
Recreating an iOS 0-day jailbreak out of Apple’s security patches
August, 2019

| © 2019 by ANTID0TE All rights reserved

Who Am I?

Stefan Esser
• working in IT Security since 1998

• started with runtime encryption / decryption

• moved on to linux daemon security

• then did a lot of work in PHP and Web Application Security

• finally moved on in 2010 to iOS and Mac Security

 2

| © 2019 by ANTID0TE All rights reserved

Motivation

• the release of iOS 12.1.4 fixed vulnerabilities used in the wild

• we only know because of a tweet from someone at Google P0

• neither Apple nor Google officially described the incident

• no official description of the vulnerabilities from those who found it

• 3rd parties had to use patch diffing to figure it out

• Of course Google Project 0 dumped a lot of info literally YESTERDAY :P

 3

| © 2019 by ANTID0TE All rights reserved

Agenda

• Introduction

• Diffing the kernel for CVE-2019-7287

• Diffing user land for CVE-2019-7286

• Exploitation roadmap for CVE-2019-7287

• Exploitation roadmap for CVE-2019-7286

• Conclusion

 4

Introduction

| © 2019 by ANTID0TE All rights reserved

Security Content of iOS 12.1.4

• Apple released iOS 12.1.4 on February 7th 2019

• in response to a serious FaceTime vulnerability

• vulnerability in FaceTime got a lot of media attention

• initiator of a group call could force recipient to answer

 6

| © 2019 by ANTID0TE All rights reserved

Security Content of iOS 12.1.4 (II)

• … but security updated contained two more vulnerability fixes [1]

 7

| © 2019 by ANTID0TE All rights reserved

And then Google Project 0 chimed in

• one day after release a tweet from @benhawkes of Google’s P0 appeared [2]

• apparently Google had knowledge of both flaws being exploited in the wild

 8

| © 2019 by ANTID0TE All rights reserved

Any more info?

• Aside from Ben Hawkes’ tweet there was no further information

• This raised a lot of questions among researchers like

• How did Google find an iOS 0-day in the wild

• Who was attacked? Google itself? Or their customers?

• What exactly hides behind CVE-2019-7286 and CVE-2019-7287?

• Was the attack hidden in some app?  
(because both vulnerabilities seems to be LPE/sandbox escape only)

• Why did Google keep silent considering iOS 0-days are not often found

• Will we ever get samples?

 9

GOOGLE dumped a full  
description yesterday[3]

| © 2019 by ANTID0TE All rights reserved

Any more info? (II)

• most of these questions are still unanswered

• only bit of more info was given within a tweet of another Google researcher

• apparently the two vulnerabilities were combined with an already fixed browser bug

• furthermore it was said that Google were simply too busy to do a write up

• tweet was lost in ocean of twitter

 10

GOOGLE dumped a full  
description yesterday[3]

| © 2019 by ANTID0TE All rights reserved

References

• [1] About Security Content of iOS 12.1.4  
https://support.apple.com/en-sg/HT209520

• [2] Tweet by @benhawkes 
https://twitter.com/benhawkes/status/1093581737924259840

• [3] A very deep dive into iOS Exploit chains found in the wild 
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-
exploit.html

• [4] In-the-wild iOS Exploit Chain 4 
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html 

 11

https://support.apple.com/en-sg/HT209520
https://twitter.com/benhawkes/status/1093581737924259840
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html

Diffing the kernel for
CVE-2019-7287

| © 2019 by ANTID0TE All rights reserved

CVE-2019-7287

• Information released by Apple is short and misleading 

IOKit
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation
Impact: An application may be able to execute arbitrary code with kernel privileges
Description: A memory corruption issue was addressed with improved input validation.
CVE-2019-7287: an anonymous researcher, Clement Lecigne of Google Threat Analysis
Group, Ian Beer of Google Project Zero, and Samuel Groß of Google Project Zero

