RITB GSEC

vote. attend. network.

Recreating an 10S O-day jailbreak out of Apple’s security patches

August, 2019

Who Am I?

Stefan Esser

« working in IT Security since 1998

- started with runtime encryption / decryption

« moved on to linux daemon security

- then did a lot of work in PHP and Web Application Security
- finally moved on in 2010 to 10S and Mac Security

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Motivation

+ the release of I0S 12.1.4 fixed vulnerabilities used in the wild

« we only know because of a tweet from someone at Google PO

« neither Apple nor Google officially described the incident

- no official description of the vulnerabilities from those who found it
« 3rd parties had to use patch diffing to figure it out

« Of course Google Project O dumped a lot of info literally YESTERDAY P

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Agenda

» Introduction

- Diffing the kernel for CVE-2019-7287

« Diffing user land for CVE-2019-7286

« Exploitation roadmap for CVE-2019-7287
 Exploitation roadmap for CVE-2019-7286
« Conclusion

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Introduction

Security Content of i10S 12.1.4

« Apple released iI0S 12.1.4 on February 7th 2019

* In response to a serious FaceTime vulnerability

« vulnerability in FaceTime got a lot of media attention
« Initiator of a group call could force recipient to answer

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Security Content of i0S 12.1.4 (lI)

- ... but security updated contained two more vulnerability fixes [1]

Foundation
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation
Impact: An application may be able to gain elevated privileges
Description: A memory corruption issue was addressed with improved input validation.

CVE-2019-7286: an anonymous researcher, Clement Lecigne of Google Threat Analysis Group, lan
Beer of Google Project Zero, and Samuel Grol3 of Google Project Zero

IOKit
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation
Impact: An application may be able to execute arbitrary code with kernel privileges
Description: A memory corruption issue was addressed with improved input validation.

CVE-2019-7287: an anonymous researcher, Clement Lecigne of Google Threat Analysis Group, lan
Beer of Google Project Zero, and Samuel GroB3 of Google Project Zero

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

And then Google Project O chimed In @

 one day after release a tweet from @benhawkes of Google’s PO appeared [2]
« apparently Google had knowledge of both flaws being exploited in the wild
-+ Ben Hawkes s 4
| L:ﬂ @benhawkes

CVE-2019-7286 and CVE-2019-7287 in the iOS advisory today
(support.apple.com/en-us/HT209520) were exploited in the wild

as Oday.
Q 523 2:46 AM - Feb 8, 2019 ®
About the security content of iOS 12.1.4
This document describes the security content
Eb of iI0OS 12.1 4.

support.apple.com

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Any more info?

- Aside from Ben Hawkes’ tweet there was no further information
« This raised a lot of guestions among researchers like
- How did Google find an 10S O-day in the wild
- Who was attacked? Google itself? Or their customers?
 What exactly hides behind CVE-2019-7286 and CVE-2019-72877

« Was the attack hidden in some app?
(because both vulnerabilities seems to be LPE/sandbox escape only)

- Why did Google keep silent considering iOS O-days are not often found
« Wil we ever get samples?

GOOGLE dumped a full
description yesterday|[3]

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved 9

Any more info? (ll) @

most of these questions are still unanswered

only bit of more info was given within a tweet of another Google researcher
apparently the two vulnerabilities were combined with an already fixed browser bug
furthermore it was said that Google were simply too busy to do a write up

tweet was lost in ocean of twitter

GOOGLE dumped a full
description yesterday|3]

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved @

References

« [1] About Security Content of i1I0S 12.1.4
https:/support.apple.com/en-sg/HT209520

« [2] Tweet by @benhawkes

« [3] A very deep dive into 10S Exploit chains found in the wild
https://gooqgleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-

exploit.html

 [4] In-the-wild 10S Exploit Chain 4
https:/goodleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

https://support.apple.com/en-sg/HT209520
https://twitter.com/benhawkes/status/1093581737924259840
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html

