
All Your Apple Are Belong To Us:
Unique Identification and Cross-device Tracking

of Apple Devices

Whoami

• SparkZheng @ Twitter，蒸米spark @ Weibo

• Alibaba Senior Security Expert

• CUHK PhD, Blue-lotus and Insight-labs

• Gave talks at BlackHat (USA&EU), RSA, DEFCON, HITB, etc.

• Xiaolong Bai (bxl1989 @ Twitter&Weibo)

• Alibaba Security Expert

• Ph.D. graduated from Tsinghua University

• Published papers on S&P, Usenix Security, CCS, NDSS

Agenda

• Introduction

• Unique Identification

• Cross-device Tracking

• Discussion

• Conclusion

The New Multi-screen World

• Smartphones and laptops are the most
frequently used personal devices.

• A study by Google[1] showed that 98%
of surveyed Internet users in the U.S.
use multiple devices on a daily basis.

• 90% people switch devices sequentially
to accomplish a task over time.

Introduction

The New Multi-screen World

Introduction

• According to a survey[1], consumers usually take a multi-device path to purchase their goods.

• Device switching may cause advertisers to lose their customers.

Pic from [1]

Cross-device Tracking

Introduction

• People with ulterior motives want to
connect to individuals through these
devices.

• Identifying and correlating people's
devices allows cross-device companies
to track one person and target
operations (e.g., advertising) on both
of his/her devices.

Cross-device Tracking

Introduction

BUT…

Uniquely Identifying and Cross-device Tracking

Introduction

• Cross-device tracking is based on resolving two tasks:

1. Uniquely identifying users' devices (Device ID).

2. correlating those that belong to the same user (User ID).

Pic from google

Agenda

• Introduction

• Unique Identification

• Cross-device Tracking

• Discussion

• Conclusion

Device ID

Unique Identification

• Apple's identifiers strategy:

1. Short live

2. Random

3. Anonymous

• What advertising & analytics companies want:

1. Permit long term tracking of a user

2. Aren't transparent or in line with user expectations

3. Users don't have control

*OS Public APIs for Device IDs - IDFA & IDFV

Unique Identification

Scope Control Backed Up Restored
Across Devices

UUID App Uninstall App No No

Vendor ID Developer Uninstall all Apps
from same teamID YES No

Advertising ID Device Reset Advertising ID YES No

• UUID is a universally unique value that can be used to identify types, interfaces, and
other items.

• Vender ID and Advertising ID can be used to uniquely identify a device (Device ID).
Users can control them.

*OS Public APIs for Device IDs - IDFA & IDFV

Unique Identification

• When a user enables “Limit Ad
Tracking”, the OS will send along the
advertising identifier with a new value
of“00000000-0000-0000-0000-
000000000000.”

• Vender ID can be reset by uninstalling
all apps from same teamID.

• Advertising ID and Vender ID are not
enough for advertising & analytics
companies.

*OS Public APIs for Device IDs - Keychain

Unique Identification

• Keychain gives apps a mechanism to store
small bits of user data in an encrypted
database.

• The app’s data stored in the keychain will
not be lost even after the application is
uninstalled.

• It’s useful for normal users. But, it’s easy for
hackers to delete the data in the keychain
on a jailbroken device.

Hardware Based Device IDs - IMEI

Unique Identification

• We can obtain most of device IDs through the MGCopyAnswer() of libMobileGestalt.dylib.

• However, some entitlements like com.apple.private.MobileGestalt.AllowedProtectedKeys are
required. A POC of getting the IMEI:

Hardware Based Device IDs - I/O Registry

Unique Identification

• The I/O Registry is a dynamic database that describes a collection of “live” objects (nubs or
drivers). When hardware is added or removed from the system, the Registry is immediately
updated to reflect the new configuration of devices. Thus, it contains lots of Device IDs.

• However, most of values are protected by “iokit-get-properties” sandbox rules.

*OS Private APIs for Device IDs - Mac Address

Unique Identification

• A MAC address is the unique identifier that is assigned by the manufacturer to a piece of
network hardware (e.g., wireless and bluetooth).

• Traditional methods of obtaining a WIFI MAC address has been pruned on the iOS system.

iOS

macOS

*OS Private APIs for Device IDs - Mac Address (iOS 10)

Unique Identification

• socket(AF_ROUTE, SOCK_RAW, 0) can be used to create AF_ROUTE raw sockets. Only super
users can create this socket in Unix & Linux. But in iOS, apps in the sandbox can also create
this socket. Through SOCK_RAW, we can access ARP cache routines (contains MAC info).

