
Life as an iOS Attacker
~qwertyoruiop@tensec

~qwertyoruiop@bluehatIL

whoami
• Luca Todesco aka @qwertyoruiopz
• iOS security researcher at KJC Intl. Research S.R.L.
• iPhone owner and jailbreak enthusiast since iOS 2
• Released a public jailbreak for iOS 10.2
• Gave this talk already in Shenzhen at TenSec
• But I added a few things this time around

• Can be found at irc.cracksby.kim when the server isn’t down

Agenda
• Brief recap of iOS security design
• iOS attacker model
• Typical 1-click exploit
• arm64e changes
• Pointer Authentication
• PMAP hardening

• The future of iOS attackers

iOS Security Design
A brief rant

iPhoneOS 1.0
• No ASLR
• No DEP
• Every process ran as root
• No sandboxing
• No code signing
• No real secure boot
• Image signature validation doesn’t happen for flashed images

on S5L8900 (iPhone EDGE, iPod Touch, iPhone 3G)
• Image signatures are not personalized, downgrades allowed

iPhoneOS 1.0
• No 3rd party apps
• Potential of native 3rd party apps was obvious to anyone

who owned an iPhone back then
• The iOS homebrew community was thus born
• Called “Jailbreaking”
• AppTapp, JailbreakMe, PwnageTool were the tool of

the trade
• Even a few Apple employees were involved with the

jailbreaking community

A wild threat appears!
• iPhoneOS 2.0
• AppStore is introduced
• Apps were sandboxed by default

• App piracy was rampant on desktop OSes
• Apple tried to limit it with “walled garden” approach
• Codesigning is introduced

• AppStore apps shipped with DRM by default (FairPlay)
• The only real threat at that point was Apple vs. piracy

Cat & Mouse
• A cat and mouse game thus started between the jailbreaking

community and Apple
• Great learning opportunity for Apple on attacker mentality

• Over time this process exposed a significant amount of
weaknesses in the iOS security model
• Attack surface reduction (Bootloader functionality stripping)
• Exploit mitigations (ASLR & DEP)
• Vulnerability impact management (downgrade prevention)

Unintended consequences
• Historical security design decisions still to this day carry

unintended consequences
• iOS used to heavily rely on security by obscurity
• Still does in some aspects (SEP & bootloader images

are encrypted)

• A few images (kernel, rootfs, ramdisks) are now decrypted and auditable by third party researchers
• Kernel sources are now public
• Bootloader sources recently leaked

Unintended consequences
• Historical security design decisions still to this day carry

unintended consequences
• Downgrade protection
• Provides little-to-none security against any threat who

isn’t some kid trying to decrypt FairPlay’d apps and
can’t afford to buy a phone for each other version

• Anti-debugging measures
• You can’t easily play with iOS internals even on your

own devices without using jailbreaks

iOS Attacker Model

iOS Attacker Model
• Initially mostly jailbreakers were really in the game
• These are attackers that are negative for Apple but

fundamentally positive for end-users
• Over time, a new breed of attackers appeared
• Interested in attacking iOS for intelligence gathering, law

enforcement and forensic analysis
• These attackers are mostly neutral for Apple’s bottom line

but negative for end users

iOS Capabilities
• These advanced attackers are attracted to multiple classes of iOS

capabilities
• Remote
• 1-Click (Browser + privilege escalation)
• 0-Click (XSS, System services, WiFi, Bluetooth, Cellular)

• Physical
• Evil maid attacks & in-transit device tampering (initial vector +

persistence)
•Data protection attacks for forensic analysis (initial vector +

SEP code exec)

The iOS game
• Individual researchers will usually specialize on only one aspect

for maximum efficiency and find vulnerabilities suitable to
achieve a given capability
• Offensive companies then chain multiple vulnerabilities (either

purchased or found in-house) into an exploit chain capable of
running code at a privilege level high enough to accomplish task
• Post-exploitation toolkits are developed and maintained to

provide customers with data from victim devices
• Apple eventually kills some bug in the chain
• GOTO 1

The iOS game
• As mitigations creep in, advanced persistent attackers that

are on top of the game can easily play catch up
• Attacker cost on each iteration is marginal