Diffing the kernel for
CVE-2019-7287

CVE-2019-7287 @

« Information released by Apple is short and misleading

IOKit
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation

Impact: An application may be able to execute arbitrary code with kernel privileges
Description: A memory corruption issue was addressed with improved input validation.
CVE-2019-7287: an anonymous researcher, Clement Lecigne of Google Threat Analysis
Group, Ian Beer of Google Project Zero, and Samuel GroB of Google Project Zero

« we only learn that it Is a memory corruption

- affected component is said to be [OKit

« |OKit is a part of the 10S kernel that is responsible for device drivers
(however further analysis will reveal that this is misleading)

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Preparing the Kernels @

 |In order to analyse Apple’s patch we first need to grab a copy of the two kernels
« download IPSW files for i0S 12.1.3 and 12.1.4 via links from TheiPhoneWiki [1]

« unzip the kernelcache files

« use Xerub’s IMG4LIB [2] to extract the macho kernels

- |load both kernels into different IDA sessions

« use Lumina [3] and other scripts to fill the databases with symbols

« perform as many steps as possible to cleanup the disassemblies

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Diffing the Kernels @

« with both kernels being prepared and symbolised we can now use Diaphora [4]

- diffing will take a long while and is best performed overnight

« to speed up diffing we could Iimit diff to only affected area

 problem is we don’t really know what is affected

« Apple listed IOKit as affected but limiting to main kernel did not get us results

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Diffing the Kernels (ll)

« when you diff whole kernel you run into several problems
« |ots of unclean disassembly
« many more functions
« many more false matches

« so diffing result will be incomplete and harder to interpret

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Finding the affected Component (l)

« Diaphora result was hard to read
- However after a while we found a candidate that could be the culprit [5]

__int64 _ fastcall ProvInfolOKitUserClient::ucGetEncryptedSeedSegment(__int64 al, unsigned int *a2, _ int64 a3,

__int64 v8; // x19

char *v9; // x0

__int64 v10; // x0

__int64 v12; // [xsp+0h] [xbp-20h]

if (!la2)

{
v8 = 0xE00002C2LL;

v9 "[ProvInfoIOKitUserClient: :ucGetEncryptedSeedSegment] Error: null pointer for input structure\n";
goto LABEL_7;
}
if (a2[30] >= 0x41) B
{
v8 = 0xE00002C2LL;
v9 = "[ProvInfolOKitUserClient: :ucGetEncryptedSeedSegment] Error: bad input structure lengths\n";
EL 7:
IOLog(v9, v12);
return v8;)

vl0 = (*(__int64 (_ fastcall **)(_QWORD, QWORD, OQWORD, char *, _ int64, char *)) (**(_QWORD **)(al + 216) +
*(_QWORD *)(al + 216),
*a2,
*((unsigned __ intl6é *)a2 + 2),
(char *)a2 + 6,

a3,
(char *)a2 + 54);
v8 = v10;
if ((_DWORD)v10)
{
vli2 = v10;
v9 = "[ProvInfoIOKitUserClient: :ucGetEncryptedSeedSegment] ProvInfoIOKit::getEncryptedSeedSegment returned
goto LABEL 7;
}

return vE;

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Finding the affected Component (ll)

 Diaphora found us a newly inserted size check

« In method ucGetEncryptedSeedSegment of object called ProvinfolOKitUserClient
« this could be why Apple mentioned the affected area as IOKit

- however this code is not in the main kernel but in driver ProvinfolOKit

__int64 __ fastcall ProvInfolIOKitUserClient::ucGetEncryptedSeedSegment(__int64 al, unsigned int *a2, _ inté64 a3,

__int64 v8; // x19

char *v9; // x0

__int64 v10; // x0

__int64 v12; // [xsp+0h] [xbp-20h]

if (la2)
{

v8 = 0xE00002C2LL;
v9 = "[ProvInfoIOKitUserClient: :ucGetEncryptedSeedSegment] Error: null pointer for input structure\n";
goto LABEL 7;

}

(if (a2[30] >= O0x41))

