
Exploiting IOSurface 0

Liang Chen@Pangu Team

Agenda

• IOSurface overview

• IOSurface 0 and exploitation techniques

• New mitigations overview (for late iOS 12 and iOS 13)

• Conclusion

IOSurface Overview

• IOSurface object represents a userland buffer which is shared with
the kernel.

• Fundamental framework for both iOS and macOS

• Users can create IOSurface in userland, within
container/WebContent sandbox

IOSurface Creation

• IOSurfaceRootUserClient method 0, 6, 7
• IOSurfaceRootUserClient::s_create_surface
• IOSurfaceRootUserClient::s_create_surface_fast_path
• IOSurfaceRootUserClient::s_create_surface_client_mem

• IOSurfaceRootUserClient::s_create_surface requires user to provide a dictionary including key
parameters of the IOSurface

• IOSurfaceRootUserClient::s_create_surface_fast_path and
IOSurfaceRootUserClient::s_create_surface_client_mem are simplified version of
IOSurfaceRootUserClient::s_create_surface

• In all cases, IOSurfaceRoot::createSurface will be reached to create the IOSurface object

IOSurface Creation

• Question: where is the created IOSurface stored
• In IOSurfaceRootUserClient: Yes

• But not all IOSurface is created by userland IOSurfaceRootUserClient
• Also IOSurface can be looked up by other IOSurfaceRootUserClient objects
• Needs to be stored globally

• Stored in IOCoreSurfaceRoot object
• Global array with bitmap managed by IOCoreSurfaceRoot object
• Expand if more IOSurface is created

IOSurface Creation
• IOSurface Id
• Generated in

function IOSurfaceRoot::alloc_surface
_handle
• Find the first available slot in the

bitmap, the array index is the
IOSurface Id

• The first IOSurface in iOS system
should be 0?
• Depends on the initial bitmap of the

array

IOSurface Creation

• The first IOSurface Id
• Initialized in IOSurfaceRoot::start
• Initial capacity is set to 0x200 and

the first DWORD of the bitmap is set
to 1

• First IOSurface Id is 1

• IOSurface 0 does not exist

IOSurface Creation

• IOSurfaceClient
• When IOSurface is created by the user (Using

IOSurfaceRootUserClient API), IOSurfaceClient is created and
associated with IOSurface object

• IOSurfaceClientArray
• An array to store IOSurfaceClient, array index is the IOSurface Id
• Array element is assigned when either user creates IOSurface, or

lookup an IOSurface
• Each IOSurfaceRootUserClient owns an IOSurfaceClientArray

IOSurface

IOSurface

0

0

IOSurface

IOSurface

IOSurface Creation

• Overall chart

IOSurfaceRootUserClient

m_IOSurfaceClientArray

IOSurfaceClient

IOSurfaceClient

0

0

IOSurface

IOSurface

IOSurfaceRootUserClient

m_IOSurfaceClientArray

IOSurfaceClient

IOSurfaceClient

0

0

IOSurface

IOSurface

IOCoreSurfaceRoot

m_IOSurfaceArray

m_IOCoreSurfaceRoot

m_IOCoreSurfaceRoot

IOSurface API

• Kernel exposes several IOSurface
APIs to user

• Most of them will require IOSurface
Id as input (except for creation
related APIs)

IOSurface API

• Directly dereference
IOSurfaceClientArray[id], without
checking id == 0 or not

• It will call IOSurfaceClient-
>m_IOSurface vtable method

IOSurface 0 exploitation

• Is it a problem?
• Not a bug definitely, it is by design

• Good for exploitation
• When we have heap overflow bugs
• The first element in IOSurfaceClientArray can be overflowed to

• By default, IOSurfaceClientArray is in kalloc.4096. But our buggy object can be in
any zone.

• Especially useful when the overflowed content is a c++ object
• Type confusion

IOSurface 0 exploitation

• Given the first element in IOSurfaceClient Array is overflowed

• An easy way to probe which IOSurfaceClient Array has been
overflowed
• By calling IOSurface APIs with IOSurface Id 0

IOSurface 0 exploitation

• The type confusion
• In normal case, function pointer

*(**(IOSurfaceArray+0x40)+0xXXX) will be
called

• The offset 0xXXX varies depend on the APIs
you call

• IOSurface vtable is big

• If you can control your overflowed object
+ 0x40 pointer to a c++ object whose
vtable is smaller than IOSurface
• Can call the method out of object’s vtable
• Usually XXX::MetaClass vtable is put right

after XXX vtable

IOSurface 0 exploitation

• Info leak
• Leak kernel .TEXT address: by

calling OSMetaClass::getMetaClass

• Leak heap address: by
calling OSMetaClass::release
or OSMetaClass::retain
• X0 will be set as OSMetaClass object

address and returned to userland(lower
4 bytes)

• Code execution
• When first 8 bytes of the overflowed

object can be controlled, code
execution is not a problem. (try to
call IOSurfaceRootUserClient::s_release
_surface)

Case study: IOSurface 0 exploitation

• Suppose we have a bug which can overflow an IOAccelResource2
object(or IOSurfaceMemoryRegion J) to the first element of an
IOSurfaceClientArray
• Actually in the past there are several such known bugs J

• We now overflow an IOAccelResource2 object

Case study: IOSurface 0 exploitation
• Next we

call IOSurfaceRootUserClient::s_set
_purgeable with IOSurface Id 0

• What happened?
• *(**(IOAccelResource2 + 0x40) +

0x230) is called
• IOAccelResource2 + 0x40 is initialized

as an AGXMemoryMap object
• (vtable of AGXMemoryMap + 0x230)

is OSMetaClass::getMetaClass !

