
A few JSC tales
~qwertyoruiop[kjc]

Monte Carlo @ Objective By The Sea 2.0

Shanghai @ Mosec/BaijiuCon 2019

whoami
• Luca Todesco aka qwertyoruiop

• Often idling in irc.cracksby.kim #chat

• @qwertyoruiopz on Twitter

• I have been doing independent security research for several years

• Supreme Leader at KJC Intl. Research S.R.L.

• Did several years of privilege escalation research

• Nowadays mostly focused on browser-based remote code execution

• My main target is JavaScriptCore

What is this talk about
• This talk is the story of a fictional character on a quest to gain remote code

execution on the latest iOS updates

• However all of this also applies to Mac OS

• Our fictional character has humble beginnings, and our talk begins with a
flashback from a better past with simpler heaps and plenty of DOM use-after-
free

• But after being challenged by experienced enemies with a never ending stream
of exploit mitigations, our fictional character needs a fresh start

• A new hope is found in the depths of JavaScriptCore in the form of a JIT
compiler

• However the enemy is on the alert and the battle is to this day still
ongoing, and some questions remain unanswered…

ELI5 WebKit
• Apple’s open-source web browser

• Powers MobileSafari on iOS and Safari on MacOS X

• The sum of multiple separate projects

• WebCore - Implements HTML parsing, DOM, SVG, CSS…

• JavaScriptCore - JavaScript Engine

• WTF (“WebKit Template Framework”)

• …

ELI5 WebKit
• The sum of multiple separate projects

• WebCore - Implements HTML parsing, DOM, SVG,
CSS…

• Historically, lots of WebKit RCEs have been DOM
bugs (use-after-free)

• Because in WebCore object lifetime is managed
by reference counting, and due to the dynamic
nature of the DOM, it’s very easy to run into object
lifetime issues.

A Typical DOM Bug

https://bugs.chromium.org/p/project-zero/issues/detail?id=1080

A Typical DOM Bug

Raw pointer to object saved to stack,
 no reference taken

A Typical DOM Bug

This may trigger a JS callback

A Typical DOM Bug

This may trigger a JS callback

A Typical DOM Bug

A Typical DOM Bug

A Typical DOM Bug

This may trigger a JS callback

A Typical DOM Bug

This may trigger a JS callback

A Typical DOM Bug

Will free the innerTextElement

A Typical DOM Bug

Raw pointer to object saved to stack,
 no reference taken

A Typical DOM Bug

This will free |innerText|

Use-After-Free

Raw pointer to object saved to stack,
 no reference taken

A Typical DOM Bug

• DOM bugs seem to share a common theme

• A reference to some reference counted object is stored
on the stack without increasing the reference count

• Some sort of DOM JS callback is fired, which allows
you to drop the last reference of such an object

• Upon return, use of the saved reference is use-after-
free

A Typical DOM Bug

• DOM bugs seem to share a common theme

• A reference to some reference counted object is stored
on the stack without increasing the reference count

• Some sort of DOM JS callback is fired, which allows
you to drop the last reference of such an object

• Upon return, use of the saved reference is use-after-
free

The FastMalloc Age
• WebCore reference counted objects used to live in the

FastMalloc heap

• Generic heap allocator

• Several other things also went to the FastMalloc heap

• ArrayBuffer backing buffers

• Extremely convenient replacement for free’d WebCore
DOM objects allocated on the fastMalloc heap

• Direct bytewise read/write access to heap chunk

The FastMalloc Age

• Many of the use-after-frees will result in C++ virtual calls
being invoked on a free’d object

• Replace free object with ArrayBuffer

• Control vtable pointer

• Get RIP control

• Requires prior info leak usually

The FastMalloc Age
• Sometimes the use-after-free will instead leave a dangling pointer

to some C++ object

• Sometimes this pointer may represent a DOM object that can
be returned to JavaScript

• WebCore implements ‘wrappers’ as a way to bridge DOM
objects and the JavaScriptCore VM