{

v8 = 0xE00002C2LL;
v9 = "[ProvInfoIOKitUserClient::ucGetEncryptedSeedSegment] Error: bad input structure lengths\n";
LABEL 7:
IOLog(v9, v12);
return v8;
L} J
v1l0 = (*(__int64 (_ fastcall **)(_QWORD, _QWORD, QOWORD, char *, _ int64, char *)) (**(_QWORD **)(al + 216) +
*(_QWORD *)(al + 216),
*a2

r
*((unsigned __intl6é *)a2 + 2),
(char *)a2 + 6,
a3

(cﬂar *)a2 + 54);
v8 = v10;
if ((_DWORD)v1O0)

vli2 = v10;
v9 = "[ProvInfoIOKitUserClient::ucGetEncryptedSeedSegment] ProvInfoIOKit::getEncryptedSeedSegment returned
goto LABEL 7;

return v§g;

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Analysing ProvinfolOKit

« Purpose of ProvinfolOKit was unknown

« Google search for this string revealed no additional information
- driver not accessible from container sandbox or mobile safari

« only sandbox profiles allowing access are

- findmydeviced
- mobileactivationd
- Identityserviced

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Analysing ProvinfolOKit (ll) @

- object ProvinfolOKitUserClient is user space interface of driver
 further research revealed that affected method is an external method of driver
* |In total 6 external methods are supported by that object

 ucGenerateSeed (obfuscated name: fpXgy2dxjQo7/)
 ucGeneratelnFieldSeed (obfuscated name: afpHseTGo08s)
 ucExchangeWithHoover (obfuscated name: AEWpRS)

+ ucGetEntcryptedSeedSegment

 ucEncryptSUinfo

« UcEncryptWithWrapperKey

Flntil:lmte | © 2019 by ANTIDOTE All rights reserved

The Surprise !l (1)

« Check of other external methods revealed two more new size checks

__int64 _ fastcall ProvInfoIOKitUserClient::ucEncryptSUInfo(__int64 al, _ int64 a2, size t a3, _ int64 a4, _ i
{

size_t v8; // x20

unsigned int *v9; // x19

__int64 v10; // x21

size_t vl1l; // x2

__inté64 v12; // x19

char *v13; // x0

__inté64 v14; // x0

__int64 v16; // [xsp+0h] [xbp-30h)

v8 a3;

v9 (unsigned int *)a2;
vli0 = al;

if (laz || ta3)

{

vl2 0xE00002C2LL;
vl3 "[ProvInfoIOKitUserClient: :ucEncryptSUInfo] Error: null pointer for input parameter\n";
goto LABEL 8;

11 = *(unsigned int *) (a2 + 2004);
if ((unsigned int)v1ll >= 0x7D1)

{

vl2 0xE00002C2LL;

= "[ProvInfoIOKitUserClient: :ycEncryptSUInfo] Error: bad input structure length\n";

I0Log(v13, v16);
return v1Z2;

memmove ((void *)(vE8 + 4), (const void *)(a2 + 4), vll);

*(_DWORD *)(v8& + 2004) = v9[501];

vld = (*(__int64 (_ fastcall **)(QWORD, OWORD, size t)) (**(QWORD **)(v10 + 216) + 1368LL)) (
*(_QWORD *)(v10 + 216),
*v9,

- L A s _

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

The Surprise !l (1)

« Check of other external methods revealed two more new size checks

__int64 __ fastcall ProvInfoIOKitUserClient::ucEncryptWithWrappedKey(__int64 al, unsigned int *a2, size t a3, _

{

_DWORD *v8; // x19
unsigned int *v9; // x20
__int64 v10; // x21
size t vl1l; // x2
__inté64 v12; // x19

char *v13; // x0

__int64 v15; // %0

v8 = (_DWORD *)a3;
v9 az2;
vi0 = al;
if (taz || ta3)

vl2 0xE00002C2LL;

vl3 "[ProvInfoIOKitUserClient: :ucEncryptWithWrappedKey] bad pointer for input or output structure\n”;
goto LABEL 7;

a2[17];
if ((unsigned int)vll > 0x40 || a2[34] >= 0x41)

vl2 0xE00002C2LL;
"[ProvInfoIOKitUserClient: :ucEncryptWithWyappedKey] bad input structure length\n";

