
Attacking iPhone XS Max
Tielei Wang and Hao Xu

About us

• Tielei Wang and Hao Xu (@windknown)

• Co-founders of Team Pangu

• Known for releasing jailbreak tools for iOS 7-9

• Organizers of MOSEC (Mobile Security Conference) at Shanghai

Outline

• UNIX Socket Bind Race Vulnerability in XNU

• Exploit the Bug on iPhone Prior to A12

• PAC Implementation and Effectiveness

• Re-exploit the Bug on iPhone XS Max

• Conclusion

Unix Domain Socket

• A UNIX socket is an inter-process communication mechanism that allows
bidirectional data exchange between processes running on the same
machine.

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to write. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Connect the socket to the path. */
 connect(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Write to the socket. */
 write(sock, buf, 1024);

 close(sock);

A simple server A simple client

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

please refer to xnu source code for more details

socket

socket_common

socreate_internal

soalloc

unp_attach

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

p_fd
…

ŏ

struct filedesc proc_t

…
fd_ofiles

…

struct fileproc *
struct fileproc *
struct fileproc *

struct fileproc *

…

…
f_fglob

struct fileproc

…
fg_data

…

struct fileglob

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

0
1
2

…
pr_unlock

pr_lock
…

struct protosw

a number of
function pointers

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

bind

sobindlock

socket_lock

unp_bind

socket_unlock

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

bind

sobindlock

socket_lock

unp_bind

socket_unlock

Note that unp_bind is surrounded by socket_(un)lock

so it is unraceable?

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

…
v_socket
VSOCK

struct vnode

Race Condition

• The creation of a vnode is time
consuming

• unp_bind has a temporary unlock

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

A simple server From the kernel point of view

bind

sobindlock

socket_lock

unp_bind

socket_unlock

socket_unlock

socket_lock

vnode_create

vp->v_socket = unp->unp_socket;
unp->unp_vnode = vp;

This unlock makes bind raceable

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

bind the socket to two file paths in parallel

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, “2.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

Thread 2Thread 1

bind the socket to two file paths in parallel

we can make a socket
binding to two vnodes
(two references)

so_usecount
ŏ

so_pcb
so_proto

struct socket

…
unp_vnode
unp_socket

…

struct unpcb

…
v_socket
VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

A simple server From the kernel point of view

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

close

soo_close

soclose

A simple server From the kernel point of view

One of the vnodes will hold a dangling pointer

 int sock;
 struct sockaddr_un name;
 char buf[1024];
 /* Create socket from which to read. */
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Create name. */
 name.sun_family = AF_UNIX;
 strcpy(name.sun_path, "1.txt");
 name.sun_len = strlen(name.sun_path);

 /* Bind socket to the path. */
 bind(sock, (struct sockaddr *)&name,
 SUN_LEN(&name));

 /* Read from the socket. */
 read(sock, buf, 1024);

 close(sock);

so_usecount
ŏ

so_pcb
so_proto

…
unp_vnode
unp_socket

…

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

freed memory freed memory

Trigger UAF by connecting two names From the kernel point of view

 int sock;
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Connect the socket to the path1. */
 connect(sock, (struct sockaddr *)&name1,
 SUN_LEN(&name));
 /* Connect the socket to the path2. */
 connect(sock, (struct sockaddr *)&name2,
 SUN_LEN(&name));

connect

�
unp_connect

The dangling pointer in one of the vnodes will pass into socket_lock()

so_usecount
ŏ

so_pcb
so_proto

…
unp_vnode
unp_socket

…

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

freed memory freed memory

sock = socket(AF_UNIX, SOCK_DGRAM, 0);
sock2 = socket(AF_UNIX, SOCK_DGRAM, 0);

bind(sock, (struct sockaddr *) &server1,
sizeof(struct sockaddr_un)))

bind(sock, (struct sockaddr *) &server2,
sizeof(struct sockaddr_un)))

close(sock)

connect(sock2, (struct sockaddr *) &server1, sizeof(struct sockaddr_un))
connect(sock2, (struct sockaddr *) &server2, sizeof(struct sockaddr_un))

in parallel

The race condition bug results in a UAF

The fix
• Fixed in iOS 12.2

• Still raceable, but adding extra checks to make sure two vnodes will only
keep one reference to the socket

