
CORELLIUM

T h e h i d d e n g e m s
B l a c k h a t 2 0 1 9

1

About Corellium

Our CORSEC product is designed for

research, automated testing and fuzzing.

Fidelity is our main goal.

We run real iOS – with real bugs that have

real exploits.

2

Our models

The processor is virtualized; peripherals are

generally emulated at register level.

Apple products have unique hardware; the

ARM cores are cutting-edge and the

peripherals are designed in-house.

The research that makes our models possible

is the cornerstone of our product.

ARM AOP
ARM

ARM

ARM

ARM

ARM

SEPSMCSPMI

ANS2

GFX

ISP

AMC

PMP

SIO

ANE

APCIe

MCA

SPI

I2C

DISP

MIPI

USB DART

3

The hidden gems of iOS

4

XS/XR: star of the show

• Most security improvements use new A12 hardware

• Driven by availability of PAC and improved SEP

• Features unique to Apple products

Old chips & new features

• New user-facing features available across the board

• Support goes back to 2014: A8 in the iPad 4

Intro to PAC

5

(Pointer Authentication Codes)

Pointer compromises

• If you could write something in the kernel memory…

• … you’d probably write a pointer!

• ROP, object substitution, classic stack attacks

Need to predict pointers to attack

ASLR: a first attempt at defense

• Need secret information to predict pointers

• Fortunately, it’s easy to get the secret if you know

just one pointer!

S P1 P1 + =

P2 S P2 + =

P1' - =P1 S

attack:

Intro to PAC (2)

6

Cryptographically secure the secret

• Hardware implementation makes it fast

• Compiler support makes it pervasive

• Special-purpose pointer wrapping opcodes

• Reuse data/instruction abort mechanism for failures

Universal fast crypto primitive

• Non-readable keys on Apple hardware

• PACGA opcode for non-pointer applications

S P1 P1 ,)=

P2 S P2 ,)=

Inverse of F can t be calculated

F(

F(

The iOS 12 JOP hash

7

First use of PACGA in iOS

Control flow integrity verification

• Calculated and saved on exception entry

• Recalculated and compared on exception return

• Hash of SP_EL0, SPSR_EL1, ELR_EL1 and LR (EL0)

Very low overhead

• Defeats attacks on exception return state

Demo

JOP hash bypass

Find thread with CoreTrace

Find CPU state and JOP hash in thread

Modify thread CPSR or PC

Take a live snapshot

Resume and observe panic

Restore the snapshot

Patch out JOP hash checks

8

DARTs

9

(DMA Address Remap Table)

Apple’s take on IOMMUs

• Concept came from GPUs: GARTs for texture gather

• In fact, PowerVR GPUs and classic video decoders still

have their own GARTs

Security by address space isolation

Multiple address spaces for one I/O device

• Most devices use only one space

• But display isolates command and data streams

DMA
space

C

B

A

B

A

C

physical
RAM

miss!

DARTs (2)

10

Significant security impact

• A DART protects RAM from PCIe access

• A DART limits USB attack surface (on A12)

• Badly set up DARTs have exposed SEP on A10

DARTs configured by AP via MMIO

Escalation from kernel write

• Write MMIO to reconfigure DART

• Use PCIe (NVMe, baseband, WLAN/BT)

or IOP exploit to take control

DMA
(iOS view)

C

B

A

B

A

physical
RAM

S

C S

DMA
(attacker)

DART protection in iOS 13

11

On A12, kernel maps MMIO via PPL

• Configured by new entries in device tree

• MMIO for IOMMUs (DART, SART, PCIe) treated in a special way

Kernel verifies DART MMIO map on first use

• DART driver checks that PPL locked down the MMIO range

• Panic if entry not found or not matching

Demo

DART protection

Use kernel debugger to break on first access

Investigate memory map

Show table of IO map entries

12

SEP hardware

13

(Secure Enclave Processor)

Separate CPU core

• 32-bit Cortex-A7 on A8-A10

• 64-bit Apple CPU on A11

• 64-bit Apple CPU with PAC on A12, behind a DART

Separate peripherals

Entirely security focused

• Lots of other CPU cores to do other things

• No need to share CPU with them

• Common address space, though

AP

SEP

ROMSRAM

AESS

PKA

TRNG

I2C

DART AKF

FUSE

EISP

AMCDISP

SEP peripherals

14

Secret key vault in AESS

• Encryption, decryption and CMAC

• Fused keys not extractable even by SEP

Another secret in PKA

True RNG

• Entropy source + AES NIST CTR-DRBG

• Verified operational on boot

• Used for iCloud authentication

• Also not extractable by SEP

AP

SEP

ROMSRAM

AESS

PKA

TRNG

I2C

DART AKF

FUSE

EISP

AMCDISP

Secure fuse box

SEP peripherals (2)

15

Camera interface on A11/A12

• With its own Image Sensor Processor for Face ID

I2C bus

• This is the information protected by the EEPROM

xART on iOS 13 / mART on older

• EEPROM used for anti-rollback protection

• Integrated on package since A11

• TSMC InFO technology makes probing impractical

RAM

SoC EE Lynx

The secretive Lynx

16

Custom chip on I2C inside A12 CPU

• Securely stores anti-rollback counters

Derivative of STSAFE-A100

• SEP trusts Lynx based on public key certificate.