• we only learn that it is a memory corruption

• affected component is said to be IOKit

• IOKit is a part of the iOS kernel that is responsible for device drivers 
(however further analysis will reveal that this is misleading)

 13

| © 2019 by ANTID0TE All rights reserved

Preparing the Kernels

• In order to analyse Apple’s patch we first need to grab a copy of the two kernels

• download IPSW files for iOS 12.1.3 and 12.1.4 via links from TheiPhoneWiki [1]

• unzip the kernelcache files

• use Xerub’s IMG4LIB [2] to extract the macho kernels

• load both kernels into different IDA sessions

• use Lumina [3] and other scripts to fill the databases with symbols

• perform as many steps as possible to cleanup the disassemblies

 14

| © 2019 by ANTID0TE All rights reserved

Diffing the Kernels

• with both kernels being prepared and symbolised we can now use Diaphora [4]

• diffing will take a long while and is best performed overnight

• to speed up diffing we could limit diff to only affected area

• problem is we don’t really know what is affected

• Apple listed IOKit as affected but limiting to main kernel did not get us results

 15

| © 2019 by ANTID0TE All rights reserved

Diffing the Kernels (II)

• when you diff whole kernel you run into several problems

• lots of unclean disassembly

• many more functions

• many more false matches

• so diffing result will be incomplete and harder to interpret

 16

| © 2019 by ANTID0TE All rights reserved

Finding the affected Component (I)

• Diaphora result was hard to read

• However after a while we found a candidate that could be the culprit [5]

 17

| © 2019 by ANTID0TE All rights reserved

Finding the affected Component (II)

• Diaphora found us a newly inserted size check

• in method ucGetEncryptedSeedSegment of object called ProvInfoIOKitUserClient

• this could be why Apple mentioned the affected area as IOKit

• however this code is not in the main kernel but in driver ProvInfoIOKit

 18

| © 2019 by ANTID0TE All rights reserved

Analysing ProvInfoIOKit

• Purpose of ProvInfoIOKit was unknown

• Google search for this string revealed no additional information

• driver not accessible from container sandbox or mobile safari

• only sandbox profiles allowing access are

• findmydeviced
• mobileactivationd
• identityserviced

 19

| © 2019 by ANTID0TE All rights reserved

Analysing ProvInfoIOKit (II)

• object ProvInfoIOKitUserClient is user space interface of driver

• further research revealed that affected method is an external method of driver

• In total 6 external methods are supported by that object

• ucGenerateSeed (obfuscated name: fpXqy2dxjQo7)

• ucGenerateInFieldSeed (obfuscated name: afpHseTGo8s)

• ucExchangeWithHoover (obfuscated name: AEWpRs)

• ucGetEntcryptedSeedSegment
• ucEncryptSUInfo
• ucEncryptWithWrapperKey

 20

| © 2019 by ANTID0TE All rights reserved

The Surprise !!! (I)

• Check of other external methods revealed two more new size checks

 21

| © 2019 by ANTID0TE All rights reserved

The Surprise !!! (II)

• Check of other external methods revealed two more new size checks

 22

| © 2019 by ANTID0TE All rights reserved

Controlled memmove length

• two methods ucEncryptSUInfo and ucEncryptWithWrapperKey are better targets

• newly introduced size check is just before size is used in a memmove

• the size for memmove is taken out of the incoming mach message

• and an arbitrary memory block is moved into the out message

 23

| © 2019 by ANTID0TE All rights reserved

Controlled memmove length

• two methods ucEncryptSUInfo and ucEncryptWithWrapperKey are better targets

• newly introduced size check is just before size is used in a memmove

• the size for memmove is taken out of the incoming mach message

• and an arbitrary memory block is moved into the out message

 24

inbuffer outbuffer

| © 2019 by ANTID0TE All rights reserved

References

• [1] TheiPhoneWiki Firmware Page  
https://www.theiphonewiki.com/wiki/Firmware/iPhone/12.x