• Each DOM object has a respective JavaScriptCore VM object
retaining a reference to the DOM node

• Conversion from DOM object to JS object is handled by
the toJS function

The FastMalloc Age

• WebCore implements ‘wrappers’ as a way to bridge
DOM objects and the JavaScriptCore VM

• C++ DOM object contains pointer to wrapper
which contains a cached JSValue

• Possible to then instantiate an arbitrary JSValue
in the JSC VM from a DOM UaF

• Turn DOM bug into JS engine bug

The FastMalloc Age
• JavaScriptCore implements MarkedArgumentBuffer as an array of JSValues

• This used to be stored in fastMalloc

• String buffers used to be stored in fastMalloc

• Leak a string object pointer, then corrupt length in order to obtain a
fastMalloc info leak primitive

• By putting a MarkedArgumentBuffer next to our string buffer, it is then
possible to leak arbitrary JSValues (and thus JS object pointers)

• String object pointer leaks and controlled-address memory corruption
are both possible in the DOM UaF scenario by abusing static functions
reachable from JS for many DOM objects (this strategy was used for at
least one private exploit of mine on a UaF against a HTMLDocument
object to avoid the need for an info leak or heap spraying).

The 5aelo Age
• Possible to then instantiate an arbitrary JSValue in the JSC VM from

a DOM UaF

• Can create fake JavaScript Objects

• 5aelo has a great Phrack paper about exploiting this

• TL;DR: It used to be possible to create a fake TypedArray object
with a controlled backing buffer pointer and dereference it in order
to gain arbitrary read/write primitives from within JavaScript

• Very powerful exploit primitive

• Very easy to pull off

The RWX JIT Age
• Once R/W primitives within JavaScript are obtained, the

usual target is shell code execution

• iOS has mandatory code-sign but MobileSafari gets an
exception for JIT

• Used to be a simple RWX page

• Use TypedArray R/W primitive to write shellcode, then
take over some indirect branch in order to invoke it

• Remote Code Execution

Ivan Kristic’d
Round 1

Ivan Kristic’d
Round 1

Ivan Kristic’d
Round 1

Ivan Kristic’d
Round 1

😟

The RWX JIT Age
• Once R/W primitives within JavaScript are obtained, the

usual target is shell code execution

• iOS has mandatory code-sign but MobileSafari gets an
exception for JIT

• Used to be a simple RWX page

• Use TypedArray R/W primitive to write shellcode, then
take over some indirect branch in order to invoke it

• Remote Code Execution

RIP REMOTE CODE EXECUTION

• Ok, well, we can still subvert code flow via ROP or other
means in order to invoke the special memcpy

• Requires gadgets

• Kind of annoying as these are version-specific

• Requires pointer forgery on arm64e

Filip Pizlo’d
Round 2

The 5aelo Age
• Possible to then instantiate an arbitrary JSValue in the JSC VM from

a DOM UaF

• Can create fake JavaScript Objects

• 5aelo has a great Phrack paper about exploiting this

• TL;DR: It used to be possible to create a fake TypedArray object
with a controlled backing buffer pointer and dereference it in order
to gain arbitrary read/write primitives from within JavaScript

• Very powerful exploit primitive

• Very easy to pull off RIP TECHNIQUE

• Fake TypedArrays may only write to Gigacage memory now

• Butterfly pointers were also caged

• This was reverted at some point

• Still possible to use butterfly accesses to gain R/W

• Not entirely controlled write as indexed butterfly
accesses will do bounds checking

• Can use named properties, but indexing type won’t
be Double

• Can only write valid JSValues or risk crashing

As first demonstrated by @_niklasb’s pwn_i8.js exploit

• At some point pointer poisoning was also used

• IIRC as a Spectre mitigation

• But:

Gigacage Intermezzo

Gigacage Intermezzo

LOL ASLR

Gigacage Intermezzo

Gigacage Intermezzo

Heap randomization on Gigacage broken for >1yr

Filip Pizlo’d
Round 3

Filip Pizlo’d
Round 3

ELI5 WebKit
• The sum of multiple separate projects

• WebCore - Implements HTML parsing, DOM, SVG,
CSS…

• Historically, lots of WebKit RCEs have been DOM
bugs (use-after-free)

• Because in WebCore object lifetime is managed
by reference counting, and due to the dynamic
nature of the DOM, it’s very easy to run into object
lifetime issues.