• In iOS 11, Apple doesn't allow apps to access the MAC addresses in the ARP table and read
the Mac addresses from there during the scan. Because MAC addresses are unique and
some developers misuse them to track users.

Pic from [9]

*OS Private APIs for Device IDs - Bluetooth Mac Address

Unique Identification

• Bluetooth Device Address (or BD_ADDR) is a unique
48-bit identifier assigned to each Bluetooth device by
the manufacturer (similar to WIFI mac address).

• iPhone and iPad are using an integrated chipset
supporting both WIFI and Bluetooth. Because they
are initialized at the same time during manufacturing,
their addresses usually get assigned consecutively.

• It means if we can get the Bluetooth mac address,
we can calculate the WIFI mac address.

same

*OS Private APIs for Device IDs - Bluetooth Mac Address

Unique Identification

• Mach messages contain typed data, which can include port rights and references to large
regions of memory.

• Through Mach MSG, sandboxed app can communicate with unsandboxed Mach (MIG)
services, XPC services and NSXPC services.

APP
sandbox

Mach Services

XPC services

APP
sandbox

NSXPC services

*OS Private APIs for Device IDs - Bluetooth Mac Address (iOS 12)

Unique Identification

• Bluetoothd communicate with sandboxed apps and other unsandboxed processes (e.g.,
SpringBoard) through Mach messages.

• There are 132 functions (start from 0xFA300) in the “com.apple.server.bluetooth” Mach service
of bluetoothd.

Bluetoothd

Apps

SpringBoard

sharingd
Session token

Session token
Session token

*OS Private APIs for Device IDs - Bluetooth Mac Address (iOS 12)

Unique Identification

• Some useful functions of ”com.apple.server.bluetooth”:

• We can attach the Bluetooth service through BTSessionAttachWithRunLoopAsync().

• We get the handler of local device through BTLocalDeviceGetDefault().

Function Feature
BTSessionAttachWithRunLoopAsync Attach Bluetooth service

BTSessionDetachWithRunLoopAsync Detach Bluetooth service

BTLocalDeviceGetDefault Get the handler of local device
BTLocalDeviceGetAddressString Get the address of Bluetooth device

BTLocalDeviceGetModulePower Get the status of Bluetooth device

*OS Private APIs for Device IDs - Bluetooth Mac Address (iOS 12)

Unique Identification

• BTLocalDeviceGetAddressString() will return the mac address of Bluetooth!

• Note that, this method was available on iOS 12.0 and fixed in iOS 12.1.

• In addition, WIFI and Bluetooth addresses of new iPhone models (after iPhone 7?) are not
consecutive. But …

Agenda

• Introduction

• Unique Identification

• Cross-device Tracking

• Discussion

• Conclusion

Cross-device Tracking

• After unique identification of each device, cross-device companies must match those that
appear similar.

• A device graph can be built from connected components (each of which represents a user)
with a maximum number of vertices (devices) and edges (device connections).

Person A

iPhone iPad iPad Mac

UserID UserID IP IP

Deterministic links Probabilistic links

Device Graph Link Structure

Data Links

Cross-device Tracking

• Deterministic data links devices together
based upon UserID (e.g, Apple ID, phone
number, user account identifier).

• Probabilistic data links devices together
based on a set of feature data that model
the entity (e.g., IP addresses, coordinate
information and device names).

Person A

iPhone

UserID

Deterministic Linking

Person A

iPad

UserID

iPhone

UserID

Person A

iPad

UserID

Person A

iPhone

IP

Probabilistic Linking

Person A

iPad

IP

iPhone

IP

Person A

iPad

IP

AppleID Leak – iOS 8 (CVE-2014-4423)

Cross-device Tracking

• The Accounts subsystem in Apple iOS 8 allows attackers to bypass a sandbox protection
mechanism and obtain an active iCloud account's Apple ID and metadata via a crafted
application.

• POC:

AppleID Leak – iOS 10 (CVE-2017-6976)

Cross-device Tracking

• AppleIDAuthAgent is a service that handles actions regarding a users Apple ID,
including iCloud information linked to that account.

• It runs com.apple.coreservices.appleid.authentication XPC service, which could be
accessed by any application and it has a flow that leaks AppleID.

