
Seeing Inside The Encrypted Envelope

About Me

● Natalie Silvanovich AKA natashenka
● Project Zero member
● Previously did mobile security on Android and

BlackBerry
● Messaging enthusiast

The Problem

● Most remote attack surfaces accept encrypted input
● Attack surfaces that process recently decrypted data are

valuable because the server can’t analyze or filter content
● Encryption schemes are usually complicated and/or

proprietary

My goal

user user

Message

Messageencryption Message

Message

decryption
network

My goal

user user

Message

Messageencryption Message

Message

decryption

Message

add server
layer

server

network

Message

network

process
server layer

My goal

user user

Message

Messageencryption Message

Message

decryption

Message

add server
layer

server

network

Message

network

process
server layer

see and
change this see this

Targets

General Considerations

● Platform (mobile versus desktop)
● Open versus closed source
● Custom versus proprietary protocols
● Best effort versus real-time

Strategies

● Intercept over the network and decrypt
● Write or use a client
● Hook the target

● Intercept over the network and decrypt
● Write or use a client
● Hook the target

Intercepting Traffic

● Generally very difficult strategy unless standard protocols
are used
○ Documentation generally lacks details

● Where are you getting the key from?
● Removing crypto function is a possibility

○ Have a ‘special’ libcrypto
○ Make it memcpy or do nothing
○ Can be problematic when reporting bugs

Create a Standalone Client

● This is typically the best and most stable solution
● Heavy development cost
● Easy to distribute

○ Risk of blocking

Using Existing Clients

● This can work if a very good open source client exists
● Most unofficial clients focus on functionality as opposed to

coverage
● Changing an open-source client to be suitable for security

testing can be time-consuming
● Often use pieces of open source clients for decoding
● Example: Facebook and WhatsApp

Example: WebRTC

● Wrote a standalone client that could start a call with any
backend

● Used it to test browsers and Facebook Messenger
● ~ 1 week dev time
● Had difficulty keeping it up to date
● Eventually wrote a command line client that could fuzz on a

single device

Hooking

● Hooking functions is a practical low cost solution
○ Often a good way to start to see how buggy software is

● Can be error prone
○ Software updates are a challenge

● Good coverage
● Distribution can be challenging

Hooking

● Two slightly different methodologies
○ Use a debugger-like tool to hook at runtime
○ Modify the binary

● Modification is generally better for performance and
stability

● Runtime hooking is generally easier

Examples

● Runtime hooking
○ iMessage

● Application modification
○ Facebook Messenger and WhatsApp signalling (Android

application)
○ WhatsApp calling (Android native changes)
○ FaceTime (proprietary all the way down)

iMessage

● Samuel Groß wrote iMessage sending and intercepting
client

● Used Frida to hook incoming and outgoing messages

Frida

● Python-based real-time native function hooking framework
○ Can also hook Android Java with limitations

● Works on Android, iPhone, Mac, Linux, etc.
● Just run a binary on the target and attach it to the host via

USB
● Actual hooking is written in JavaScript

○ Causes some problems in Objective-C

iMessage Send Script

var jw_encode_dictionary_addr =
Module.getExportByName(null,
"JWEncodeDictionary");
send("Hooking JWEncodeDictionary" +
jw_encode_dictionary_addr);
Interceptor.attach(jw_encode_dictionary_addr, {
 onEnter: function(args) {

var dict = ObjC.Object(args[0]);

iMessage Send Script

 send(dict.toString())
 var t = dict.objectForKey_("t")
 if (t == "REPLACEME") {
 var newDict =
ObjC.classes.NSMutableDictionary.dictionaryWith
Capacity_(dict.count());
 newDict.setDictionary_(dict);
 newDict.setObject_forKey_("new
message", "t");

Android Application Example

● Facebook Messenger
○ Very large, very complicated application
○ It’s usually not necessary to use all of these strategies

Basic Idea

● Find where message is encrypted
● Insert smali code after the message has been serialized, but

before it has been signed or encrypted
● Code sends message to remote server, where it can be

changed
● Altered message gets sent to test device

Finding the Encryption Point

● Started by decompiling the application APK using apktool
● Get smali files out
● Typically obfuscated
● Android applications contain a lot of unused and rarely used

code

.method public constructor
<init>(LX/8A2;LX/0Gl;LX/0Gl;LX/89x;LX/1q1;LX/1Xs;LX/0wj;LX/0Gl;
LX/1pr;LX/0wQ;LX/0oS;LX/0dK;LX/0wO;LX/0Gl;LX/1q5;LX/0wm;)V
 .locals 10
 invoke-direct {p0}, Ljava/lang/Object;-><init>()V
 iput-object v9, p0, LX/89y;->c:LX/8A2;
 iput-object v7, p0, LX/89y;->d:LX/0Gl;
 iput-object v6, p0, LX/89y;->e:LX/0Gl;
 iput-object v5, p0, LX/89y;->f:LX/89x;
 iput-object v4, p0, LX/89y;->g:LX/1q1;
 iput-object p4, p0, LX/89y;->h:LX/1Xs;
 iput-object v1, p0, LX/89y;->i:LX/0wj;
 iput-object v0, p0, LX/89y;->j:LX/0Gl;