RIP BUG CLASS

• Ok, technically a lie

• WebCore UaFs are still sometimes exploitable to this day

• Still, decided to give up on the entire attack surface as it
seemed more trouble than it’s worth to pursue it

Back to the basics

ELI5 WebKit
• Apple’s open-source web browser

• Powers MobileSafari on iOS and Safari on MacOS X

• The sum of multiple separate projects

• WebCore - Implements HTML parsing, DOM, SVG, CSS…

• JavaScriptCore - JavaScript Engine

• WTF (“WebKit Template Framework”)

• …

• Ok, technically a lie

• WebCore UaFs are still sometimes exploitable to this day

• Still, decided to give up on the entire attack surface as it
seemed more trouble than it’s worth to pursue it

• Strategic shift to pure JS engine vulnerabilities

Contemporary*
JavaScriptCore

Exploitation

*Almost

ELI5 JavaScriptCore
• JavaScript engine

• Has an interpreter called LLINT

• Has multiple JITs

• Baseline JIT - Fastest compile time, worst throughput

• DFG JIT - Slower compile time, speculative JIT, somewhat
optimized, decent throughput

• FTL JIT - Even slower compile time than DFG, well
optimized, best throughput

The Bug

• Register allocation bug in the DFG JIT compiler

• In the String.prototype.slice JIT implementation

• Introduced in February 2019

Found by @bkth_ and kindly donated to science

The Bug

The Bug

Conditional branch

The Bug

Conditional branch

Register Allocation

Register Allocation ELI5

• JIT code needs to use registers in order to perform logic
all the time

• Registers are a limited resource

• An algorithm is required in order to assign registers
dynamically, potentially spilling values on the stack in
order to free some registers up in case no free ones
are available

The Bug

Register Allocation

Potentially needs to spill values to stack

The Bug

Register Allocation

Potentially needs to spill values to stack

Conditional branch

The Bug

Register Allocation

Potentially needs to spill values to stack

Conditional branch

Not executed

taken

The Bug

• The register allocator assumes allocations happen
unconditionally

• Conditional branch may skip the allocation and
potential spill

• If the variable corresponding to the supposedly-
spilled register is later used, it will be uninitialized
stack data

Garbage Collection ELI5
• JavaScriptCore objects are garbage collected

• The GC is conservative-on-the-stack

• Upon entering GC, it will mark from top of stack all the way to the
current stack frame

• Calling a function with a variable number of arguments allows you to create
large stack frames

• Values may then be stored deep into the stack

• The garbage collector will ignore those values, as they are deeper in
the stack than the garbage collector currently is

• If no other references are present, the objects will be free’d

The Bug

• The register allocator assumes allocations happen
unconditionally

• Conditional branch may skip the spill

• If the variable corresponding to the supposedly-
spilled register is later used, it will be uninitialized
stack data

The Bug
• The register allocator assumes allocations happen

unconditionally

• Conditional branch may skip the spill

• If the variable corresponding to the supposedly-spilled
register is later used, it will be uninitialized stack data

• Can bring the value we stored deep in the stack
back to life

• Use-After-Free

• This is enough to get full code execution

• But let’s come up with something cooler

The Bug
• The register allocator assumes allocations happen unconditionally

• Conditional branch may skip the spill

• If the variable corresponding to the supposedly-spilled
register is later used, it will be uninitialized stack data