• New players are likely to get overwhelmed
• Full attacker cost that for others was distributed over

several years has to be paid immediately just to get
started in the game

• Halvarflake has a good talk about this

Typical 1-click iOS Exploit Chain
• 1-click is the most reliable and likely-to-be long-term viable capability due

to complexity of web browsers
• And can actually be turned into a 0-click chain with a XSS in either

some app or system service
• It usually involves the combination of at least one WebKit vulnerability

and at least one privilege escalation vulnerability
• WebKit vulnerability must be powerful enough to derive an info leak or an

additional info leak vulnerability is required in order to bypass ASLR or
leak heap pointers
• Heap spraying is in theory viable but it’s unlikely for advanced

attackers to rely on it as it comes with reliability concerns

Typical 1-click iOS Exploit Chain
• DEP can be bypassed by ROP or by data-only exploitation
• Data-only is the advanced attacker’s choice as it requires

minimal maintenance and is generally more powerful
• Aim is usually to gain read/write primitives

• ROP can be simpler at times but requires updating exploit
code on every version and makes process continuation trickier
• Necessary with some vulnerabilities
• My suggestion is to save those for pwn2own and keep

looking for better ones to use for your 1-click chain

Typical 1-click iOS Exploit Chain
• Once the ability to perform arbitrary reads, writes and

function invocations from WebKit is gained, the next stage is
to load shellcode
• iOS has mandatory code-sign checks for all executable

code
• But exempts an area of reserved memory used by JIT
• Write your payload in JIT memory and invoke it
• Back in iOS 9, this was all you needed to do

“Bulletproof” JIT
• Write your payload in JIT memory and invoke it

• Apple decided to try and harden this back in iOS 10 with a mitigation
called “Bulletproof JIT”
• RWX area was split in two maps, one writeable and one executable
• Pointer to writeable map is only ever saved in a small stub in

executable-only (non-readable) memory
• Further hardened with silicon changes on A11 and later CPUs

• RWX area is not split anymore, but not really writeable until a specific
system register is set to a certain value
• Only a special JIT memcpy function touches that register and

undoes the change after performing the copy

“Bulletproof” JIT
• Fundamentally Bulletproof JIT forces you to do some ROP or

JOP in order to emit arbitrary opcodes
• So the mitigation itself is useless unless control flow

integrity is also there since ROP is trivial
• Early warning for careful attackers that CFI was coming
• 2 years lead time, plenty for serious iOS game

players to make strategies around it

Typical 1-click iOS Exploit Chain
• Some will just write the second-stage payload as raw

shellcode
• Kinda painful if you ask me.

• Easier to write payloads in C and compile into a dynamic
library with the iOS SDK
• Copy in JIT memory and ask the dynamic linker nicely to

load it
• No intended API to load a library from memory

Typical 1-click iOS Exploit Chain
• No intended API to load a library from memory
• Main executable is loaded in the address space by kernel
• Kernel invokes the dynamic linker upon process creation by

calling “dyld_start” which takes care of rebasing and linking
• Nothing stops us from calling this again

• I think this strategy is not optimal due to several issues such as
process continuation being tough to achieve
• Still OK for things like jailbreaks
• https://jbme.qwertyoruiop.com uses this to load stage2

Typical 1-click iOS Exploit Chain
• I personally ended up just writing my own dynamic linker for

Mach-Os in Javascript
• Works pretty well as far as process continuation and

maintainability goes
• Javascript can truly do everything these days given

enough memory corruption

Typical 1-click iOS Exploit Chain
• Usermode privilege escalation can re-use ASLR leak from WebKit

as the shared cache load address is only randomized on boot
• ROP/JOP in order to access privileged resources to either

trigger a kernel-mode privilege escalation or capture some data

• Kernel-mode privilege escalation requires a separate kernel info
leak (or a vulnerability strong enough to both IL and gain code
execution)
• ROP/JOP/data-only in order to derive read/write primitives

arm64e Changes
Control Flow Integrity

Apple’s name for the new A12-specific ABI

Control Flow Integrity
• Writing was on the wall as early mentioned
• Both backwards-edge and forward-edge
• Implemented using ARM8.3 authenticated pointers
• Both kernel-mode and user-mode make use of CFI
• Not fully fine-grained but not coarse-grained either

Pointer Authentication

Pointer tagging via bits normally unused for virtual addressing

https://events.static.linuxfound.org/sites/events/files/slides/slides_23.pdf

Pointer Authentication

Backwards Edge CFI Implementation
X30 is the return address in arm64

Tag return address (x30) using B key and SP as modifier

Prolog

Epilog
Authenticated return using B key (and SP as implied modifier)

Somewhat limited opportunities for pointer substitution attacks due to SP-specific signature

Forward Edge CFI (C++ Virtual Call)

X0 = C++ object Fetch vtable off C++ object

Authenticate vtable pointer with A data key and zero context

Fetch virtual function pointer

Set bits 64:48 of context to a
virtual call specific value

Use pointer to virtual function pointer as context

A-key authenticated branch to virtual function pointer using non-zero context

Very limited opportunities for pointer replacement attacks due to vcall specific context