• POC:

AppleID Leak – iOS 12 (CVE-2019-????)

Cross-device Tracking

• In iOS and macOS, Game Center has a NSXPC service - com.apple.gamed. It provides
interfaces to get authenticated player information. However, it doesn’t has an entitlement
protection, thus any applications inside the sandbox can access it and get the username of
Apple ID.

• This vulnerability was fixed in iOS 12.4. A POC of getting apple ID on iOS 12:

AirDrop Internals

Cross-device Tracking

• AirDrop utilizes Bluetooth and WiFi

• Discovery via Bluetooth

• Used to set up an ad-hoc WiFi network
using Apple Wireless Direct Link (AWDL)
interface awdl0

• Client browses for AirDrop service via
mDNSResponder (for _airdrop._tcp. local
service)

• Returns an IP/port for a HTTPS webserver

AirDrop Internals: Discovery Process

Cross-device Tracking

• Discovery information for normal Apple devices.

AirDrop Internals: Discovery Process

Cross-device Tracking

• Discovery information for personal Apple devices.

AirDrop Internals: Private API

Cross-device Tracking

• /System/Library/PrivateFrameworks/Sharing.framework has private APIs to control AirDrop
Service, we can use dlopen and dlsym to find these APIs：

Method Feature

SFBrowserCreate Create a browser note

SFBrowserOpenNode Start a browser scanning

SFOperationCreate Create an operation note

SFOperationResume Start the operation

Remotely AppleID Leak – iOS 12 (CVE-2018-4322)

Cross-device Tracking

• Using SFBrowserCreate() and SFBrowserOpenNode(), we could find nearby AirDrop devices.

• We can get computer names, ServiceName (unique device ID) and DisplayName from
browserCallback(). If the devices belongs to a same person, we could get the Apple ID (CVE-
2018-4322) as well.

Remotely AppleID Leak – iOS 12 (CVE-2018-4322)

Cross-device Tracking

• We have reported this issue to Apple in May, 2018. Apple fixed it in iOS 12 (September).

• However, this vulnerability was not fixed completely. Old iOS devices can still use this bug
to gain DeviceIDs & AppleIDs of other devices (even if they upgrade to iOS 12).

• This vulnerability is very powerful because it can remotely gain sensitive information from
one user ' s device to other user’s devices (without installing a payload).

UserID Leak – Arbitrary Sqlite Querying (CVE-2019-8532)

Cross-device Tracking

• In iOS 9, we found a vulnerability in com.apple.medialibraryd.xpc NSXPC service. This vulnerability can
be exploited to read, write and query arbitrary SQLite files (e.g., SMS message database, Gmail
database, WeChat database) outside the sandbox.

• The sandboxed app can use [[connection remoteObjectProxy] beginTransactionForDatabaseAtPath]
method to connect arbitrary SQLite files on the system and then use [[connection remoteObjectProxy]
executeQuery] to execute SQL commands.

POC:

UserID Leak – Arbitrary Sqlite Querying (CVE-2019-8532)

Cross-device Tracking

• In iOS 10, the exploit doesn’t work. Because
Apple added a new privacy mechanism called
“Consent Alert Purpose String”.

• To make exploit work again. We need to add a
propose string key name to the project and call
[MPMediaLibrary requestAuthorization] to get
an authorization from the user.

UserID Leak – Arbitrary Sqlite Querying (CVE-2019-8532)

Cross-device Tracking

• After getting an authorization, we can query
arbitrary SQLite files (e.g., SMS message
database, Gmail database, WeChat database)
outside the sandbox.

• These databases contain a large amount of user
information including UserIDs (e.g., phone
number and Apple ID).

• Also, we can control the PC register of the
medialibraryd system process using the
fts3_tokenizer() vulnerability on iOS 12.1.4.

UserID Leak – Arbitrary Sqlite Querying (CVE-2019-8532)

Cross-device Tracking

• This vulnerability was fixed in iOS 12.2. Note that, this vulnerability can be used to execute a
JOP exploit and bypass the PAC mitigation in iOS user space.

• Welcome to join us for another talk - HackPac : Hacking Pointer Authentication in iOS user
space, DEF CON 27.