• No public CVE

if(unp->unp_vnode==NULL){
 vp->v_socket = unp->unp_socket;
 unp->unp_vnode = vp;
}

The pattern

• More and more bugs caused by temporary unlocks were discovered,
implying an important bug pattern

• CVE-2019-6205, Ian Beer, https://googleprojectzero.blogspot.com/
2019/04/splitting-atoms-in-xnu.html

• CVE-2017-6979, Adam Donenfeld, https://blog.zimperium.com/ziva-
video-audio-ios-kernel-exploit/

https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html
https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html
https://googleprojectzero.blogspot.com/2019/04/splitting-atoms-in-xnu.html
https://blog.zimperium.com/ziva-video-audio-ios-kernel-exploit/
https://blog.zimperium.com/ziva-video-audio-ios-kernel-exploit/

Outline

• UNIX Socket Bind Race Vulnerability in XNU

• Exploit the Bug on iPhone Prior to A12

• PAC Implementation and Effectiveness

• Re-exploit the Bug on iPhone XS Max

• Conclusion

UAF, let’s look at the USE

UAF, let’s look at the USE
fetch and
call a
function
pointer
through
two
deferences
to a freed
socket

UAF, let’s look at the USE
fetch and
call a
function
pointer
through
two
deferences
to a freed
socket

save a
return
address to
the freed
socket

Binary version may be better
fetch and
call a
function
pointer
through
two
deferences
to a freed
socket

save a
return
address to
the freed
socket

Create a number of sockets

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

Exploit the race condition in unp_bind to
construct two vnodes holding a dangling pointer,
pointing to one of the sockets

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

Close all the sockets, and trigger zone_gc()

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

Spray controllable data (fake sockets), make sure
offset 0x18 in fake sockets pointing to a fixed/leaked
heap address
1. Heap address leaks are not very hard on iOS
2. After spraying a large volume of data,

occupying a fixed heap address is quite likely

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

+0x68

0

If offset 0x68 in the fixed heap address is 0, the
following instructions will be executed while
connecting to the two vnodes

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

+0x68

0

+0x258 returned address

Code pointer is leaked!

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

+0x68

0x4141414141414141

If offset 0x68 in the fixed heap address is not 0, the
following instructions will be executed while
connecting to the two vnodes again

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

+0x68

0x4141414141414141

PC control is achieved.
The rest of work is to chain ROP gadgets…

The exploit does NOT work on A12

(*so->so_proto->pr_lock)(so, refcount, lr_saved);

Instructions on old devices Instructions on A12 devices

(*so->so_proto->pr_lock)(so, refcount, lr_saved);

Instructions on old devices Instructions on A12 devices

Hijack control flow by controlling X8 Cannot hijack control flow by controlling X8

Outline

• UNIX Socket Bind Race Vulnerability in XNU

• Exploit the Bug on iPhone Prior to A12

• PAC Implementation and Effectiveness

• Re-exploit the Bug on iPhone XS Max

• Conclusion

Much excellent research and disclosure
• Ivan Krstić. Behind the scenes of iOS and Mac Security, Blackhat USA 2019.

• Brandon Azad, A study in PAC, MOSEC 2019.

• Bradon Azad, https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-
on.html

• Ian Beer, Escaping userspace sandboxes with PAC, https://googleprojectzero.blogspot.com/2019/04/
splitting-atoms-in-xnu.html

• Marco Grassi and Liang Chen, 2PAC 2Furious: Envisioning an iOS Compromise in 2019, Infiltrate 2019.

• Xiaolong Bai and Min Zheng, HackPac: Hacking Pointer Authentication in iOS User Space, Defcon 2019.