• But JIT will assume the variable holds a JavaScript value
of a specific type

• We can supply a JavaScript value of any other type

• Type Confusion

The Exploit
A lot of useless array accesses

in order to make a very
large stack frame

The Exploit

Fetch |ary1|
from arguments

Prove |ary1| is a NotCell type

This structure also implies the |a| property is NotCell

%rax == |c|
%rsi == |ary1|

The Exploit
%rax and %rsi are

supposed to be spilled
to stack but aren’t

The Exploit
%rax and %rsi are

supposed to be spilled
to stack but aren’t

Possibly uninitialized use

The Bug
• We can make the JIT think a variable containing a value of a

specific type is stored at a specific point in the stack frame

• It isn’t.

• The variable could for instance be statically proven to hold
a value of NonCell type

• But the proof is for a value which is never actually saved
to the stack, thus a time-to-check/time-to-use issue
arises, as the wrong value will be used when accessing
said variable

The Exploit
%rax and %rsi are

supposed to be spilled
to stack but aren’t

Possibly uninitialized use

Argument assumed to be
proven NotCell, but the

wrong value is used and it
may in fact be a Cell

Side Effects ELI5
• Some operations in JavaScript may invoke callbacks

• eg. may invoke toString / valueOf

• JIT needs to be aware of these operations as they may
invalidate state that is assumed to not change

• e.g. change object types, array indexing modes, etc..

• Some operations may only invoke callbacks if their
arguments are of a specific type

Side Effects ELI5
• Some operations may only invoke callbacks if their arguments

are of a specific type

• CallStringConstructor is modeled to side effect only on
CellUse and UntypedUse

• Makes sense, as toString() may be redefined

• However, for NotCellUse, toString is still invoked

• Argument is proven to be NotCell, which means simple
object (not heap-backed), thus can’t redefine toString
and the standard implementation doesn’t side effect

The Exploit
%rax and %rsi are

supposed to be spilled
to stack but aren’t

Possibly uninitialized use

Argument assumed to be
proven NotCell, but the

wrong value is used and it
may in fact be a Cell

Modeled as non-side-effecting
by DFG JIT as NotCells may

not intercept toString

The Exploit
%rax and %rsi are

supposed to be spilled
to stack but aren’t

Possibly uninitialized use

Argument assumed to be
proven NotCell, but the

wrong value is used and it
may in fact be a Cell

Modeled as non-side-effecting
by DFG JIT as NotCells may

not intercept toString

Can redefine toString and
perform arbitrary unmodeled

side-effects

The Exploit

Argument assumed to be
proven NotCell, but the

wrong value is used and it
may in fact be a Cell

Modeled as non-side-effecting
by DFG JIT as NotCells may

not intercept toString

Can redefine toString and
perform arbitrary unmodeled

side-effects

We converted our register allocation
bug into a DFG JIT side-effect mis-

modeling issue

DFG JIT ELI5

• One of the goals of DFG is to optimize away redundant
operations such as type checks

• Only a few operations can alter an object’s type

• If no such operation is encountered, it can be
assumed that the object type will stay unchanged
and a single type check will suffice to prove the type
of a specific value until some potentially dangerous
operation is encountered

DFG JIT ELI5
• Operations which may invoke arbitrary JavaScript are dangerous

• The arbitrary JavaScript may execute any operation, including
things that may mutate an object’s type

• Important to model which operations may or may not do this in
order to invalidate previously proven types

• From our initial bug we derived the ability to invoke arbitrary
JavaScript from a node that is modeled as not being effectful
whatsoever