• [2] Xerub’s IMG4LIB 
https://github.com/xerub/img4lib

• [3] Hexray’s iOS Kernel Lumina Support  
https://www.hex-rays.com/products/ida/7.2/the_mac_rundown/
the_mac_rundown.shtml

• [4] Diaphora  
https://github.com/joxeankoret/diaphora

• [5] Antid0te Research into CVE-2019-7287 
https://www.antid0te.com/blog/19-02-23-ios-kernel-cve-2019-7287-memory-
corruption-vulnerability.html  

 25

https://www.theiphonewiki.com/wiki/Firmware/iPhone/12.x
https://github.com/xerub/img4lib
https://www.hex-rays.com/products/ida/7.2/the_mac_rundown/the_mac_rundown.shtml
https://www.hex-rays.com/products/ida/7.2/the_mac_rundown/the_mac_rundown.shtml
https://github.com/joxeankoret/diaphora
https://www.antid0te.com/blog/19-02-23-ios-kernel-cve-2019-7287-memory-corruption-vulnerability.html
https://www.antid0te.com/blog/19-02-23-ios-kernel-cve-2019-7287-memory-corruption-vulnerability.html

Diffing user land for
CVE-2019-7286

| © 2019 by ANTID0TE All rights reserved

ZecOps Writeups

• a company called ZecOps performed similar research on the user land part

• they released a write up about it [1]

• the following section uses some content from their write up

 27

| © 2019 by ANTID0TE All rights reserved

CVE-2019-7286

• Information released by Apple is short and again misleading 

Foundation
Available for: iPhone 5s and later, iPad Air and later, and iPod touch 6th generation
Impact: An application may be able to gain elevated privileges
Description: A memory corruption issue was addressed with improved input validation.
CVE-2019-7286: an anonymous researcher, Clement Lecigne of Google Threat Analysis
Group, Ian Beer of Google Project Zero, and Samuel Groß of Google Project Zero

• we only learn that it is some form of memory corruption

• affected component is said to be Foundation

• this hints the vulnerability is located in Foundation.framework 
(however further analysis will reveal that this is misleading)

 28

| © 2019 by ANTID0TE All rights reserved

Diffing the Framework (I)

• on iOS all builtin frameworks are located in the dyldsharedcache file

• this gigantic file is very hard to work with with most tools

• IDA has meanwhile acceptable support for it

• with a clear diffing target the diff can be performed a lot faster

 29

| © 2019 by ANTID0TE All rights reserved

Diffing the Framework (II)

• unfortunately diffing the Foundation.framework does not reveal any security fixes

• at this point other targets should be diffed

• next obvious choice is CoreFoundation.framework

• the Diaphora result for this diff reveals changes in CFPrefsDaemon

 30

Image source ZecOps

| © 2019 by ANTID0TE All rights reserved

Finding the Vulnerability

• Unfortunately the last CoreFoundation source code on is 4 years old

• that old version does not seem to contain the CFPrefsDaemon code

• furthermore a quick google search did not reveal a copy of the code either

• however ZecOps has performed a manual decompilation of the code in question

 31

| © 2019 by ANTID0TE All rights reserved

Decompiled code (by ZecOps)

 32

| © 2019 by ANTID0TE All rights reserved

Finding the Vulnerability (II)

• In their research ZecOps has identified the vulnerability as a reference  
counting issue that leads to a double free

• The issue is in one of the XPC handling functions and therefore triggered  
via an XPC message

• The vulnerability is summarised as follows:

• the code loops through the array CFPreferencesMessages

• each element is copied into a buffer without increasing references

• callback handlers are supposed to retain the object

• a crafted XPC message can skip the callback

• In this case the object is missing a reference

 33

poc_dict = {
 "CFPreferencesOperation" = 5,
 "CFPreferencesMessages" = [
 {
 "CFPreferencesOperation": 4
 }
]
}

| © 2019 by ANTID0TE All rights reserved

References

• [1] Analysis and Reproduction of iOS/OSX Vulnerability: CVE-2019-7286 
https://blog.zecops.com/vulnerabilities/analysis-and-reproduction-of-
cve-2019-7286/