• Qualcomm, https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-
on-armv8-3.pdf

PAC (Pointer Authentication Code)
• Introduced in ARM v8.3

• Hardware based solution for pointer integrity

• Encode authentication code in unused bits of a pointer, and verify the code
before using the pointer

a 64bits pointer

3925

PAC (Pointer Authentication Code)
3925

PAC* instructions

APDAKey
APDBKey
APIAKey
APIBKey
APGAKey

modifier

PAC’ed pointer

PAC (Pointer Authentication Code)

AUT* instructionsmodifier

APDAKey
APDBKey
APIAKey
APIBKey
APGAKey

PAC’ed pointer

original pointer

PAC (Pointer Authentication Code)

AUT* instructionsmodifier

APDAKey
APDBKey
APIAKey
APIBKey
APGAKey

PAC’ed pointer

invalid pointer with error code

(*so->so_proto->pr_lock)(so, refcount, lr_saved);

BLRAAZ = AUTIAZ + BLR

Filling X8 with arbitrary code gadget, AUTIAZ will
yield an invalid address, leading to a kernel panic

Outline

• UNIX Socket Bind Race Vulnerability in XNU

• Exploit the Bug on iPhone Prior to A12

• PAC Implementation and Effectiveness

• Re-exploit the Bug on iPhone XS Max

• Conclusion

From the kernel point of view

 int sock;
 sock = socket(AF_UNIX, SOCK_DGRAM, 0);

 /* Connect the socket to the path1. */
 connect(sock, (struct sockaddr *)&name1,
 SUN_LEN(&name));
 /* Connect the socket to the path2. */
 connect(sock, (struct sockaddr *)&name2,
 SUN_LEN(&name));

connect

�
unp_connect

Recap

Trigger UAF by connecting two names

Take another look at unp_connect

First use of the
freed socket

Note that we can safely return from socket_lock, if we avoid the function pointer call

Take another look at unp_connect

Second use of
the freed socket

UAF, let’s look at the second USE

socket_unlock is very similar to socket_lock, except when so->so_usecount turns to 0

so_usecount
ŏ

so_pcb
so_proto

struct socket

sofreelastref
• sofreelastref has a lot of cleanup, but eventually calls kfree

socket_unlock

sofreelastref
sodealloc

FREE_ZONE
kfree

The race condition bug results in a UAF
The UAF results in a double free

Create a number of sockets

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

Exploit the race condition in unp_bind to
construct two vnodes holding a dangling pointer,
pointing to one of the sockets

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

Close all the sockets, and trigger zone_gc()

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

Spray controllable data (fake sockets), make sure
offset 0x18 in fake sockets pointing to a fixed/leaked
heap address

Connect to the two vnodes.
Avoid invoking the two function pointers, and
go to kfree in sofreelastref.

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

+0x68

0

+0x70

0

The OSdata is freed now, as if it were a socket

Spray a number of OOL ports descriptors via
mach_msg.
Occupy the freed OSData with OOL ports buffer

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x18

+0x68

0

+0x70

0

mach_msg_ool_ports_descriptor_t

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

+0x68

0

+0x70

0

mach_msg_ool_ports_descriptor_t

Free all the
OSData

The OOL
ports buffer
is freed, as
if it were
OSData

Spray a number of OSData again.
Occupy the freed OOL ports buffer, and refill
with a pointer pointing to a fake port struct

…
0

VSOCK

struct vnode

…
v_socket
VSOCK

struct vnode

a fixed or leaked heap address

fake port

mach_msg_ool_ports_descriptor_t

fake port
mach_port_t

Kernel Userspace

Receive all the mach messages,
gain a send right to a fake port

Build a fake kernel task object, we
gain an arbitrary kernel read and
write (tfp0) So far so good. Can we

win the game without a
fight with PAC?

