNU won’t free the port)

CVE-2017-13861: lesson learned

• When routine handler returns error, port should be freed by XNU, not
the handler.

• If handler incorrectly frees the port, XNU will free it again, causing
double free.

• Similar problem might exist in user-mode MIG as well ?

CVE-2017-7162: double free in backboardd
• Discovered by Keen Lab and used at

Mobile Pwn2Own 2017
• _io_hideventsystem_open is an IPC

routine handler in backboardd
process
• takes two OOL descriptor containing

serialized data

CVE-2017-7162: double free in backboardd
• _IOHIDUnserializeAndVMDealloc

WithTypeID unserializes the OOL
message and deallocates the OOL
memory

• When
_IOHIDEventSystemConnectionCr
eate returns failure, the routine
handler returns failure also

CVE-2017-7162: double free in backboardd

• The OOL will be freed again via mach_msg_destroy if the return value
is not 0

Double free the OOL memory

New mitigations in iOS 11

Limit the use of tfp0
• Obtaining kernel task port has become a
standard for Jailbreaks

• Ian Beer mach_portal uses a very neat
way to get tfp0

• iOS 10.3 limits the use of tfp0
• Prohibit any usermode process to
read/write kernel memory using tfp0

• Ian Beer’s mach_portal approach is
mitigated

Limit the use of any task ports

• iOS 11 extended the limit to the use of all task ports for app
processes
• Ian Beer Triple_fetch exploit is mitigated

KPP hardening in iOS 11

• Kernel Patch Protection (aka KPP) was firstly introduced in iOS 9 on
64bit devices

• Enforced on all 64bit devices (below iPhone7)

• Aims to protect kernel (__TEXT and RO data) from being mutated

• Implemented in arm64 EL3

KPP overview

• Entrance in EL1 to EL3
• By actively calling SMC #0x11 instructions

in EL1
• By IRQ
• By specific ARM64 features (e.g, trapping

FPU)

• FPU “heartbeat”:
https://xerub.github.io/ios/kpp/2017/0
4/13/tick-tock.html

monitor_call(0x800)
To save kernel entry point

monitor_call(0x801)
Hash each protected page, save

TTBR1_EL1,

Initialization phase

IRQ in EL3 making FPU to be
trapped

When userland uses FPU
instruction

heartbeat phase

Trapped into EL1, try to disable
the trap

Enter EL3 sync_handler, check
kernel integrity, disable FPU

trap

https://xerub.github.io/ios/kpp/2017/04/13/tick-tock.html

KPP bypass in iOS 10

• Discovered by Luca Todesco

• TOCTTOU problem:
• Change TTBR1_EL1 to the fake one, by hooking resume_idle_cpu and

start_cpu, where MMU is initialized.

• Before instruction “MSR CPACR_EL1, X0” - the entrance of EL3 - recover
TTBR1_EL1 into the real one.

• The check in EL3 always successful

KPP hardening in EL1
• Hardcode the address of resume_idle_cpu and start_cpu, preventing

them to be hooked

iOS 10 iOS 11

KPP hardening in EL3

• Baseline TTBR1_EL1 value is set during initialization phase
• iOS 10 only checks if current TTBR1_EL1 == baseline_TTBR1_EL1

• In iOS 11, Apple introduced the 2nd TTBR1_EL1 baseline value,
updated frequently during IRQ handler
• No explicit EL3 IRQ entrance in EL1

• During heartbeat phase, checks if current TTBR1_EL1 ==
baseline_TTBR1_EL1 == 2nd_ baseline_TTBR1_EL1

KPP hardening in EL3

• 2nd baseline TTBR1_EL1 value updated in IRQ handler

Save current TTBR1_EL1 value to TPIDR_EL3 register

KPP hardening in EL3

• Mitigated Luca’s approach
• The fake TTBR1_EL1 value is updated to 2nd_ baseline_TTBR1_EL1
• Impossible to bypass the check below

checks if current TTBR1_EL1 == baseline_TTBR1_EL1 == 2nd_ baseline_TTBR1_EL1

Other mitigations

• Remove mach_zone_force_gc interface in release build
• Utilized by Ian Beer to perform cross-zone memory attack

• Safari heap enhancement
• Gigacages heap
• More details at: https://labs.mwrinfosecurity.com/blog/some-brief-notes-on-webkit-heap-

hardening/

• Remount hardening
• Enforce NOSUID mounting after iOS 11
• RW remount on root partition is “HARD” in iOS 11.3

https://labs.mwrinfosecurity.com/blog/some-brief-notes-on-webkit-heap-hardening/

LAST BUT NOT LEAST

Conclusions

• Apple did a very good job with those mitigations and hardening.
• Apple really cares about compatibility and customers so some useful

features for the attackers cannot be simply removed.
• Captive Portal (well you know lot of people use this, like at Starbucks etc..)
• WebClips web applications (I heard they have important enterprise customers

using this feature so it will stay).
• Apple recently focus a lot on stopping jailbreaks, but for a malicious

actor often a good sandbox escape can do enough harm (like “mobile”
user unsandboxed), since it’s the data they are after.

Acknowledgments

• Wushi
• Feng Zhen
• Qoobee
• Liangwei

Questions?

Or just ping us around the conference or Twitter