IELog(v13);

return v12;

memmove(v8 + 1, a2 + 1, vll);

v8[17] = vI9[17];

memmove(v8 + 18, v9 + 18, v9[34]);

v8[34] = vI9[34];

vl5 = (*(_int64 (___fastcall **)(_QWORD, OQOWORD, DWORD *, OQOWORD, DWORD *)) (**(_QWORD **)(v10 + 216) + 137
*(_QWORD *)(v10 + 216),

e N

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Controlled memmove length @

« two methods ucEncryptSUinfo and ucEncryptWithWrapperKey are better targets
« newly introduced size check is just before size is used in a memmove

« the size for memmove is taken out of the incoming mach message

 and an arbitrary memory block is moved into the out message

11 = a2[17];
if ((unsigned int)vll > 0x40 || a2[34] >= O0x41)

{
vl2 = 0xE00002C2LL;

vl3 = "[ProvInfoIOKitUserClient: :ucEncryptWithWyappedKey] bad input structure length\n";
ABEL 7:
IOLog(v13);

return vl1Z;

memmove(v8 + 1, a2 + 1, vll);
v8[17] = v9[17];

memmove (v8 + 18, v9 + 18, v9[34]);
vEB[34] = v9[34];

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Controlled memmove length @

« two methods ucEncryptSUinfo and ucEncryptWithWrapperKey are better targets
« newly introduced size check is just before size is used in a memmove

« the size for memmove is taken out of the incoming mach message

 and an arbitrary memory block is moved into the out message

—
_>
-

—

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

References

 [1] TheiPhoneWiki Firmware Page
https://www.theiphonewiki.com/wiki/Firmware/iPhone/12.x

« [2] Xerub’s IMG4LIB
https://qgithub.com/xerub/img4lib

 [3] Hexray’s iI0S Kernel Lumina Support
https://www.hex-rays.com/products/ida/7.2/the mac_ rundown/
the mac rundown.shtml

« [4] Diaphora
https://qgithub.com/joxeankoret/diaphora

 [5] AntidOte Research into CVE-2019-7287
https://www.antidOte.com/blog/19-02-23-ios-kernel-cve-2019-7287-memory-
corruption-vulnerability.html

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

https://www.theiphonewiki.com/wiki/Firmware/iPhone/12.x
https://github.com/xerub/img4lib
https://www.hex-rays.com/products/ida/7.2/the_mac_rundown/the_mac_rundown.shtml
https://www.hex-rays.com/products/ida/7.2/the_mac_rundown/the_mac_rundown.shtml
https://github.com/joxeankoret/diaphora
https://www.antid0te.com/blog/19-02-23-ios-kernel-cve-2019-7287-memory-corruption-vulnerability.html
https://www.antid0te.com/blog/19-02-23-ios-kernel-cve-2019-7287-memory-corruption-vulnerability.html

Diffing user land for
CVE-2019-7286

ZecOps Writeups @

« acompany called ZecOps performed similar research on the user land part

+ they released a write up about it [1]
« the following section uses some content from their write up

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

CVE-2019-7286 @

« Information released by Apple is short and again misleading

Foundation
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation

Impact: An application may be able to gain elevated privileges

Description: A memory corruption issue was addressed with improved input validation.
CVE-2019-7286: an anonymous researcher, Clement Lecigne of Google Threat Analysis
Group, Ian Beer of Google Project Zero, and Samuel GroB of Google Project Zero

« we only learn that it is some form of memory corruption
- affected component is said to be Foundation

« this hints the vulnherability is located in Foundation.framework
(however further analysis will reveal that this is misleading)