Got troubles while adding trust caches
• With tfp0, adding trust caches is quit straightforward on old devices

• by adding adhoc hashes, we can avoid code signature validations on our
executables

• But on A12 devices, we got a new type panic when adding hashes

panic(cpu 3 caller 0xfffffff013cb2880): \"pmap_enter_options_internal:
page locked down, \" \"pmap=0xfffffff013cd40a0,
v=0xffffffe04a27c000, pn=2108823, prot=0x3, fault_type=0x3,
flags=0x0, wired=1, options=0x9\"

• Apparently, there are other mitigations

APRR
• More protections on kernel heap memory

• Protected kernel heap memory could only be written from approved
kernel code

• New PPL* segments introduced

__PPLTEXT
• Contains code for

• Pmap related functions

• Code signature related functions

• Trust cache related functions

• …

• Code in __PPLTEXT cannot be executed unless a special register (“#4, c15,
c2, #1) is set to 0x4455445564666677

__PPLTRAMP

• The only entry point to set the special register “#4, c15, c2, #1” to
0x4455445564666677

• Dispatch calls to functions in __PPLTEXT

tfp0’s write capability for kernel image

Data

Code

W

Data

Code

W

Since iPhone 7 (KTRR introduced)Before iPhone 7 Since iPhone XS (APRR introduced)

Data

PPLDATA

Code

W

__PPLTEXT

W

Adding dynamic trust caches needs a code execution

Look for unprotected control flow transfer points

• Indirected function calls

• Context switches

• Interrupt handlers

• …

Please refer to Brandon Azad, “A study in PAC”, MOSEC 2019 for more bypass methods

• thread_exception_return is used to return a thread from the kernel to
usermode

• When eret instruction is executed, the CPU restores PSTATE from the
SPSR, and branches to the address held in the ELR.

thread_exception_return jumps to our eyes

LDR X0, [SP,#arg_108]

LDR W1, [SP,#arg_110]

LDR W2, [SP,#arg_340]

LDR W3, [SP,#arg_340+4]

MSR #0, c4, c0, #1, X0 ; [>] ELR_EL1 (Exception Link Register (EL1))

MSR #0, c4, c0, #0, X1 ; [>] SPSR_EL1 (Saved Program Status Register (EL1))

...

ERET

thread_exception_return jumps to our eyes

LDR X0, [SP,#arg_108]

LDR W1, [SP,#arg_110]

LDR W2, [SP,#arg_340]

LDR W3, [SP,#arg_340+4]

MSR #0, c4, c0, #1, X0 ; [>] ELR_EL1 (Exception Link Register (EL1))

MSR #0, c4, c0, #0, X1 ; [>] SPSR_EL1 (Saved Program Status Register (EL1))

...

ERET

thread_exception_return jumps to our eyes

eret to arbitrary kernel address at EL1

if we can control the memory loads

LDR X0, [SP,#arg_108]

LDR W1, [SP,#arg_110]

LDR W2, [SP,#arg_340]

LDR W3, [SP,#arg_340+4]

MSR #0, c4, c0, #1, X0 ; [>] ELR_EL1 (Exception Link Register (EL1))

MSR #0, c4, c0, #0, X1 ; [>] SPSR_EL1 (Saved Program Status Register (EL1))

...

BL jopdetector

....

ERET

thread_exception_return jumps to our eyes

However, there is a special function

Let’s check this jopdetector

jop detector is supposed to check the integrity of the saved thread context

Let’s check this jopdetector

But wait, a mismatch of hash values does not lead to a panic
because of an early return

What can we do
• Make a thread trapping into the kernel and waiting for return (e.g.,

waiting for a mach msg)

• Change the saved thread context (ELR_EL1 and SPSR_EL1) based on
tfp0

• Make the thread return (e.g., sending a msg)

• Gain arbitrary code execution in the kernel via eret

• Call ppl_ loadTrustCache (0x25) to load our own dynamic trust cache

Got ssh on iPhone XS Max

The fix

Black Hat Sound Bytes

• Temporary unlock is becoming an source of race condition bugs

• PAC+PPL is great, but does not end the memory war

• A good design needs a good, complete implementation

Thank you!