• Lynx makes information available only with preshared key.

Lynx and SEP pair during restore

• Unfortunately, the Apple firmware has completely

different command set and structure.

SEP LynxI2C

Cert

EC key

The secretive Lynx (2)

17

ECDH based sessions over I2C

• Root session can only query metadata, set SP keys

and create SP sessions based on these keys

Each SP session has access to one SP locker

• Changing SP key causes locker content to be lost.

• Each SP locker contains metadata and data.

• Stored in four copies to guarantee atomic write: one

copy damaged during write leaves three copies to

perform a majority vote.

• Metadata is readable, but not writable, without SP key.

Metadata DataMetadata DataMetadata DataMetadata DataSP key

SP session

Metadata DataMetadata DataMetadata DataMetadata DataSP key

Metadata DataMetadata DataMetadata DataMetadata DataSP key

Root session

Demo

SEP & Lynx

Use SEP debugger to connect to SEP

Query Lynx contents using Corellium debug stub

18

SEP in iOS 13

19

New LLVM version used

Function outlining enabled

• Extracts shared pieces of assembly into “functions”.

• Even function prologues or epilogues are not safe.

• Confuses both disassemblers and decompilers.

Debugger helps understand code paths Function
(abbreviated)

Outlined epilogue
(shared with 2nd function)

No console included on new SEPOS

SEP in iOS 13 (2)

20

Secure Enclave API now used by OS itself

Around in iOS 9, used by 3rd parties

• We model the Secure Enclave API at SEP level.

• In iOS 13 we’ve seen requests to it during first boot of

iOS, marking created keys as “system”.

• Extensible API based on DER blobs: possibly new key

types in the future?

• Allows creating non-exportable (except wrapped) keys

in SEP on behalf of ordinary EL0 software.

2000000000000011 111 SET
 2000000000000010 24 SEQUENCE
 000000000000000c 4 UTF8:"acmh"
 0000000000000004 16 OCT:37 4D 82 E5...
 2000000000000010 7 SEQUENCE
 000000000000000c 2 UTF8:"bc"
 0000000000000002 1 INT:8
 2000000000000010 56 SEQUENCE
 000000000000000c 2 UTF8:"ed"
 2000000000000011 50 SET
 2000000000000010 48 SEQUENCE
 000000000000000c 3 UTF8:"acl"
 2000000000000011 41 SET
 2000000000000010 8 SEQUENCE
 000000000000000c 3 UTF8:"ock"
 0000000000000001 1 BOOL:TRUE
 2000000000000010 9 SEQUENCE
 000000000000000c 4 UTF8:"odel"
 0000000000000001 1 BOOL:TRUE
 2000000000000010 9 SEQUENCE
 000000000000000c 4 UTF8:"osgn"
 0000000000000001 1 BOOL:TRUE
 2000000000000010 7 SEQUENCE
 000000000000000c 2 UTF8:"oa"
 0000000000000001 1 BOOL:TRUE
 2000000000000010 7 SEQUENCE
 000000000000000c 2 UTF8:"kt"
 0000000000000002 1 INT:5
 2000000000000010 7 SEQUENCE
 000000000000000c 1 UTF8:"o"
 000000000000000c 2 UTF8:"oc"

iBoot in iOS 13

21

Minimal changes

Now preloads SEP and other IOPs

• iOS used to load them in previous versions.

• Now, only external peripherals like MultiTouch are

loaded in iOS.

• iBoot loads all IOP firmware, checks validity of IMG4

and parses the load segments of the Mach-O file inside.

More hardware lock-downs for IOPs

iBoot in iOS 13 (2)

22

Each IOP has a MMIO range

• Mostly used to configure bus access, performance and

sleep settings, etc.

• Offers access to (some?) System Registers of the IOP’s

ARM core!

• This includes RVBAR_EL3 which controls entry point

after reset.

RVBAR_EL3 is now locked down

• iBoot loads the firmware, so it knows where

RVBAR_EL3 should be set to.

• Can’t subvert reset vectors on IOPs anymore.

C o r e l l i u m 2 0 1 9

THANK YOU

23