Case study: IOSurface 0 exploitation

• Next we call IOSurfaceRootUserClient::s_set_ycbcrmatrix to leak a
heap address.
• If our bug is to overflow other objects other than IOAccelResource2,

similar techniques can be used, but need to call another IOSurface API

• Finally, we spray the memory , free the IOAccelResource2, fill with
heap address that we can control , and achieve code execution

IOSurface 0 exploitation summary

• Principle:
• During IOSurface creation process, IOSurface 0 can not be created
• When calling IOSurface API with IOSurface Id 0, iOS doesn’t treat as illegal call.

• Exploit methodology:
• We can utilize IOSurface 0 feature to probe which memory we has been successfully

overflowed
• Various objects can be used to confused as IOSurface object and because:

• Most c++ objects’vtable is smaller than IOSurface
• IOSurface has quite some APIs in vtable which can be reached directly from userland

• We can easily leak kernel .TEXT address to bypass kASLR and leak kernel heap
address to better spray the memory

• And… Type confusion exploitation is my favorite. Usually can be used to bypass
most of the software CFG implementation

However…

PAC is introduced in 2018

• On devices with A12 and later

• C++ each function pointer in vtable is PACed with different context
• Strongly protected
• For more information, check my POC 2018 talk

• PAC has well mitigated IOSurface 0 exploitation

• To successfully exploit bugs on A12 or later, vtable call related
exploitation techniques should be avoided.

Enhanced kASLR

• Before iOS 12.2, kslide is just 1 byte (256 possibilities), and only
affect high bits of the lower 4 bytes of the address

• Also, once we obtain any .TEXT pointer, we can obtain kernel base
just by simple AND operation (regardless of iOS version)

• Now, kslide is much more complex than before.
• Example: slide: 0x0000000008c5c000

zone_require check

• Introduced in iOS 13

• Possibly the strongest protection to stop port related exploitation

• Enforced to protect all devices including pre-a12

zone_require check

• The check is to ensure the address
is in correct zone
• E.g during the process of copyout

ports to userland, zone_require is
performed to check if the port address
is in “ipc ports”zone

• Previous common exploit involves
cross-zone attack to gc a “ipc
ports”zone and fill in with kalloc
content to fake tfp0 ports
• With zone_require, it is not possible

now

zone_require check

• “ipc ports”zone cannot be freed and filled with controlled kalloc
content
• We have to rely on better memory write ability before obtaining tfp0

• To overwrite an existing “ipc ports”object to be a fake tfp0 port

• In iOS 13.2, more zone_require check is added
• “task” zone is also checked in critical functions
• Seems it is hard to overwrite an existing task structure to be fake tfp0 as it will

cause issues to existing tasks

• But… If we have perfect arbitrary memory write ability, why we still
need tfp0?
• We just need better bugs. For example: CVE-2019-8605

GUARD_TYPE_MACH_PORT

• Some types of mach_port cannot copyout to another process
• For example: io_connect

• Make out of sandbox exploitation harder
• Rely on long ROP

Refcount 0 protection

• Before iOS 13, “overflow write 0” bug can be turned into UAF
bug.
• Exploited by Ian Beer’s empty_list exploit

• IPC port refcount can be overwritten to 0

• Then call some mach_port APIs to add port refcount to 1 and
then decrease to 0 again to trigger the free, while we still have a
userland port reference
• E.g by calling mach_port_set_attributes

Refcount 0 protection

• Now port refcount cannot be 0 anymore

Sandbox profile hardening

• Before iOS 13, we can replace
the structure pointer for
sandbox collection profile, or
platform profile
• The structure pointer is malloc-

ed

• Now, the structure is in
kernel .const initialized before
KTRR is enabled, and protected
by KTRR after

Trust cache hardening

• Before A12 is introduced, trust cache element can be added by
tfp0

• In A12, trust cache is put into PPL layer and protected by APRR

• Once we bypass PAC in A12 and achieve arbitrary call, we can just
call pmap_load_trust_cache to add trust cache

Trust cache hardening

• Since iOS 13, more operation is put into the ppl layer function

• We have to fully bypass APRR to add trust cache

Other mitigations

• Userland GOT read-only

• Kernel ROP/JOP gadget harder to find

• Etc.

Conclusion

• After A12 and iOS 13, iOS exploit becomes more and more
difficult
• Quite some nice exploits are killed, or being killed
• Port related exploitation is much harder

• Bugs with better quality are required
• For example, CVE-2019-8605

• Apple cannot stop exploits such as checkm8 (Luca will talk about
this tomorrow)

Thank You