Probabilistic Data

Cross-device Tracking

• Probabilistic links connect a device to a

person algorithmically, based on

characteristics and metadata such as:

– IP addresses

– Device names (Apple style)

– URLs

– Coordinate information

Person A

iPhone

IP

Probabilistic Linking

Person A

iPad

IP

iPhone

IP

Person A

iPad

IP

Apple Style Device Name

Cross-device Tracking

bxl

min

• When the device is initialized, Apple will set the device name based on the user's name.
Although it’s convenient, it may reveal the user's information, or even help the advertising &
analytics companies to associate the device.

Probabilistic Data Links through Algorithm

Cross-device Tracking

• Uniquely identifying a device.

• Calculating similarity to each identified devices.

• The devices pair with the maximum similarity above

a similarity threshold.

• If such pair exists, it is added to the device graph and

the next iteration starts with a new device.
Algorithm from [3]

UUID

UUID

UUID

UUID

UUID

UUID UUID

UUID

Agenda

• Introduction

• Unique Identification

• Cross-device Tracking

• Discussion

• Conclusion

Data is Dangerous

Discussion

• Data brings power and danger

• Gathering data adds overhead and liability

• Unexpected data adds more risks and distrust

Analyzing the IPC Messages of System Services

Discussion

• We can use instrumentation to analyze the IPC related API calls and messages of system
services. These APIs may be abused to uniquely identify and cross-device track users.

Analyzing the Behavior of the App

Discussion

• By hooking some well known APIs (e.g., IDFV), Frida can help us to locate the function of device info
collection through Thread.backtrace().

Faking the Device Information

Discussion

• By using instrumentation (e.g., Cydia
substrate), we can return random and
fake device information to the apps to
protect our privacy.

• A total random value may make the
app failed to execute. We can partially
add noise to the data through
differential privacy algorithm.

Pic from [10]

Differential Privacy

Discussion

• Differential privacy provide means to maximize the accuracy of queries from statistical
databases while measuring the privacy impact on individuals whose information is in the
database.

• For instance, sql-differential-privacy[6] is a query analysis and rewriting framework to
enforce differential privacy for general-purpose SQL queries.

add noise
user data privatized data

iOS 13

Discussion

• In iOS 13, instead of using a social account or filling
out forms, Apple will provide developers with a
unique random ID.

• Companies cannot get the information of
usernames and passwords which means UserID
leakage vulnerabilities become more powerful.

• Apple will prevent apps from using Wi-Fi and
Bluetooth to approximate your location without
actually asking for it.

Agenda

• Introduction

• Unique Identification

• Cross-device Tracking

• Discussion

• Conclusion

Conclusion

• We list several approaches (e.g., public APIs and vulnerabilities like CVE-2018-4322) to
uniquely identify the Apple device even after a system rebooting or resetting.

• We present more advanced algorithms and vulnerabilities (e.g., CVE-2018-4321, and CVE-
2019-8532) to associate Apple device through deterministic user IDs (e.g., Apple IDs and
phone numbers) and probabilistic data (e.g., device name, booting time and IP addresses).

• We discuss feasible solutions (e.g., instrumentation and differential privacy) to detect and
prevent uniquely identifying and cross-device tracking.

• Acknowledgement: Qianru Wu, Zhijian Deng, Hunter @ Alibaba Inc., and Deven @ Apple Inc.

• Note that: all four vulnerabilities we found were reported to Apple (follow-up id: 710526756)
and we believe our study can help Apple to maintain and improve the privacy of their products.

Reference

[1]. The New Multi Screen World Study, Google

[2]. OS Internals Volume III Security & Insecurity

[3]. A Privacy Analysis of Cross-device Tracking, USENIX Security 17

[4]. Staying secure and unprepared: understanding and mitigating the security risks of Apple ZeroConf, S&P 16

[5]. https://marketing.adobe.com/resources/help/en_US/mcdc/mcdc-links.html

[6]. https://github.com/ChiChou/passionfruit

[7]. sql-differential-privacy, https://github.com/uber/sql-differential-privacy

[8]. Frida https://www.frida.re/docs/ios/

[9]. Raw Sockets - 101 Vivek Ramachandran

[10]. http://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html

[11]. Better Apps Through Better Privacy, Apple, WWDC 2018

https://marketing.adobe.com/resources/help/en_US/mcdc/mcdc-links.html
https://github.com/uber/sql-differential-privacy
https://www.frida.re/docs/ios/

Thank You
SparkZheng @ Twitter

蒸米spark @ Weibo