• We may cause arbitrary type confusions by mutating
object types

The Exploit

Access |floatArray| to
prove it’s an array of

doubles

The Exploit

Access |floatArray| to
prove it’s an array of

doubles

Unmodeled
Side Effect

The Exploit

Access |floatArray| to
prove it’s an array of

doubles

Unmodeled
Side Effect

Type Transition

|floatArray| is now an
array of JS values and a
pointer to an object is

stored at index 1

The Exploit

Access |floatArray| to
prove it’s an array of

doubles

Unmodeled
Side Effect

Type Transition

|floatArray|’s type is still considered proven to
be an array of doubles as no possible type

transitions could have occurred according to
DFG’s modeling

|floatArray| is now an
array of JS values and a
pointer to an object is

stored at index 1

The Exploit

|floatArray|’s type is still considered proven to
be an array of doubles as no possible type

transitions could have occurred according to
DFG’s modeling

|floatArray| is now an
array of JS values and a
pointer to an object is

stored at index 1

The Exploit

|floatArray|’s type is still considered proven to
be an array of doubles as no possible type

transitions could have occurred according to
DFG’s modeling

|floatArray| is now an
array of JS values and a
pointer to an object is

stored at index 1

addrof-equivalent
type confusion

A pointer to a JS
object is read as a

double floating
point value

The Exploit

Double floating point
value converted to it’s

byte representation in a
TypedArray

Increase
pointer by 0x18

Store modified
value back into

array (as double)

Double floating point value is
altered and written back on top

of the pointer to a JS object

|floatArray| is now an
array of JS values and a
pointer to an object is

stored at index 1

The Exploit

Double floating point
value converted to it’s

byte representation in a
TypedArray

Increase
pointer by 0x18

Store modified
value back into

array (as double) |floatArray| is now an
array of JS values and a
pointer to an object is

stored at index 1The pointer was
increased by 0x18

A fake object is accessible
at index 1 in |floatArray|

ELI5 JSObject
let a = {};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

ELI5 JSObject
let a = {a: 0x4141};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

ELI5 JSObject
let a = {a: 0x4141, b: 0x4242, c: 0x4343};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

0xffff000000004242

0xffff000000004343

+0x18

+0x20

ELI5 JSObject
let b = {};
let a = {a: 0x4141, b: 0x4242, c: b};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

0xffff000000004242

Pointer to |b|

+0x18

+0x20

ELI5 JSObject
let b = {};
let a = {a: 0x4141, b: 13.37, c: b};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

TagDouble(13.37)

Pointer to |b|

+0x18

+0x20

The Exploit

Double floating point
value converted to it’s

byte representation in a
TypedArray

Increase
pointer by 0x18

Store modified
value back into

array (as double) |floatArray| is now an
array of JS values and a
pointer to an object is

stored at index 1The pointer was
increased by 0x18

A fake object is accessible
at index 1 in |floatArray|

Exploitation
let b = {};
let a = {a: 0x4141, b: 13.37, c: b};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

TagDouble(13.37)

Pointer to |b|

+0x18

+0x20

The pointer was
increased by 0x18

Exploitation
let b = {};
let a = {a: 0x4141, b: 13.37, c: b};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

TagDouble(13.37)

Pointer to |b|

+0x18

+0x20

The pointer was
increased by 0x18

JSCell

Pointer to Butterfly

Type Confusion

Exploitation
let b = {};
let a = {a: 0x4141, b: 13.37, c: b};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

TagDouble(13.37)

Pointer to |b|

+0x18

+0x20

The pointer was
increased by 0x18

JSCell

Pointer to Butterfly

Type Confusion

Exploitation
let b = {};
let a = {a: 0x4141, b: fake_jscell, c: b};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

TagDouble(Fake JSCell)

Pointer to |b|

+0x18

+0x20

The pointer was
increased by 0x18

JSCell

Pointer to Butterfly

Type Confusion

Exploitation
let b = {};
let a = {a: 0x4141, b: fake_jscell, c: b};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

0xffff000000004141+0x10

TagDouble(Fake JSCell)

Pointer to |b|

+0x18

+0x20

The pointer was
increased by 0x18

JSCell

Pointer to Butterfly

Type Confusion

ELI5 Butterfly
let a = {};
a[0] = 13.37;

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

publicLength 13.37

Double

-0x4
vectorLength

-0x8 0x0

ELI5 Butterfly
let a = {};
a[0] = 13.37;
a[1] = {};

JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

publicLength Tag(13.37)

Contiguous

-0x4
vectorLength

-0x8 0x0
{}

0x8

Exploitation
• We have access to a fake object living in an object’s inline

properties

• Actually probably enough itself, but let’s go for a set of
some reliable addrof/fakeobj primitives

• We can craft a fake JSCell header

• And control IndexingType

• We can directly control the butterfly pointer

Exploitation
• We can directly control the butterfly pointer

• Idea: let’s set the butterfly pointer to the fake object
itself

• vectorLength and publicLength are at a negative
offset from the Butterfly pointer

• Our fake object is at +0x18 rather than +0x10, so
we have control over an inline property before the
fake object itself to put a fake vectorLength and
publicLength

Exploitation

Fake JSCell

Pointer to Butterfly

+0x0

+0x8

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

Double

JSCell

Pointer to Butterfly

0xffff000000004141

Back to fake object

0xffff000000004141

Exploitation

Fake JSCell

Pointer to Butterfly

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

Double

JSCell

Pointer to Butterfly

0x0001001000000010

Back to fake object

0xffff000000004141

Fake vectorLength/publicLength

fake[2]

fake[0]

fake[1]

Exploitation

Fake JSCell

Pointer to Butterfly

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

Double

JSCell

Pointer to Butterfly

0x0001001000000010

Back to fake object

0xffff000000004141

Fake vectorLength/publicLength

fake[2]

fake[0]

fake[1]

Exploitation

Fake JSCell

Pointer to Butterfly

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

Double

JSCell

Pointer to Butterfly

0x0001001000000010

Back to fake object

0xffff000000004141

Fake vectorLength/publicLength

fake[2]

fake[0]

fake[1]

Accessed as Double

Exploitation

Fake JSCell

Pointer to Butterfly

StructureID

IndexingType

JSType

InlineTypeFlags

CellState

Double

JSCell

Pointer to Butterfly

0x0001001000000010

Back to fake object

0xffff000000004141

Fake vectorLength/publicLength

fake[2]

fake[0]

fake[1]

Accessed as Double
But can also be accessed

as JSValue as inline
property of the JSObject

container.d

Exploitation

• We can access the fake object as an array and it will be
considered as an array of double floating point values

• But we can also access the real object’s inline
properties (which are the real backing storage of our
fake object’s array) and those are considered to be
JavaScript values

Addrof

function addrof(obj) {

container.d = obj;

return fake[2];

}

Fakeobj

function fakeobj(addr) {

fake[2] = addr;

return container.d;

}

Faking a JSCell
• One slight detail here is that we need to fake a JSCell

• Can craft a valid JSCell header as a double floating point integer
and take into account JSValue tagging

• But we need to guess a StructureID

• 5aelo’s phrack article introduces the concept of
StructureID spraying

• Create many differently-shaped objects

• StructureIDs are allocated sequentially on a fresh
WebKit instance

StructureID Entropy
Round 4

• But on a sad day this February, faking a JSCell got harder

StructureID Entropy
• Guessing a StructureID now also requires guessing 7 entropy

bits

• Failed guess equals crash

• Accessing named properties, garbage collection visits and
pretty much anything you can think of relies on StructureID
being correct

• The public strategy for gaining read/write from a set of
addrof/fakeobj primitives uses named properties
accesses, but even if we didn’t, not having a valid
structureID likely means crash when using our fake object.

Faking a JSCell
• One slight detail here is that we need to fake a JSCell

• Can craft a valid JSCell header as a double floating point integer
and take into account JSValue tagging

• But we need to guess a StructureID

• 5aelo’s phrack article introduces the concept of
StructureID spraying

• Create many differently-shaped objects

• StructureIDs are allocated sequentially on a fresh
WebKit instance

RIP TECHNIQUE????