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Diffing the Framework (I) @

« on 10S all builtin frameworks are located in the dyldsharedcache file
« this gigantic file is very hard to work with with most tools

 |IDA has meanwhile acceptable support for it

« Wwith a clear diffing target the diff can be performed a lot faster

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Diffing the Framework (ll) @

« unfortunately diffing the Foundation.framework does not reveal any security fixes
- at this point other targets should be diffed

- next obvious choice is CoreFoundation.framework

« the Diaphora result for this diff reveals changes in CFPrefsDaemon

Name Address 2 Name 2 Ratig BBlocks 1 BBlocks 2

-[CFPrefsDaemon h... 00101854 -[CFPrefsDaemon handleMultiMessage:replyHandler:]
-[CFPrefsDaemon h... 0010021c -[CFPrefsDaemon handleMessage:fromPeer:replyHandler:]

____49-[CFPrefsDae... 00101c34 ____49-|CFPrefsDaemon handleMultiMessage:replyHandler:] block invoke 2
-[CFPrefsDaemon h... 0010168 -[CFPrefsDaemon handleFlushSourceForDomainMessage:replyHandler:]
____39-[CFPrefsDae... 0010218c ____39-[CFPrefsDaemon initWithRole:testMode:] block_invoke 3

Image source ZecOps

Flntil:lmte | © 2019 by ANTIDOTE All rights reserved

Finding the Vulnerability @

« Unfortunately the last CoreFoundation source code on is 4 years old

« that old version does not seem to contain the CFPrefsDaemon code

- furthermore a guick google search did not reveal a copy of the code either

- however ZecOps has performed a manual decompilation of the code in question

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Decompiled code (by ZecOps)

01
02
23
04
05
06
g
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

@1

¢
{

mplementation CFPrefsDaemon

CFPrefMessagesArr = xpc_dictionary_get_value(xpc_dict, "CFPreferencesMessages");

xpc_array_count = xpc_array_get_count(CFPrefMessagesArr);
xpc_buffer = (__int64*)__CFAllocateObjectArray(xpc_array_count);

-or(counter = 0; xpc_array_count != counter; counter++)

'{
}

for(counter = 0; xpc_array_count != loop_counter ; counter++)
{
Xpc_element = xpc_ buffer[counter];
xpc buffer[counter] =
(xpc_get_type(xpc_ element) _Xpc_type_dictionary)

[self handleMessage fromPeer replyHandler xpc_element fromPeer: xpc_connection

(xpc_element)

xpc_object_t result = xpc_retain(xpc_element);
xpc_buffer[counter] result;

}
Il)s

1f (!xpc_buffer[counter])
) xpc_buffer[counter] = xpc_null_create();

array_from_xpc_buffer = xpc_array_create(xpc_buffer, xpc_array_count);

oid)handleMultiMessage: (xpc_object_t)xpc_dict replyHandler:(Callback)replyHandler

xpc_buffer[counter] xpc_array_get_value(CFPrefMessagesArr, counter);

replyHandle

xpc_dictionary_set_value(dict_response, "CFPreferencesMessages", array_from_xpc_buffer);

xpc_release(array_from_xpc_buffer);
for(counter = 0; xpc_array_count I= counter ; counter++)
{
current element = Xxpc_ buffer[counter]
(xpc_get_type(current_element) != xpc_type_null)
xpc_release(current_element); |

Flntil:lmtE | © 2019 by ANTIDOTE All rights reserved

Finding the Vulnerability (II) @

* |In their research ZecOps has identified the vulnerability as a reference
counting issue that leads to a double free

« The issue is In one of the XPC handling functions and therefore triggered
via an XPC message

 The vulnerability is summarised as follows:
- the code loops through the array CFPreferencesMessages
 each element is copied into a buffer without increasing references
« callback handlers are supposed to retain the object

_ poc_dict =
« a crafted XPC message Can Sklp the callback "CFPreferencesOperation" = 5,
_ _ _ o "CFPreferencesMessages" = |
* |In this case the object is missing a reference {

"CFPreferencesOperation": 4

}
]
}

Flntil:lmte | © 2019 by ANTIDOTE All rights reserved

References @

» [1] Analysis and Reproduction of iOS/OSX Vulnerability: CVE-2019-7286
https://blog.zecops.com/vulnerabilities/analysis-and-reproduction-of-
cve-2019-7286/

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

https://blog.zecops.com/vulnerabilities/analysis-and-reproduction-of-cve-2019-7286/
https://blog.zecops.com/vulnerabilities/analysis-and-reproduction-of-cve-2019-7286/

Exploitation roadmap for
CVE-2019-7287

What kind of vulnerability do we have again?