Strategies

● Look for known libraries
○ Libsignal
○ Java crypto

● Focus on natives
● Log entries

Known Libraries

● Most E2E encrypted messengers include libsignal
● Unfortunately, full feature set is not used
● Putting in a stub where libsignal encrypts messages (based

on Signal source) did not work on most messengers

Java Crypto Libs

● Cheap trick:
○ Make a build of Android that has a stub in

javax.crypto.Mac
○ Make the stub send the digest only when it can access a

file in the sandbox of the app you’re testing
○ Will get a lot of stuff that isn’t messages, plus

sometimes messages
● Works on about half of messengers

Java Crypto Libs

● Also possible to put log entry that outputs Java stack in
Java crypto libs

● Can help you find where the app is encrypting the message
● Relies on the app actually using Java crypto
● Apps often implement their own encryption (wrap a native

library), but usually use Java for signing
● Once output stacks in System.arraycopy when I was

desperate

Java Crypto Libs

● Can also search smali, but no guarantee stuff gets called
○ Looking for obfuscated functions with byte array

parameters worked on WhatsApp
● Can also hook Java crypto with Frida, but doesn’t work well

on all devices

Natives (JNI)

● Java Native Interface calls cannot be obfuscated (easily)
● Calls with ‘encrypt’ in the name are good candidates for stub

locations
○ Stubs are smali wrappers for the native function

● Messaging encryption is usually native
● Be careful to separate file encryption from network

encryption
● Made a script that outputs log entries for every native call

JNI Question

In a Java application, can native code be run without a JNI call?

No.

● JNI can start threads, etc, but native code always starts with
a JNI call in an Android Java application

Log Entries

● Some apps have a lot of helpful log entries (and some don’t)
 const/4 v10, 0x0
 monitor-enter v4
 :try_start_0
 iget-object v0, v4, LX/8B3;->d:Ljavax/crypto/Mac;
 if-nez v0, :cond_10
 sget-object v1, LX/8B3;->a:Ljava/lang/Class;
 const-string v0, "Could not verify Salamander signature -
no SHA256HMAC"
 invoke-static {v1, v0},
LX/00T;->b(Ljava/lang/Class;Ljava/lang/String;)V
 :try_end_0
 .catchall {:try_start_0 .. :try_end_0} :catchall_0

Log Entries

● Signature verification failure is a good log entry to look for
● You can add your own log entries

More About Message Encryption

● Apps usually have more than one location where they
encrypt messages
○ Messages
○ Attachments
○ Typing/presence indicator
○ Notification content
○ Usually need to add multiple stubs
○ Can add stubs away from encryption too

End Result

● Facebook
○ Added smali stubs in several locations, including

wrapping native encryption in smali
● WhatsApp

○ Added smali stub at a single location, far from natives
○ Also altered serialization code at various locations to

alter certain message fields without understanding the
format (for example, testing directory traversal by
changing path generation)

Messages!

Android Native Example

● WhatsApp calling required intercepting messages in the
native code

● Looked at Android App
● No symbols, but log entries from libsrtp and PJSIP
● Identified memcpy from packet to buffer before encryption

(looked for srtp_protect log entries)

WhatsApp Calling

WhatsApp Calling

● Wrote a Frida script that hooked all memcpy instances
● Frida is awesome!

 hook_code =""

 Interceptor.attach (Module.findExportByName (

"libc.so", "read"), {

 onEnter: function (args) {

 send (Memory.readUtf8String (args [1]));

 },

 onLeave: function (retval) {

 }

WhatsApp Calling

● Frida is too slow to make a call without a lot of lag
○ Good for debugging binary changes though

● Changed specific memcpy to point to function I wrote in
ARM64

● Assembly of my function overwrote GIF transcoder

● Original branch to malloc was BL instruction
● Used the ARM branch finder to make it point to my function

instead http://armconverter.com/branchfinder/
● My function calls dlopen, dlsym and then a function in

libnatalie.so

WhatsApp Calling

● Had issues with calls disconnecting, turned out I was
corrupting a used register

● After a few fixes could log and alter incoming packets
● Replaying packets by pure copying did not work

WhatsApp Calling

RTP Protocol

Interesting Parts of RTP Headers

● SSRC is a random identifier that identifies a stream
○ WhatsApp cannot be limited to a single stream

● Payload type is an identifier that identifies content type, and
is consistent

WhatsApp Calling

● WhatsApp has FOUR RTC streams, even when muted
● Luckily, they have different payload types
● Fixing ssrc and sending logged packets worked

FaceTime

● Limited open-source components
● Runs on Mac
● Needed to modify binary to log packets