 34

https://blog.zecops.com/vulnerabilities/analysis-and-reproduction-of-cve-2019-7286/
https://blog.zecops.com/vulnerabilities/analysis-and-reproduction-of-cve-2019-7286/

Exploitation roadmap for
CVE-2019-7287

| © 2019 by ANTID0TE All rights reserved

What kind of vulnerability do we have again?

• we control length of memmove when calling two external methods

• we can copy whatever is behind the input buffer

• overwrite what is behind the outputbuffer

 36

inbuffer outbuffer

| © 2019 by ANTID0TE All rights reserved

• external method is called internally via mach message

• input buffer is inbound in that mach message

• kernel “compresses” message according to parameter length

• position on heap depends on length

Where is our input buffer?

 37

External message
inbuffer

Mach message

| © 2019 by ANTID0TE All rights reserved

• ucEncryptSUInfo
• 0x7d8 param length

• message in kalloc.4096 zone

• ucEncryptWithWrapperKey
• 0x8c param length

• message in kalloc.512 zone

• buffer is in kalloc memory

• attacker can choose what zone is more convenient

Where is our input buffer?

 38

External message
inbuffer

Mach message

| © 2019 by ANTID0TE All rights reserved

• external method is called internally via mach message

• output buffer is inbound in the reply mach message

• reply message is in kalloc.8192 zone

Where is our output buffer?

 39

External message
outbuffer

Reply mach message

| © 2019 by ANTID0TE All rights reserved

• source and destination are on different kalloc.X zone

• attacker can freely choose smaller or larger source zone

What kind of vulnerability do we have again?

 40

kalloc.512/kalloc.4096

inbuffer

kalloc.8192

outbuffer

| © 2019 by ANTID0TE All rights reserved

• basically just a matter of heap feng shui

• and choosing what data to overwrite with what

• usually target is to somehow end up with a kernel task port

• possible heap feng shui techniques
• vm_map_copy_t [1]

• OOL_PORTS_DESCRIPTOR [2]

• OSUnserializeXML / OSUnserializeBinary [3]

• OSUnserializeXML via IOSurface [4]

• pre-loaded mach messages for ports [5]

• …

How to exploit?

 41

kalloc.512/kalloc.4096

inbuffer

kalloc.8192

outbuffer

| © 2019 by ANTID0TE All rights reserved

• on old devices immediate game-over as demonstrated at CanSecWest 2017 [2]

• use vm_map_copy_t to put user land pointers behind input buffer

• Use OOL_PORTS_DESCRIPTOR to put port pointers behind output buffer

• trigger exploit and use known code

• CLOCK_PORT

• TASK_PORT

• KERNEL_TASK_PORT

How to exploit? (pre iPhone 7 devices)

 42

kalloc.512/kalloc.4096

inbuffer

kalloc.8192

outbuffer

| © 2019 by ANTID0TE All rights reserved

• on new devices exploitation is naturally harder

• however this vulnerability allows a lot of different things

• Example 1:
• Use vm_map_copy_t or IOSurface method 

in output buffer zone

• after memmove content is moved into 
areas that we can read back

• arbitrary kernel memory info leak  
(self locate, break KASLR)

How to exploit? (post iPhone 7 devices)

 43

kalloc.512/kalloc.4096

inbuffer

kalloc.8192

outbuffer

| © 2019 by ANTID0TE All rights reserved

• on new devices exploitation is naturally harder

• however this vulnerability allows a lot of different things

• Example 2:
• Use vm_map_copy_t in input zone to put  

arbitrary data behind us

• turns our memmove into a “bufferoverflow"