« we control length of memmove when calling two external methods
« We can copy whatever is behind the input buffer
« overwrite what is behind the outputbuffer

—_—
_>
— -

l

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Where is our input buffer?

« external method is called internally via mach message

« Input buffer is inbound in that mach message

« kernel “compresses” message according to parameter length
¢ position on heap depends on length

Mach message
F e e e o -

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Where is our input buffer?

 ucEncryptSUinfo

« Ox7d8 param length

- message In kalloc.4096 zone
« UcEncryptWithWrapperKey

Mach message
F e e e o -

« Ox8c param length
« message In kalloc.512 zone

« puffer is in kalloc memory
 Qattacker can choose what zone iIs more convenient

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Where is our output buffer?

« external method is called internally via mach message
« output buffer is inbound In the reply mach message
* reply message is in kalloc.8192 zone

i
0 i
I i

i

External message
outbuffer

i

i

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

What kind of vulnerability do we have again?

« source and destination are on different kalloc.X zone
« attacker can freely choose smaller or larger source zone

kalloc.512/kalloc.4096 kalloc.8192

r ---------- - /'l EHE H H H = = = = = =
0 b

=
| I

i |

Ny

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to exploit?

« bpasically just a matter of heap feng shui

 and choosing what data to overwrite with what

« usually target is to somehow end up with a kernel task port

« possible heap feng shui techniques

vm_map_copy_t [1]

OOL_PORTS DESCRIPTOR [2]

OSUnserializeXML / OSUnserializeBinary [3]
buffer

OSUnserialize XML via |OSurface [4] | ;

pre-loaded mach messages for ports [5]

kalloc.512/kalloc.4096

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

111

kalloc.8192

. i
|

How to exploit? (pre iPhone 7 devices) @

 on old devices immmediate game-over as demonstrated at CanSecWest 2017 [2]

 use vim_map_copy_t to put user land pointers behind input buffer
« Use OOL_PORTS_DESCRIPTOR to put port pointers behind output buffer
« trigger exploit and use known code

kalloc.512/kalloc.4096 kalloc.8192

. CLOCK_PORT AR

|
I |

. TASK_PORT

. KERNEL TASK PORT '

111

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to exploit? (post iPhone 7 devices)

 on new devices exploitation is naturally harder
 however this vulnherability allows a lot of different things

- Example 1:

« Use vm_map_copy_t or IOSurface method

INn output buffer zone

. after memmove Content iS mOVQd intO kalloc.512/kalloc.4096 kalloc.8192

| 0 :
|

areas that we can read back
iInbuffer

- arbitrary kernel memory info leak | ;
(self locate, break KASLR)

111

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to exploit? (post iPhone 7 devices)

 on new devices exploitation is naturally harder
 however this vulnherability allows a lot of different things

- Example 2:

« Use vm_map_copy_t in input zone to put
arbitrary data behind us

- turns our memmove into a “bufferoverflow” alloc.512/kalloc 4096 | feloesTo2

|
I |

. use exploitation technique from extract recipe

for outbuffer side | ;

111

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to exploit? (post iPhone 7 devices)

 on new devices exploitation is naturally harder
 however this vulnherability allows a lot of different things

- Example 3:

+ Use OOL_PORTS_DESCRIPTOR in input and

output zone

. copies pointers to legal ports in output alloc.512kaloc 4098 | faloest®z

putter [ourer_| ' '