FaceTime

● FaceTime is closed-source and proprietary
● Needed to modify binary to log packets

FaceTime Encryption

● Used IDA to identify call to encryption function

Hooking Functions on MacOS

● CCCryptorUpdate seemed a good candidate for recording
RTP

● DYLD_INTERPOSE can be used to redirect library calls on
Macs

● Requires setting an environment variable
○ This isn’t possible for AVConference, which is started as

a daemon

Hooking Functions on MacOS

● DYLD_INTERPOSE can also be called in the static section of
a library loaded by a Mac binary

● Found insert_dylib on github
https://github.com/Tyilo/insert_dylib

● Inserted static library that hooked CCCryptorUpdate

DYLD_INTERPOSE(mycryptor, CCCryptorUpdate);

CCCryptorStatus mycryptor(
CCCryptorRef cryptorRef, const void

*dataIn,
size_t dataInLength, void *dataOut,

size_t dataOutAvailable,size_t
*dataOutMoved) {

Hooking Functions on MacOS

● Tried making a call
● Needed some refinement

○ Limited hooking to functions that sent RTP
○ Added a spinlock
○ Patched binary to pass length

● Could alter RTP in real time, but replay did not work!

Hooking Functions on MacOS

Encoded AV Internet Decoded AV

Caller Callee

encrypt decrypt

log or replay

Investigating RTP Packets

● Read through _SendRTP function to figure out packet
generation

● Discovered RTP headers were created well after
encryption

Interesting Parts of RTP Headers

● SSRC is a random identifier that identifies a stream
○ FaceTime cannot be limited to a single stream

● Payload type is a constant that identifies content type
● Extensions are extra information that is independent of

the stream data
○ Screen orientation
○ Mute
○ Quality
○ Wait a sec, these totally depend on stream data

● Tried replaying with existing headers
● Hooked sendmsg to capture and log header

○ Needed to tie encrypted message to header
○ sendmsg NOT called on packets in the same order as

encryption (even with a spinlock)
○ Need to ‘fix’ SSRC and sequence number

Hooking Headers?

Fixing headers

Encoded AV
Internet Decoded AV

Caller
Callee

add header

decrypt

Encrypted
AV Full packet

sendmsgencrypt

Fixing headers (send)

Encoded AV
Internet Decoded AV

Caller
Callee

add header

decrypt

Encrypted
AV Full packet

sendmsgencrypt

log

log

Fixing headers (replay)

Encoded AV
Internet Decoded AV

Caller
Callee

add header

decrypt

Encrypted
AV Full packet

sendmsgencrypt

Copy
payload
from log

Copy header from log and fix
SSRC

● Patched endpoint to remove encryption
○ This worked, but can’t do it on an iPhone
○ Audio data clearly getting corrupted in decryption

● Created a cryptor queue for each SSRC, and
encrypted the data in order

● Discovered encryption is XTS with sequence number
as counter

● Fixed seq number counter

Still Didn’t Work

Fixing headers

Encoded AV
Internet Decoded AV

Caller

Callee

add header

decrypt

Encrypted
AV Full packet

sendmsgencrypt

create cryptor

Steps to Log

● Hook CCCryptorCreate to log cryptors as they are created
○ Store cryptors by thread in queues

● Hook CCCryptorUpdate, and prevent packets from being
encrypted

● Hook sendmsg, log unencrypted packet, and then encrypt it
using the cryptor from the queue

Fixing headers (send)

Encoded AV
Internet Decoded AV

Caller

Callee

add header

decrypt

Encoded AV Full packet

sendmsgdo not encrypt

create cryptorqueue

log entire packet
then encrypt payload

● Hook CCCryptorCreate to log cryptors as they are created
○ Store cryptors by thread in queues

● Hook sendmsg, save current ssrc and sequence number if it
hasn’t been seen before

● Copy logged packet into current packet

Steps to Replay

● Replace logged ssrc with ssrc for payload type
● Replace logged sequence number with logged sequence

number - starting logged sequence number + starting
sequence number for ssrc

● Pop a cryptor for the payload type and encrypt the payload
○ If there are no cryptors left, don’t send and wait

Steps to Replay

Fixing headers (replay)

Encoded AV
Internet Decoded AV

Caller

Callee

add header

decrypt

Encrypted
AV Full packet

sendmsg

create cryptorqueue

copy logged packet
fix SSRC and seq num
encrypt payload

Demo

Conclusions

● Hooking is generally the best strategy, balancing time
investment and functionality

● Stand alone clients and network interceptions are also
options

● Tools like Frida can make hooking easy in some
circumstances

● Otherwise binary modification is necessary

Conclusions

● Found many bugs with these techniques

https://bugs.chromium.org/p/project-zero/issue
s/list?can=2&q=label%3AFinder-natashenka

Conclusions

Questions

https://googleprojectzero.blogspot.com/
@natashenka

natashenka@google.com