Forward Edge CFI (objc_msgSend cache)

Iterate method cache

Branch with B key, with a per-cache entry context

Method pointers are signed with the B key and a per-cache entry context
Might be interesting to play with “creative ideas” here

Forward Edge CFI (C indirect branch)

Fetch function pointer

A-key authenticated branch with zero context

Lots of opportunities for pointer replacement attacks

Initial X8 = Unauthenticated pointer to C struct

Special CFI cases
• Usermode
• thread_set_context, pthread_create and other “usual

suspects” also require A-key signed pointers
• However they lack context
• Intrinsically weak points

• Kernelmode
• thread_call_* APIs require A-key signed pointers
• G key is used for pexpert machine context validation

Practical Pointer Authentication Attacks
• Pointer replacement attacks
• Leak signed pointers (say, with a read anywhere primitive)

and use them as long as key and context is the same
• Pointer forgery attacks
• Signing gadgets are present in executable address space
• Just need to find one CFI weakness and can use

signing gadgets to build ordinary ROP/JOP chains to
perform more advanced operations

Non-practical Attacking Pointer Authentication
• Brute Force
• Given enough fork()s you might very well be able to pull this off
•Not practical for serious attackers, maybe OK for specific

scenarios (jailbreaking?)
• Keyspace attacks
• It appears in iOS the same 64 bits are repeated twice in order to

derive the 128 bit key used for PAC
• 2^64 operations are still within the realm of possibility
• Maybe practical for serious enough attackers, but doesn’t

really scale and I’d figure this can easily be changed to use
more bits

Impact of Control Flow Integrity
• Strict enforcement is done on C++ virtual calls by using

special context values for pointer signatures
• Virtual call on free’d element is a very common scenario for

WebCore and IOKit UAFs
• Likely a good chunk of these sorts of bugs are now are

unexploitable
• Advanced enough attackers can always just find

better bugs

Miscellaneous information
• Key A is shared across processes, so forward-edge scenarios

can still be abused for usermode sandbox bypass
• Not CFI-specific, but JavaScriptCore makes heavy use of

pointer authentication (preventing some trivial CFI breakage
scenarios)
• As much as it’d be nice to get rid of software stack cookies

and use PAC instead, it is intrinsically weaker as the return
address is usually the last member of the stack frame, and
spilled registers come before that

Impact of Control Flow Integrity
• In our previous 1-click exploit chain scenario, things get really

complicated now
• Being able to use data-only to load arbitrary Mach-Os in JIT

seems hard
• However a single valid code path with an unprotected branch is all

you need
• Legacy apps not compiled for arm64e
• Handwritten assembly that uses indirect branches
• Forcing JSC’s JIT to emit controlled opcodes might also be viable
• Emit a non-authenticated BR and invoke a signing gadget

Data-only CFI attack ideas
• Being able to issue arbitrary syscalls from data-only WebKit context seems

hard
• iOS however is designed around message passing

•Often possible to invoke mach_msg with a controlled message by
poking stack frames given arb. R/W (I talked about this strategy at
MOSEC 2017)
• Can reach significant privilege escalation attack surface from

mach_msg (both usermode PE and kernelmode PE)
• It’s probably possible to obtain pointer forgery from such a

powerful primitive
• Reach any other codepath then

Real Life Pointer Forgery
@bazad’s attack

Brandon Azad’s Pointer Forgery
• In January 2019 Brandon Azad released the first public

pointer authentication code forgery attack.
• Released in order to provide a kernel-mode arbitrary code

invocation primitive that bypasses CFI for his voucher_swap
exploit
• Very elegant trick used
• Major props to him, it’s a really cool one!

Brandon Azad’s Pointer Forgery
• His approach was to look for a signing gadget that can be

reached from an already-signed pointer
• However no trivial signing gadgets are present
• Most legit code paths with PACI* instructions will actually

“convert” pointers from one kind of authentication code to
another (i.e. different context or different keys)
• Represented as an AUTI*/PACI* sequence
• First will authenticate with previous context / key, then

sign the result with the new context / key

Brandon Azad’s Pointer Forgery
• Interesting to note that there is no bailout case if AUTI* fails
• This relies on error propagation from the AUTI* instruction

to the PACI* one
• However, PACI* will perform this error propagation by

flipping a single bit *AFTER* applying a valid signature
• Can just flip back to obtain a real pointer forgery