- after receiving input zone heap feng shui | .
messages all those pointers are dangling

111

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to exploit? (post iPhone 7 devices)

 on new devices exploitation is naturally harder
 however this vulnherability allows a lot of different things

- Example 4:

« Use vm_map_copy_t in input zone to put

arbitrary data into behind us

- turns our memmove into a “bufferoverflow” alloc.512/kalloc 4096 | feloesTo2

| 0 :
I

. create many many kernel ports to have

them next to output buffer | ;
- use vulnherability to (partially) overwrite ports

111

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

References @

« [1]10S 6 Kernel Security
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-
%20Mark%20Dowd%20&%20Tar|ei%n20Mandt%20-%201056%20Security.pdf

- [2] Port(al) to the iOS Core
https://www.slideshare.net/iOnlc/cansecwest-2017-portal-to-the-ios-core

« [3]10S Kernel Heap Armageddon
https:/media.blackhat.com/bh-us-12/Briefings/Esser/
BH US 12 Esser 10S Kernel Heap Armageddon WP.pdf

« [4] Rotten Apples Vulnerability Heaven in the iOS Sandbox
https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-
Vulnerability-Heaven-In-The-10S-Sandbox.pdf

 [5] lan Beer Slidedeck - link and title missing

Flntil:lmte | © 2019 by ANTIDOTE All rights reserved

http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
https://www.slideshare.net/i0n1c/cansecwest-2017-portal-to-the-ios-core
https://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-Vulnerability-Heaven-In-The-IOS-Sandbox.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-Vulnerability-Heaven-In-The-IOS-Sandbox.pdf

Exploitation roadmap for
CVE-2019-7286

ZecOps Writeups @

« ZecOps also analysed the exploitation of this bug and wrote a write up [1]
« they released POC code

+ their POC code does not have actual payload

« the POC does not do exactly what the blog post describes

« It does not actually work on 10S device (didn’t test on Mac)

« wrong addresses and heapspray that kills the device

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

What kind of vulnerability do we have again?

« reference counting vulnerability that leads to double xpc_release()
 happens in same XPC request without interruption
 no control of memory in the XPC request in between

1st xpc_release()

2nd xpc_release()

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to exploit?

 need to race the double free
« How to fill memory (in between frees)?
. i i 2
How to Iincrease race window- XPC 1 XPC 2

1st xpc_release()

2nd xpc_release() l

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to fill memory (in between frees)?

 need to create a second thread in daemon
» easliest done by doing another XPC connection
 then need to do XPC heap spraying [2]

» sending arbitrary XPC arrays XPC 1 XPC 2

1st xpc_release()

2nd xpc_release() l

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How to increase race window??

time between the two frees depends on XPC data
« first free happens in loop over an array CFPreferencesMessages
* We can increase race window by adding many values to the array

for(counter = 0; xpc array count != counter ; counter++))(F)(:' :)(F)(:
{

current element = xpc buffer[counter];
if (xpc get type(current element) != & xpc type null) 1st xpc_release()

Xxpc_release(current element);

2nd xpc_releasel() l

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

What to fill memory with?

« what should we use to replace the freed object with?
« exploitation technique is based on Phrack article by nemo [3]
« need control over first 8 bytes for ISA pointer
 need control over length (OxcO

ntrol over length (OxcO) XPC 1 XPC 2
« Xpc string is using strdup()

* also can be used many times 1st xpc_release()

- BUT NULL bytes _
« POC gives up at this point
l

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

How it really worked?

« Google has released on 29th August a description of what really happened [6]
« the exploit is using similar ideas but is different Exploit flow

The exploit strategy here is to reallocate the free'd xpc dictionary in the gap between the
xpc_release when destroying the sub messages and the xpc release of the outer request message.
° n Ot O i n to C O a n d a S t e i t h e re They do this by using four threads, running in parallel. Threads 2, B and C start up and wait for a global
g g p y p variable to be set to 1. When that happens they each try 100 times to send the following XxPC message to

the service:

« just go read blog that seems to be excellent e 000+ ape e spray

where xpc data spray is a 448-byte xpc data buffer filled with the qword value 0x118080000. This is
the target address to which they will try to heapspray. They are hoping that the contents of one of these
xpc_data's 448-byte backing buffers will overlap with the free'd xpc dictionary, completely filling the
memory with the heapspray address.