Attack Ideas
• Different behaviour between specialised and non-

specialised code may be abused in order to guess
StructureIDs

• Must make it so non-specialised code doesn’t actually
do anything that could crash due to lack of a valid
StructureID

• Inferred types might also be abusable as per 5aelo’s talk
at 0x41con, as a real object’s type information could be
used to prove a fake object’s type, thus no
CheckStructure on the fake object would be emitted

Generic bypasses for this are possible and exist,
but I’m not going to talk about them today.

Let’s revisit our bug and see if we can leverage it for
StructureID randomisation bypass in a bug-specific

way.

The Bug
• The register allocator assumes allocations happen unconditionally

• Conditional branch may skip the spill

• If the variable corresponding to the supposedly-spilled
register is later used, it will be uninitialized stack data

• But JIT will assume the variable holds a JavaScript value
of a specific type

• We can supply a JavaScript value of any other type

• Type Confusion

StructureID Entropy

• Building a OOB read primitive in the JSCell heap will allow
us to leak a valid StructureID

• GetByOffset* node can do this if we’re able to type
confuse it

• Prove type of a specific JS variable, then use register
allocator bug to cause DFG JIT to mis-track it’s value
and put an object of another type in

* The node that fetches inline properties from JavaScript objects

A lot of useless array accesses
in order to make a very
large stack frame
Type Proof
(DFG will emit CheckStructure on |ary1| here)

GetByOffset on |ary1| of proven type

A lot of useless array accesses
in order to make a very
large stack frame
Type Proof
(DFG will emit CheckStructure on |ary1| here)

GetByOffset on |ary1| of proven type

No operations side effect, so it’s possible to use the type proof for the GetByOffset at
the beginning of the function for the GetByOffset at the very end

A lot of useless array accesses
in order to make a very
large stack frame
Type Proof
(DFG will emit CheckStructure on |ary1| here)

GetByOffset on |ary1| of proven type

No operations side effect, so it’s possible to use the type proof for the GetByOffset at
the beginning of the function for the GetByOffset at the very end

Bug trigger

on an arbitrarily typed object
read from the stack

A lot of useless array accesses
in order to make a very
large stack frame
Type Proof
(DFG will emit CheckStructure on |ary1| here)

GetByOffset on |ary1| of proven type

Bug trigger

on an arbitrarily typed object
read from the stack GetByOffset thinks it fetches |a| from |oj|, at offset 0x30

A lot of useless array accesses
in order to make a very
large stack frame
Type Proof
(DFG will emit CheckStructure on |ary1| here)

GetByOffset on |ary1| of proven type

Bug trigger

on an arbitrarily typed object
read from the stack GetByOffset thinks it fetches |a| from |oj|, at offset 0x30

But we can make it fetch it from |oj1|, still at offset 0x30 (which is OOB, as |oj1| is 0x30 bytes in size)

Type Proof
(DFG will emit CheckStructure on |ary1| here)

Type Proof
(DFG will emit CheckStructure on |ary1| here)

Bug trigger ary1 considered to be
spilled but it actually wasn’t

Type Proof
(DFG will emit CheckStructure on |ary1| here)

Bug trigger ary1 considered to be
spilled but it actually wasn’t

GetByOffset on |ary1| of proven type
on an arbitrarily typed object
read from the stack

Type Proof
(DFG will emit CheckStructure on |ary1| here)

Bug trigger ary1 considered to be
spilled but it actually wasn’t

GetByOffset on |ary1| of proven type
on an arbitrarily typed object
read from the stack

OOB read in JSCell heap

Full code for OOB read at
http://iokit.racing/slicer-id.js

Conclusion

• Getting remote code execution on iOS is tricky as Apple
has been busy pushing mitigations

• But given the right attack surface, it is still possible to
find powerful enough bugs that yield full compromise

• JavaScript engines are mind-bogglingly complicated

• Likely always going to be possible to get remote code
execution, even with PAC and memory tagging

Thanks

• bkth_

• _niklasb

• 5aelo

• Filip Pizlo

• KJC

Questions?
irc.cracksby.kim #chat