Brandon Azad’s Pointer Forgery
• His attack used sysctl_unregister_oid, which will take a signed

pointer and turn it into an AAZ-signed one
• Legitimate part of l2tp_domain_module_stop()
• For which there is a valid AAZ-signed pointer to that we can

invoke manually via a pointer replacement attack
• Once invoked, it is possible to read back the result of PACI*, then

correct the authentication code
• You can use this to sign a pointer to an unauthenticated branch in

order to further invoke arbitrary things without having to perform
this again

Brandon Azad’s Pointer Forgery
• Once an arbitrary unauthenticated invocation primitive is

derived, it is possible to use JOP gadgets that do not require
signed pointers in order to manipulate the state
• Can use this in order to invoke a PACI* skipping the AUTI*

part in order to get a “proper” easier-to-reuse signing
gadget

Brandon Azad’s Pointer Forgery
• This attack was fixed by adding a failure case after AUTI*

instructions
• His strategy can still be used as a pointer validity oracle
• Failure case is not immediately fatal
• Can bruteforce an authentication code for a single

unauthenticated branch gadget, and then game’s on
again

arm64e Changes
pmap hardening

pmap hardening
• pmap is the code in charge of pagetable housekeeping in iOS
• Responsible for several codesign-related tasks
• Codesign on iOS is enforced at fault-in time
• Arbitrary physical writes can bypass codesign by

altering already-faulted pages
• AMFI delegated trustcache handling to pmap in iOS 12

pmap hardening
• pmap code that alters pagetables and related codesign-critical routines

have been put in it’s own code segment
• Only code in this area is able to alter codesign-critical data such as

TrustCaches and pagetables
• Entering this code is done through a special routine called “ppl_dispatch”
• Invoked by a trampoline that sets a system register in order to signal

that we are allowed to access protected memory, and moves system
context into protected memory to prevent tampering

• Routines exposed via ppl_dispatch validate input
• They make sure you pass in real pmap_t pointers for instance

pmap hardening
PPL entry:

PPL exit:

pmap hardening
PPL entry:

PPL exit:
Single bit in a system register is
flipped in order to signal PPL mode

*I’m actually curious as to how/why the pattern 0x4455445n64666477 was chosen

pmap hardening
• Additionally, exception handling code includes checks in order

to let PPL handle them in case we’re in PPL mode

PPL mode exception handler

pmap hardening
• It is important to note that everything is still in normal EL1
• This all relies on custom silicon logic implemented by Apple
• Pretty cool machinery!

• Design is not perfect
• But it’s likely a work in progress
•Writing is on the wall: the bar to play iOS game will keep

going up exponentially

pmap hardening
• Mostly significant for jailbreakers still
• At least unlike KPP/KTRR this time it also affects other

attackers rather than just pissing off end users
• Not strictly necessary to violate codesign to advanced attackers
• Rootkit attacks are definitively trickier to pull off
• Naive data exfiltration unaffected

• Given arbitrary function invocation (CFI break), it is possible to
invoke ppl_dispatch in order to add things to the TrustCache
• Can load arbitrary code without violating code sign

The future of iOS attackers

The future of iOS attackers
• At the end of the day, we’re fighting a losing battle
• But some battles are being lost faster than others

• I always have a thought at the back of my head telling me memory
corruption is going away eventually
• So far it’s been wrong

• Realistically web browsers have so much complexity it’s always going
to be possible to pull something off
• Life is going to be ok for attackers focusing on 1-click
• 0-click might still survive via XSS, but there’s probably so many

ways to pull that off

The future of iOS attackers
• Jailbreaks are likely going to fade away
• From an Apple fanboy’s perspective it kinda sucks that

we’re going to lose one of the few things that allows us to
thinker with the platform
• Breaking iOS is in itself an act of curiosity towards the

impressive work done by Apple
• Physical attacks will probably still be viable given enough time
• Can brute force pointer auth for the initial exploitation step

• Individual researchers doing full chains is still a thing in iOS 12
• But it’s getting tougher and tougher, and at some point you

need to take into account mental health costs
• Important to strike a good work/life balance
• Too much life means you fall behind the curve
• Too much work yields burnout

• Eventually we’ll probably all need a new job
• Hopefully later rather than sooner

Thanks!

Shout out
• Apple for making iOS exploitation fun again
• Advanced iOS attackers out there
• Please don’t hack my phone
• I’m actually boring enough that you’d regret it anyway

• Brandon Azad (@bazad) for his excellent work and very good
writeup detailing the thought processes needed required in order to
experiment with unknown security features
• This process is often ignored in most writeups, and

experimentation is key for mounting attacks against these new
security features

Shout out
• People trying to get into the iOS game
• It’s a fun thing to be involved in, don’t let the complexity let

you shy away from it! Once you get the hang of it, it all
makes sense

• Nano development team
• Best text editor