• use exploitation technique from extract_recipe  
for outbuffer side

How to exploit? (post iPhone 7 devices)

 44

kalloc.512/kalloc.4096

inbuffer

kalloc.8192

outbuffer

| © 2019 by ANTID0TE All rights reserved

• on new devices exploitation is naturally harder

• however this vulnerability allows a lot of different things

• Example 3:
• Use OOL_PORTS_DESCRIPTOR in input and 

output zone

• copies pointers to legal ports in output  
buffer

• after receiving input zone heap feng shui 
messages all those pointers are dangling

How to exploit? (post iPhone 7 devices)

 45

kalloc.512/kalloc.4096

inbuffer

kalloc.8192

outbuffer

| © 2019 by ANTID0TE All rights reserved

• on new devices exploitation is naturally harder

• however this vulnerability allows a lot of different things

• Example 4:
• Use vm_map_copy_t in input zone to put  

arbitrary data into behind us

• turns our memmove into a “bufferoverflow"

• create many many kernel ports to have  
them next to output buffer

• use vulnerability to (partially) overwrite ports

How to exploit? (post iPhone 7 devices)

 46

kalloc.512/kalloc.4096

inbuffer

kalloc.8192

outbuffer

| © 2019 by ANTID0TE All rights reserved

References

• [1] iOS 6 Kernel Security 
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-
%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf

• [2] Port(al) to the iOS Core 
https://www.slideshare.net/i0n1c/cansecwest-2017-portal-to-the-ios-core

• [3] iOS Kernel Heap Armageddon 
https://media.blackhat.com/bh-us-12/Briefings/Esser/
BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf

• [4] Rotten Apples Vulnerability Heaven in the iOS Sandbox 
https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-
Vulnerability-Heaven-In-The-IOS-Sandbox.pdf

• [5] Ian Beer Slidedeck - link and title missing

 47

http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
http://conference.hackinthebox.org/hitbsecconf2012kul/materials/D1T2%20-%20Mark%20Dowd%20&%20Tarjei%20Mandt%20-%20iOS6%20Security.pdf
https://www.slideshare.net/i0n1c/cansecwest-2017-portal-to-the-ios-core
https://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Esser/BH_US_12_Esser_iOS_Kernel_Heap_Armageddon_WP.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-Vulnerability-Heaven-In-The-IOS-Sandbox.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-Vulnerability-Heaven-In-The-IOS-Sandbox.pdf

Exploitation roadmap for
CVE-2019-7286

| © 2019 by ANTID0TE All rights reserved

ZecOps Writeups

• ZecOps also analysed the exploitation of this bug and wrote a write up [1]

• they released POC code

• their POC code does not have actual payload

• the POC does not do exactly what the blog post describes

• it does not actually work on iOS device (didn’t test on Mac)

• wrong addresses and heapspray that kills the device

 49

| © 2019 by ANTID0TE All rights reserved

What kind of vulnerability do we have again?

• reference counting vulnerability that leads to double xpc_release()

• happens in same XPC request without interruption

• no control of memory in the XPC request in between

 50

1st xpc_release()

2nd xpc_release()

| © 2019 by ANTID0TE All rights reserved

How to exploit?

• need to race the double free

• How to fill memory (in between frees)?

• How to increase race window?

 51

1st xpc_release()

2nd xpc_release()

reallocation

XPC 1 XPC 2

| © 2019 by ANTID0TE All rights reserved

How to fill memory (in between frees)?

• need to create a second thread in daemon

• easiest done by doing another XPC connection

• then need to do XPC heap spraying [2]

• sending arbitrary XPC arrays

 52

1st xpc_release()

2nd xpc_release()

reallocation

XPC 1 XPC 2

| © 2019 by ANTID0TE All rights reserved

How to increase race window?