As we saw in [CFPrefsDaemon handleMultiMessage:replyHandler] thisis not a valid
multiMessage; the CFPreferencesMessage array may only contain dictionaries or NULLs.
Nevertheless, it will take some time for all these xpc_data objects to be created, handleMultiMessage
to run, fail and the xpc_data objects to be destroyed. They are hoping that with three threads trying this in
parallel this replacement strategy will be good enough.

Trigger message

The bug will be triggered by a sub-message with an operation key mapping to a handler which doesn't
invoke its reply block. They chose operation 4, handled by handleFlushSourceForDomainMessage. The
trigger message looks like this:

{ "CFPreferencesOperation": 5
"CFPreferencesMessages" :
[
8000 * (op_1 dict, second op 5 dict),
150 * (second op 5 dict, op 4 dict, op 4 dict, op 4 dict),
third op 5 dict
]

where the sub-message dictionaries are:

op 1 dict = {

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Unlimited Tries!

- cfprefsd is a LaunchDaemon/Agent
« this means it will be respawned on crash
« while crashing it is noisy we have unlimited tries

« was the original exploit so noisy so that Google noticed?

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

What todo with ROP? @

- dyld_shared_cache makes address of all ROP gadgets known to local attackers
 We can create arbitrary ROP programs
« once you can ROP inside cfprefsd what can you do?

- steal its task port to "remote control” it [4] [5]
 oOpen a driver connection and steal that instead

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

References @

« [1] CVE-2019-7286 Part II: Gaining PC Control
https://blog.zecops.com/vulnerabilities/exploit-of-cve-2019-7286/

« [2] Auditing and Exploiting Apple IPC
https://thecyberwire.com/events/docs/lanBeer JSS_Slides.pdf

« [3] Modern Objective-C Exploitation Technigues
http://phrack.org/issues/69/9.html#article

« [4] An introduction to exploiting userspace race conditions on 10S
https://bazad.github.io/2018/11/introduction-userspace-race-conditions-ios/

« [5] Bypassing platform binary restrictions with task threads()
https:/bazad.qgithub.io/2018/10/bypassing-platform-binary-task-threads/

« [6] In-the-wild 10S Exploit Chain 4
https://goodgleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html

Flntil:lmte | © 2019 by ANTIDOTE All rights reserved

https://blog.zecops.com/vulnerabilities/exploit-of-cve-2019-7286/
https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
http://phrack.org/issues/69/9.html#article
https://bazad.github.io/2018/11/introduction-userspace-race-conditions-ios/
https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html

Conclusion

Conclusion (1) @

« pboth vulnerabilities could be reversed with just a bit of Diaphora

« kernel vulnerability easy to spot from diff

« user space vulnerability took more time to spot because it is more complex
« but this gets easier the more often you do this in code you know

« there are people who do this every day and get paid for just that

« doesn’t really stop attackers for long

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Conclusion (lI) @

- after understanding the vulnerability simple POC exploits can be done fast

« full exploitation takes naturally longer

+ the kernel bug felt easier to exploit than the user land bug (more powerful)
« also there is plenty of source code available for iOS kernel exploits

« parts could be cut and pasted

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

Where Is the code?

 The code will show up in the next days on GitHub
» https://github.com/AntidOteCom

« Keep updated about the release and other things via Twitter y

» https:/twitter.com/antidOtecom

« Consider signing up for one of our upcoming trainings
» https://www.antidOte.com/stories/training.html

AnNtidllEe | © 2019 by ANTIDOTE Al rights reserved

https://github.com/Antid0teCom
https://twitter.com/antid0tecom
https://www.antid0te.com/stories/training.html

Questions ?