• time between the two frees depends on XPC data

• first free happens in loop over an array CFPreferencesMessages

• we can increase race window by adding many values to the array

 53

1st xpc_release()

2nd xpc_release()

reallocation

XPC XPC for(counter = 0; xpc_array_count != counter ; counter++)
{
 current_element = xpc_buffer[counter];
 if (xpc_get_type(current_element) != &_xpc_type_null)
 xpc_release(current_element);
}

| © 2019 by ANTID0TE All rights reserved

What to fill memory with?

• what should we use to replace the freed object with?

• exploitation technique is based on Phrack article by nemo [3]

• need control over first 8 bytes for ISA pointer

• need control over length (0xc0)

• xpc_string is using strdup()

• also can be used many times

• BUT NULL bytes

• POC gives up at this point

 54

1st xpc_release()

2nd xpc_release()

reallocation

XPC 1 XPC 2

| © 2019 by ANTID0TE All rights reserved

How it really worked?

• Google has released on 29th August a description of what really happened [6]

• the exploit is using similar ideas but is different

• not going to copy and paste it here

• just go read blog that seems to be excellent

 55

| © 2019 by ANTID0TE All rights reserved

Unlimited Tries!

• cfprefsd is a LaunchDaemon/Agent

• this means it will be respawned on crash

• while crashing it is noisy we have unlimited tries

• was the original exploit so noisy so that Google noticed?

 56

| © 2019 by ANTID0TE All rights reserved

What todo with ROP?

• dyld_shared_cache makes address of all ROP gadgets known to local attackers

• we can create arbitrary ROP programs

• once you can ROP inside cfprefsd what can you do?

• steal its task port to "remote control” it [4] [5]

• open a driver connection and steal that instead

• …

 57

| © 2019 by ANTID0TE All rights reserved

References

• [1] CVE-2019-7286 Part II: Gaining PC Control 
https://blog.zecops.com/vulnerabilities/exploit-of-cve-2019-7286/

• [2] Auditing and Exploiting Apple IPC 
https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf

• [3] Modern Objective-C Exploitation Techniques 
http://phrack.org/issues/69/9.html#article

• [4] An introduction to exploiting userspace race conditions on iOS 
https://bazad.github.io/2018/11/introduction-userspace-race-conditions-ios/

• [5] Bypassing platform binary restrictions with task_threads()  
https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/

• [6] In-the-wild iOS Exploit Chain 4 
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html 

 58

https://blog.zecops.com/vulnerabilities/exploit-of-cve-2019-7286/
https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
http://phrack.org/issues/69/9.html#article
https://bazad.github.io/2018/11/introduction-userspace-race-conditions-ios/
https://bazad.github.io/2018/10/bypassing-platform-binary-task-threads/
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-4.html

Conclusion

| © 2019 by ANTID0TE All rights reserved

Conclusion (I)

• both vulnerabilities could be reversed with just a bit of Diaphora

• kernel vulnerability easy to spot from diff

• user space vulnerability took more time to spot because it is more complex

• but this gets easier the more often you do this in code you know

• there are people who do this every day and get paid for just that

• doesn’t really stop attackers for long

 60

| © 2019 by ANTID0TE All rights reserved

Conclusion (II)

• after understanding the vulnerability simple POC exploits can be done fast

• full exploitation takes naturally longer

• the kernel bug felt easier to exploit than the user land bug (more powerful)

• also there is plenty of source code available for iOS kernel exploits

• parts could be cut and pasted

 61

| © 2019 by ANTID0TE All rights reserved

Where is the code?

• The code will show up in the next days on GitHub

• https://github.com/Antid0teCom

• Keep updated about the release and other things via Twitter

• https://twitter.com/antid0tecom

• Consider signing up for one of our upcoming trainings

• https://www.antid0te.com/stories/training.html

 62

https://github.com/Antid0teCom
https://twitter.com/antid0tecom
https://www.antid0te.com/stories/training.html

Questions ?
www.antid0te.com

© 2019 by ANTID0TE. All rights reserved

